Chronology, Petrogeochemistry and Geological Significance of Garnet Bearing Granodiorite in Jianfengshan Area, Northern Qaidam Margin
-
摘要: 柴北缘尖峰山地区含石榴石花岗闪长岩呈脉状分布在达肯大坂岩群中,岩石主要由石英(30%~35%)、斜长石(45%~50%)、钾长石(15%~20%)、黑云母(5%)及少量的白云母(< 5%)和石榴石(< 5%)组成.锆石U-Pb定年结果表明,含石榴石花岗闪长岩的形成时代为(441.1±1.4)Ma,属于早志留世.岩石具有高SiO2(66.27%~74.42%)、Na2O(3.47%~6.75%)、Al2O3(14.71%~20.43%),低MgO(0.07%~0.56%)、Mg#(19.8~43.6)含量和强过铝质(A/CNK介于0.99~1.34)特征,其U、K、Ba等元素相对富集,亏损Nb、Ta、Sr、P、Eu、Ti等元素.稀土元素配分曲线呈右倾型,显示弱的负Eu异常(δEu=0.31~0.81).岩石具有较高的ISr值(0.707 123~0.708 081)和负的εNd(t)值(-1.91~-2.37),双阶段模式年龄TDM2为1 660~1 756 Ma.经校正后的(206Pb/204Pb)i值为18.354 7~18.582 2,(207Pb/204Pb)i值为15.365 4~15.641 2,(208Pb/204Pb)i值为38.254 7~38.654 1.锆石Hf同位素εHf(t)比值为2.5~-9.1,对应的Hf同位素地壳模式年龄TDM2为1 263~2 012 Ma.岩石地球化学及同位素的研究表明,尖峰山含石榴石花岗闪长岩为S型花岗岩,形成于柴达木陆块与祁连陆块碰撞造山阶段,是早期俯冲的大陆和大洋地壳经历了超高压变质作用(榴辉岩相条件)的同时经历部分熔融流体上升导致陆壳发生部分熔融形成.Abstract: Garnet bearing granodiorite in the Jianfengshan area on the northern margin of Qaidam basin is vein distributed in Dakendaban rock group. The rocks are mainly composed of quartz (30%-35%), plagioclase (45%-50%), potassium feldspar (15%-20%), biotite (5%) and a small amount of muscovite (< 5%), garnet (< 5%).Zircon U-Pb dating shows that the formation age of garnet bearing granodiorite is (441.1 ± 1.4) Ma, belonging to Early Silurian.The rocks have high SiO2 (66.27%-74.42%), Na2O (3.47%-6.75%), Al2O3 (14.71%-20.43%), low MgO (0.07%-0.56%), Mg# (19.8-43.6) contents and strong peraluminite (A/CNK ranges from 0.99~1.34).The minerals are enriched in U, K, Ba and depleted in Nb, Ta, Sr, P, Eu, Ti and other elements. The REE distribution curves show a right-leaning pattern, showing a weak negative Eu anomaly (δEu= 0.31-0.81). The rocks have high ISr values (0.707 123-0.708 081) and negative εNd(t) values (-1.91 to -2.37), and the two-stage model age TDM2 is 1 660-1 756 Ma. After correction, (206Pb/204Pb)i value is 18.354 7-18.582 2, (207Pb/204Pb)i value is 15.365 4-15.641 2, (208Pb/204Pb)i value is 38.254 7-38.654 1. Zircon Hf εHf(t) ratios range from 2.5 to -9.1, and the corresponding Hf isotopic crust model ages TDM2 range in 1 263-2 012 Ma. The study of rock geochemistry and isotopes shows that the garnet bearing granodiorite in the Jianfengshan is an S-type granite, which was formed in the collision orogenic stage between Qaidam block and Qilian block. It is the early subducted continental and oceanic crust that experienced ultra-high pressure metamorphism (eclogite facies conditions) and the rise of partially molten fluid, resulting in the partial melting of the continental crust.
-
图 1 柴北缘及邻区地质简图(a), 尖峰山地区地质图(b)和含石榴石花岗闪长岩剖面示意图(c)
图a据潘桂棠等(2009)修改
Fig. 1. Regional geological map of the northern margin of Qaidam basin (a), geological map of Jianfengshan area (b) and schematic diagram of garnet bearing granodiorite section (c)
图 5 TAS图解(据Middlemost,1994)
Fig. 5. TAS diagram (after Middlemost, 1994)
图 6 SiO2-K2O图解(据Rickwood,1989)
Fig. 6. SiO2-K2O diagram (after Rickwood, 1989)
图 7 A/CNK-A/NK图解(据Maniar and Piccoli,1989)
Fig. 7. A/CNK-A/NK diagram (after Maniar and Piccoli, 1989)
图 8 稀土元素标准化配分图(标准化值据Sun and McDonough,1989)
Fig. 8. Chondrite-nor malized REE patterns (normalized data after Sun and McDonough, 1989)
图 9 微量元素原始地幔标准化蛛网图(标准化值据Sun and McDonough,1989)
Fig. 9. MORE-normalized trace element diagram(normalized data after Sun and McDonough, 1989)
图 10 Rb-Th(a)和Rb-Y图解(b)(据Chappell,1999)
Fig. 10. Rb-Th diagram (a) and Rb-Y diagram (b) (after Chappell, 1999)
图 13 锆石Hf同位素图解
柴达木山花岗岩数据据周宾等(2013);锡铁山花岗岩数据据Zhao et al.(2017);都兰云母片岩数据据Yu et al.(2013);都兰埃达克岩数据据Song et al.(2014);图据吴福元等(2007)
Fig. 13. Diagrams of Hf isotope of zircon
图 14 A/MF-C/MF图解(据Altherr et al.,2000)
Fig. 14. A/MF-C/MF diagram (after Althea et al., 2000)
图 15 Rh/Ba-Rb/Sr图解(据Sylvester, 1998)
Fig. 15. Rb/Ba-Rb/Sr diagram (after Sylvester, 1998)
图 16 Hf-Ta-Rb图解(据Pearce,1984)
Fig. 16. Hf-Ta-Rb diagram (after Pearce, 1984)
图 17 R1-R2图解(据Batchelor and Bowden,1985)
Fig. 17. R1-R2 diagram (after Batchelor and Bowden, 1985)
表 1 尖峰山含石榴石花岗闪长岩锆石U-Pb同位素分析结果
Table 1. U-Pb is iotope age determined result of garnet bearing granodiorite in Jianfengshan area
点号 U Th Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U μg/g 比值 1σ 比值 1σ 比值 1σ T(Ma) 1g 11 259 136 0.53 0.124 9 0.002 5 7.007 9 0.208 2 0.400 1 0.006 1 2 069 28.275 057 0 13 255 312 1.22 0.151 3 0.002 4 8.940 0 0.140 0 0.426 4 0.002 7 1 990 12.375 414 0 18 746 159 0.21 0.166 7 0.002 8 11.022 2 0.183 0 0.476 8 0.003 0 2 013 13.325 047 0 01 314 42.7 0.14 0.057 3 0.001 1 0.561 5 0.010 5 0.070 8 0.000 5 441 2.992 471 1 02 126 5.43 0.04 0.056 7 0.001 2 0.570 2 0.012 1 0.072 7 0.000 6 453 3.680 738 9 03 875 287 0.33 0.054 8 0.001 2 0.533 9 0.011 1 0.070 6 0.000 7 440 3.954 493 8 04 699 36.5 0.05 0.057 0 0.001 6 0.571 1 0.015 8 0.072 5 0.000 7 451 4.072 782 0 05 726 12.1 0.02 0.055 6 0.001 1 0.558 2 0.011 1 0.072 5 0.000 7 451 4.071 761 9 06 656 34 0.56 0.057 3 0.001 1 0.561 5 0.010 5 0.070 8 0.000 5 441 2.992 471 1 07 253 3.99 0.02 0.055 8 0.001 1 0.550 7 0.010 7 0.071 1 0.000 6 443 3.710 191 4 08 148 0.83 0.01 0.056 6 0.001 1 0.568 7 0.011 4 0.072 7 0.000 8 452 4.912 440 3 09 95.8 0.80 0.01 0.058 3 0.001 3 0.562 1 0.012 3 0.069 6 0.000 5 434 2.939 322 0 10 154 2.7 0.01 0.054 5 0.001 0 0.528 4 0.009 5 0.070 0 0.000 5 436 2.862 094 2 12 903 24 0.03 0.053 1 0.002 1 0.521 8 0.021 8 0.070 5 0.000 7 439 4.195 652 9 14 124 0.098 0.00 0.055 9 0.001 0 0.558 2 0.010 0 0.072 1 0.000 6 449 3.805 844 1 15 300 5.42 0.02 0.054 3 0.001 0 0.522 2 0.010 0 0.069 7 0.000 5 434 3.296 046 3 16 65.9 2.27 0.01 0.055 0 0.001 1 0.534 8 0.011 3 0.070 3 0.000 6 438 3.387 496 7 17 27.1 0.68 0.01 0.056 2 0.000 9 0.559 5 0.009 4 0.072 1 0.000 6 449 3.393 926 7 19 139 0.81 0.01 0.055 9 0.001 0 0.541 0 0.009 7 0.070 0 0.000 6 436 3.358 512 3 20 449 8.63 0.02 0.054 8 0.001 0 0.544 5 0.010 0 0.071 8 0.000 6 447 3.572 646 7 21 1 079 124.5 0.12 0.055 3 0.001 1 0.558 2 0.011 5 0.072 8 0.000 7 453 4.224 661 2 22 24.1 0.022 0.00 0.055 3 0.001 1 0.546 2 0.011 0 0.071 3 0.000 6 444 3.718 657 0 23 225 2.24 0.01 0.057 8 0.001 3 0.555 0 0.012 4 0.069 4 0.000 5 432 3.288 153 8 24 1353 43.9 0.03 0.055 6 0.001 1 0.545 6 0.010 9 0.070 9 0.000 6 442 3.584 045 1 表 2 尖峰山含石榴石花岗闪长岩主量元素(%)、微量元素(10-6)分析结果
Table 2. Major element (%), trace and REE element (10-6) data of the Jianfengshan garnet-bearing granodiorite
样号 2019JFS1 2019JFS2 2019JFS4 16JFS1-1 16JFS1-2 16JFS1-3 16JFS1-4 16JFS2-1 16JFS2-2 16JFS2-3 16JFS2-4 坐标 北纬 37°56′36″ 37°56′34″ 37°56′28″ 37°56′37″ 37°56′39″ 37°56′52″ 37°56′58″ 37°57′41″ 37°57′49″ 37°57′54″ 37°57′58″ 东经 95°04′12″ 95°04′19″ 95°04′32″ 95°04′8″ 95°04′21″ 95°04′34″ 95°04′52″ 95°06′20″ 95°06′32″ 95°06′38″ 95°06′46″ SiO2 67.28 73.89 73.8 66.27 70.33 69.72 69 74.42 73.45 73.1 72.83 TiO2 0.16 0.14 0.15 0.19 0.17 0.16 0.15 0.15 0.14 0.13 0.14 Al2O3 17.98 15.36 15.32 20.43 16.77 17.18 17.42 14.71 15.69 15.68 15.49 Fe2O3 0.54 0.15 0.22 0.56 0.58 0.7 0.64 1.01 1.4 1.46 1.7 FeO 2.68 0.55 0.33 0.46 1.25 1.22 1.37 0.38 0.72 0.73 0.59 MnO 0.09 0.05 0.08 0.05 0.08 0.08 0.09 0.03 0.02 0.02 0.03 MgO 0.65 0.07 0.09 0.37 0.45 0.5 0.51 0.41 0.56 0.59 0.56 CaO 3.43 0.54 0.58 5.42 3.07 3.25 3.24 2.83 2.14 2.52 2.78 Na2O 5.29 6.75 5.91 5.59 4.93 5.15 5.14 3.79 3.63 3.47 3.54 K2O 2.24 2.74 3.85 2.62 2.31 1.95 2.29 2.06 1.96 2.01 2.06 P2O5 0.1 0.04 0.03 0.06 0.06 0.06 0.08 0.09 0.1 0.1 0.09 H2O+ 1.26 1.24 0.36 0.87 0.62 0.62 0.76 1.7 2.12 2.02 2.14 CO2 0.57 0.72 0.57 0.25 0.04 0.18 0.08 1.7 1.03 1.18 1.28 Lost 1.46 2.07 0.9 1.12 0.55 0.77 0.7 3.47 3.08 3.2 3.44 Rb 69.25 48.01 75.04 43.31 48.22 27.52 36.11 62.6 65.72 66.83 75.04 Zr 169.01 143.5 131.6 143.8 150.3 158.7 168.21 100.12 126.23 123.41 131.3 Nb 12.42 11.91 22.81 29.6 12.71 14.3 13.81 6.21 6.92 6.8 6.8 Hf 4.01 3.81 2.53 4.7 4.22 4.73 4.73 2.72 3.34 3.81 3.2 Ta 1.61 1.8 1.03 2.7 1 1.01 0.9 0.6 0.71 0.72 0.71 Th 7.89 2.42 1.97 2.72 3.02 2.7 2.9 5.9 7.8 7.5 8.11 U 5.37 10.5 2.58 1.6 2.41 1.4 2.2 4.82 4.5 4.4 5.83 Ba 2 344.05 2 496.03 2 624.91 2 345.74 1 780.24 2 720.45 2 854.34 1 569.11 2 586.2 2 556.02 1 625.12 Cr 3.05 1.14 0.94 4.5 4.02 4.01 4 7.1 7.91 8.31 16.6 Ni 3.01 1.51 1.26 4 3.7 3.71 3.61 3.8 3.72 3.62 3.81 Co 3.12 1.05 0.29 5.7 4.01 3.9 4.21 3.91 3.9 3.83 3.92 Sr 241.01 251.8 229.1 251.01 259.71 237.02 238.8 213.04 247.71 251.33 249.1 V 30.62 3.63 2.56 26.61 21.41 21.5 23.02 18.81 22.1 21.82 23.02 La 23.02 25.7 21.3 19.31 18.92 20.24 21.6 20.11 22.21 25.93 22.41 Ce 43.6 35.99 44.53 38.21 35.62 48.54 40.9 37.12 41.7 46.51 41.44 Pr 4.7 3.82 3.54 4.01 3.9 4.21 4.52 4.4 5.01 5.72 4.9 Nd 16.71 12.8 11.88 17.2 16.91 18.02 19.2 16.31 18.32 21.01 17.92 Sm 2.82 3.46 2.91 3.41 3.23 3.42 2.61 3.01 3.1 3.71 3.1 Eu 0.25 0.42 0.51 0.61 0.44 0.52 0.53 0.7 0.71 0.64 0.72 Gd 2.21 2.59 1.99 2.3 2.01 2.1 2.31 2.3 2.42 2.1 2.71 Tb 0.31 0.4 0.31 0.2 0.21 0.21 0.2 0.32 0.4 0.31 0.41 Dy 1.8 2.24 2.14 1.5 1.91 1.14 1.22 1.81 1.81 2.4 2.2 Ho 0.34 0.3 0.35 0.31 0.21 0.22 0.24 0.33 0.33 0.4 0.41 Er 0.96 0.71 1.03 0.91 0.5 0.62 0.71 0.8 0.91 1.2 1.11 Tm 0.15 0.13 0.2 0.11 0.12 0.14 0.12 0.13 0.11 0.21 0.23 Yb 1.06 1.11 1.14 1.05 0.62 0.71 0.81 0.8 0.82 1.11 1.02 Lu 0.15 0.15 0.16 0.12 0.14 0.12 0.16 0.14 0.11 0.21 0.12 Y 9.89 9.87 6.63 6.9 8.31 5.61 6.72 7.31 8.8 8.93 6.22 表 3 尖峰山含石榴石花岗闪长岩Sr-Nd同位素组成
Table 3. Sr-Nd isotopic composition of garnet bearing granodiorite in Jianfengshan area
样品号 T(Ma) 87Rb/
86Sr87Sr/
86Sr2σ ISr 147Sm/
144Nd143Nd/
144Nd2σ INd εNd(t) TDM(Ga) TDM2(Ga) 16JFS 1-1 441.1 0.629 1 0.709 785 0.000 007 0.707 891 0.116 2 0.512 295 0.000 004 0.511 948 -2.37 1.554 1.691 16JFS 1-2 441.1 0.742 1 0.710 817 0.000 004 0.707 123 0.113 5 0.512 303 0.000 002 0.511 967 -2.01 1.501 1.660 16JFS 1-3 441.1 0.594 8 0.710 843 0.000 004 0.708 081 0.114 5 0.512 302 0.000 002 0.511 972 -1.91 1.602 1.752 16JFS 1-4 441.1 0.606 7 0.709 280 0.000 004 0.708 032 0.114 9 0.512 284 0.000 002 0.511 970 -1.95 1.608 1.756 表 4 尖峰山含石榴石花岗闪长岩Pb同位素组成
Table 4. Pb isotopic composition of garnet bearing granodiorite in Jianfengshan area
样品名 U(10-6) Th(10-6) Pb(10-6) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i 16JFS1-1 1.6 2.7 32.5 18.790 3 15.671 1 38.220 5 18.582 2 15.596 2 38.542 1 16JFS1-2 2.4 3 43.2 18.801 1 15.665 7 38.163 3 18.462 1 15.626 9 38.654 1 16JFS 1-3 1.4 2.7 35 18.792 3 15.671 6 38.088 6 18.354 7 15.641 2 38.254 7 16JFS1-4 2.2 2.9 38.4 18.793 9 15.673 6 38.127 2 18.521 1 15.365 4 38.456 9 表 5 尖峰山含石榴石花岗闪长岩LA-MC-ICP MS锆石Hf同位素原位分析测试结果
Table 5. LA-MC-ICP MS zircon Hf isotopic analysis of garnet-bearing granodiorites from Jianfengshan area
测点 T(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) TDM(Ma) TDM2(Ma) fLu/Hf 01 441 0.002 923 0.000 043 0.000 045 0.000 002 0.282 548 0.000 014 -7.9 1.774 971 1 310 -0.97 03 440 0.004 306 0.000 118 0.000 108 0.000 005 0.282 278 0.000 017 -17.5 -7.802 1 343 1 916 -0.99 06 441 0.008 703 0.000 099 0.000 046 0.000 004 0.282 269 0.000 017 -17.8 -8.103 1 353 1 935 -0.99 07 443 0.016 676 0.000 140 0.000 085 0.000 005 0.282 297 0.000 016 -16.8 -7.123 1 316 1 874 -0.99 08 452 0.008 287 0.000 061 0.000 053 0.000 002 0.282 531 0.000 015 -8.5 1.170 995 1 349 -0.99 10 436 0.020 209 0.000 381 0.000 045 0.000 018 0.282 569 0.000 025 -7.2 2.517 943 1 263 -0.99 12 439 0.012 744 0.000 247 0.000 076 0.000 009 0.282 143 0.000 017 -23.8 -9.094 1 484 2 012 -0.98 15 434 0.016 341 0.000 163 0.000 105 0.000 004 0.282 348 0.000 018 -15.0 -5.324 1 247 1 760 -0.99 16 438 0.019 642 0.000 138 0.000 053 0.000 004 0.282 325 0.000 016 -15.8 -6.122 1 277 1 810 -0.99 17 449 0.006 704 0.000 081 0.000 102 0.000 005 0.282 347 0.000 016 -15.0 -5.358 1 248 1 762 -0.98 19 436 0.007 235 0.000 101 0.000 030 0.000 004 0.282 326 0.000 035 -15.8 -6.080 1 275 1 808 -0.99 20 447 0.013 715 0.000 757 0.000 101 0.000 027 0.282 371 0.000 029 -14.2 -4.508 1 215 1 708 -0.99 22 444 0.003 692 0.000 113 0.000 054 0.000 004 0.282 293 0.000 016 -16.9 -7.256 1 320 1 882 -0.99 24 442 0.009 380 0.001 992 0.000 076 0.000 081 0.282 316 0.000 027 -16.1 -6.448 1 290 1 831 -0.99 -
Abbott, R. N., 1981. The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman-Piute Range, California: A Discussion. The Journal of Geology, 89(6): 767-769. Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/s0024-4937(99)00052-3 Allan, B., Clarke, D. B., 1981. Occurrence and Origin of Garnets in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 19: 19-24. Barbarin, B., 1990. Granitoids: Main Petrogenetic Classifications in Relation to Origin and Tectonic Setting. Geological Journal, 25(3-4): 227-238. https://doi.org/10.1002/gj.3350250306 Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3-4): 197-213. https://doi.org/10.1016/s0009-2541(99)00173-4 Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329-353. https://doi.org/10.1093/petrology/egi077 Brown, D., Ryan, P. D., Afonso, J. C., et al., 2011. Arc-Continent Collision: The Making of an Orogen. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, 477-493. https://doi.org/10.1007/978-3-540-88558-0_17 Cai, P. J., Xu, R. K., Zheng, Y. Y., et al., 2018. From Oceanic Subduction to Continental Collision in North Qaidam: Evidence from Kaipinggou Orogenic M-Type Peridotite. Earth Science, 43(8): 2875-2892(in Chinese with English abstract). Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 Chen, N. S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3-4): 367-376. https://doi.org/10.1016/j.jseaes.2008.10.004 Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7 Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 Lu, S. N., Chen, Z. H., Li, H. K., et al., 2004. Late Mesoproterozoic-Early Neoproterozoic Evolution of the Qinling Orogen. Geological Bulletin of China, 23(2): 107-112(in Chinese with English abstract). Lu, S. N., Yu, H. F., Zhao, F. Q., 2002. Preliminary Study on Precambrian Geology in the Northern Qinghai-Tibet Plateau. Geological Publishing House, Beijing(in Chinese). Ma, Q., Zheng, J. P., Griffin, W. L., et al., 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust. Lithos, 149: 159-173. https://doi.org/10.1016/j.lithos.2012.04.017 Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 Meng, F. C., Zhang, J. X., 2008. Contemporaneous of Early Palaeozoic Granite and High Temperature Metamorphism, North Qaidam Mountains, Western China. Acta Petrologica Sinica, 24(7): 1585-1594(in Chinese with English abstract) Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257(in Chinese with English abstract). Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.01.001 Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1): 77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06 Ren, Y. F., Chen, D. L., Gong, X. K., et al., 2019. Discovery and P-T-t Paths of Lawsonite Pseudomorph-Bearing Eclogites in the Yuka Terrane, North Qaidam Ultrahigh Pressure Metamorphic Belt and Exploration on Key Factors Controlling Lawsonite Formation. Earth Science, 44(12): 4009-4016(in Chinese with English abstract). Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 Song, S. G., Niu, Y. L., Su, L., et al., 2014. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130: 42-62. https://doi.org/10.1016/j.gca.2014.01.008 Song, S. G., Niu, Y. L., Zhang, L. F., et al., 2009. Time Constraints on Orogenesis from Oceanic Subduction to Continental Subduction, Collision, and Exhumation: An Example from North Qilian and North Qaidam HP-UHP Belts. Acta Petrologica Sinica, 25(9): 2067-2077(in Chinese with English abstract). Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science in China (Series D), 45(7): 916-940(in Chinese). Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2007. Two Types of Peridotite in Continental Orogenic Belts: A Case Study from the North Qaidam UHP Metamorphic Belt. Earth Science Frontiers, 14(2): 129-138(in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 Villaros, A., Stevens, G., Moyen, J. F., et al., 2009. The Trace Element Compositions of S-Type Granites: Evidence for Disequilibrium Melting and Accessory Phase Entrainment in the Source. Contributions to Mineralogy and Petrology, 158(4): 543-561. https://doi.org/10.1007/s00410-009-0396-3 Wang, H. Q., Shao, T. Q., Tang, H. H., et al., 2016. Metamorphic Rock Deformation Characteristics, Geochemical Characteristics and Geological Significance of the Dakendaba Group in Buhete Mountain on the Northern Margin of Qaidam Mountain. Geological Bulletin of China, 35(9): 1488-1496(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.09.012 Wu, C. L., Gao, Y. H., Li, Z. L., et al., 2014. Zircon SHRIMP U-Pb Dating of Granites from Dulan and the Chronological Framework of the North Qaidam UHP Belt, NW China. Science China: Earth Sciences, 44(10): 2142-2159(in Chinese). Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007. Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861-1875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.08.008 Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2008. Zircon SHRIMP U-Pb Dating of Granites in the Western Part of Northern Qaidam Basin and Its Petrogeochemical Characteristics. Science in China (Series D), 38(8): 930-949(in Chinese). doi: 10.3321/j.issn:1006-9267.2008.08.002 Wu, C. L., Yang, J. S., Li, H. B., et al., 2001. Zircon SHRIMP Ages of Mountain Qaidam. Chinese Science Bulletin, 46 (20): 1743-1746(in Chinese). doi: 10.1360/csb2001-46-20-1743 Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003 Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau: The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17(in Chinese with English abstract). Yan, G. Q., Wang, X. X., Huang, Y., et al., 2020. Constraint of Pb Isotope on Ore-Forming Source Origin of Nuri Polymetallic Deposit, Tibet. Earth Science, 45(1): 31-42(in Chinese with English abstract). Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3): 901-919. https://doi.org/10.1016/j.gr.2012.07.018 Zartman, R. E., Haines, S. M., 1988. The Plumbotectonic Model for Pb Isotopic Systematics among Major Terrestrial Reservoirs: A Case for Bi-Directional Transport. Geochimica et Cosmochimica Acta, 52(6): 1327-1339. https://doi.org/10.1016/0016-7037(88)90204-9 Zha, X. F., Gu, P. Y., Dong, Z. C., et al., 2016. Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam. Earth Science, 41(4): 586-604(in Chincsc with English abstract). Zhang, G. B., Zhang, L. F., Song, S. G., 2012. An Overview of the Tectonic Evolution of North Qaidam UHPM Belt: From Oceanic Subduction to Continental Collision. Geological Journal of China Universities, 18(1): 28-40(in Chinese with English abstract). Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1-2): 51-76. https://doi.org/10.1016/j.lithos.2005.02.002 Zhao, Z. X., Wei, J. H., Fu, L. B., et al., 2017. The Early Paleozoic Xitieshan Syn-Collisional Granite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, NW China: Petrogenesis and Implications for Continental Crust Growth. Lithos, 278: 140-152. https://doi.org/10.1016/j.lithos.2017.01.019 Zhou, B., Zheng, Y. Y., Xu, R. K., et al., 2013. LA-ICP-MS Zircon U-Pb Dating and Hf Isotope Geochemical Characteristics of Qaidamshan Intrusive Body. Geological Bulletin of China, 32(7): 1027-1034(in Chinese with English abstract). Zhu, X. H., Chen, D. L., Liu, L., et al., 2014. Geochronology, Geochemistry and Significance of the Early Paleozoic Back-Arc Type Ophiolite in Lüliangshan Area, North Qaidam. Acta Petrologica Sinica, 30(3): 822-834(in Chinese with English abstract). Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.earth.14.1.493 蔡鹏捷, 许荣科, 郑有业, 等, 2018. 柴北缘从大洋俯冲到陆陆碰撞: 来自开屏沟造山带M型橄榄岩的证据. 地球科学, 43(8): 2875-2892. doi: 10.3799/dqkx.2018.112?viewType=HTML 陆松年, 陈志宏, 李怀坤, 等, 2004. 秦岭造山带中—新元古代(早期)地质演化. 地质通报, 23(2): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200402001.htm 陆松年, 于海峰, 赵风清, 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社. 孟繁聪, 张建新, 2008. 柴北缘绿梁山早古生代花岗岩浆作用与高温变质作用的同时性. 岩石学报, 24(7): 1585-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807015.htm 莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160?viewType=HTML 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804003.htm 任云飞, 陈丹玲, 宫相宽, 等, 2019. 柴北缘鱼卡含硬柱石假象榴辉岩的发现P-T-t轨迹及控制硬柱石形成的主要因素. 地球科学, 44(12): 4009-4016. doi: 10.3799/dqkx.2019.251?viewType=HTML 宋述光, 牛耀龄, 张立飞, 等, 2009. 大陆造山运动: 从大洋俯冲到大陆俯冲、碰撞、折返的时限: 以北祁连山、柴北缘为例. 岩石学报, 25(9): 2067-2077. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909003.htm 宋述光, 张立飞, 牛耀龄, 等, 2007. 大陆碰撞造山带的两类橄榄岩: 以柴北缘超高压变质带为例. 地学前缘, 14(2): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702009.htm 宋述光, 王梦珏, 王潮, 等, 2015. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长. 中国科学: 地球科学, 45(7): 916-940. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201507003.htm 王洪强, 邵铁全, 唐汉华, 等, 2016. 柴北缘布赫特山一带达肯大坂岩群变质岩变形特征、地球化学特征及地质意义. 地质通报, 35(9): 1488-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201609012.htm 吴才来, 郜源红, 李兆丽, 等, 2014. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架. 中国科学: 地球科学, 44(10): 2142-2165. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410004.htm 吴才来, 郜源红, 吴锁平, 等, 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年. 岩石学报, 23(8): 1861-1875. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708007.htm 吴才来, 郜源红, 吴锁平, 等, 2008. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征. 中国科学(D辑), 38(8): 930-949. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200808002.htm 吴才来, 杨经绥, 李怀斌, 等, 2001. 柴达木山花岗岩锆石SHRIMP定年. 科学通报, 46(20): 1742-1746. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200120017.htm 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm 许志琴, 李海兵, 杨经绥, 2006. 造山的高原-青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604001.htm 闫国强, 王欣欣, 黄勇, 等, 2020. Pb同位素对努日铜钼钨多金属矿床成矿物源的制约. 地球科学, 45(1): 31-42. doi: 10.3799/dqkx.2019.191?viewType=HTML 查显锋, 辜平阳, 董增产, 等, 2016. 柴北缘西段早古生代构造-热事件及其构造环境. 地球科学, 41(4): 586-604. doi: 10.3799/dqkx.2016.048?viewType=HTML 张贵宾, 张立飞, 宋述光, 2012. 柴北缘超高压变质带: 从大洋到大陆的深俯冲过程. 高校地质学报, 18(1): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201005.htm 周宾, 郑有业, 许荣科, 等, 2013. 青海柴达木山岩体LA-ICP-MS锆石U-Pb定年及Hf同位素特征. 地质通报, 32(7): 1027-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201307007.htm 朱小辉, 陈丹玲, 刘良, 等, 2014. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义. 岩石学报, 30(3): 822-834. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403021.htm -