• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    贝加尔裂谷构造发育的主控因素:基于地球动力学数值模拟

    王盟楠 李江海

    王盟楠, 李江海, 2024. 贝加尔裂谷构造发育的主控因素:基于地球动力学数值模拟. 地球科学, 49(1): 29-39. doi: 10.3799/dqkx.2022.113
    引用本文: 王盟楠, 李江海, 2024. 贝加尔裂谷构造发育的主控因素:基于地球动力学数值模拟. 地球科学, 49(1): 29-39. doi: 10.3799/dqkx.2022.113
    Wang Mengnan, Li Jianghai, 2024. Main Controlling Factors of Structure of Baikal Rift: Based on Geodynamic Numerical Simulation. Earth Science, 49(1): 29-39. doi: 10.3799/dqkx.2022.113
    Citation: Wang Mengnan, Li Jianghai, 2024. Main Controlling Factors of Structure of Baikal Rift: Based on Geodynamic Numerical Simulation. Earth Science, 49(1): 29-39. doi: 10.3799/dqkx.2022.113

    贝加尔裂谷构造发育的主控因素:基于地球动力学数值模拟

    doi: 10.3799/dqkx.2022.113
    基金项目: 

    国家科技重大专项 2016ZX05033001

    详细信息
      作者简介:

      王盟楠(1996-),女,硕士,主要从事地质学方面的研究. ORCID:0000-0001-6414-9937. E-mail:mengnan0225@pku.edu.cn

    • 中图分类号: P542

    Main Controlling Factors of Structure of Baikal Rift: Based on Geodynamic Numerical Simulation

    • 摘要: 贝加尔裂谷位于西伯利亚克拉通和萨彦‒贝加尔造山带的拼合部位,两侧岩石圈结构及流变性存在明显差异,区域构造演化过程复杂.通过数值模拟方法,正演贝加尔裂谷区岩石圈形变过程,探讨下地壳流变性及先存薄弱缝合带对贝加尔裂谷构造发育的影响.结果显示:裂谷伸展中心两侧岩石圈下地壳流变学性质差异导致应力向造山带一侧传递,裂谷两侧发育不对称的构造样式,其中造山带一侧主要为大区域的铲状断层,而在克拉通一侧主要为小范围的高角度正断层;当岩石圈拼合部位存在先存薄弱缝合带时,会限制应力向造山带一侧传递,导致造山带一侧断裂的发育规模减小,裂谷呈现“窄且深凹陷”的不对称构造特征.

       

    • 图  1  贝加尔裂谷区大地构造背景

      数据来源于earth_relief:全球地形起伏数据;80 m.黑色实线表示全球板块边界;红色实线表示主要走滑断裂;黑色箭头表示板块运动方向;带有三角形标志的黑色实线表示俯冲带及俯冲方向;白色方框表示研究区位置

      Fig.  1.  Tectonic setting of the Baikal rift

      图  2  贝加尔裂谷区构造背景图(据Petit et al., 2006修改)

      Fig.  2.  Regional tectonics of Baikal rift

      图  3  贝加尔裂谷区剖面示意图(据Hutchinson et al., 1992

      Fig.  3.  Profile of the Baikal Rift

      图  4  模型设置

      Petit et al.,1997Wang et al.,2020.最上面的浅蓝色层是10 km厚的粘性空气(相当于地壳上表面的自由表面),下面是均匀的岩石圈结构层

      Fig.  4.  Model setups

      图  5  均质模型中裂谷15 Ma的应变速率分布

      Fig.  5.  The strain rate distribution near the rift at 15 Ma in the homogeneous model

      图  6  弱造山带下地壳模型中裂谷15 Ma的应变速率分布

      Fig.  6.  The strain rate distribution near the rift at 15 Ma in the model with a weak lower crust in the orogenic belt

      图  7  弱缝合带+弱造山带下地壳模型中裂谷15 Ma的应变速率分布

      Fig.  7.  The strain rate distribution near the rift at 15 Ma in the model with a weak suture zone and a weak lower crust in the orogenic belt

      图  8  贝加尔裂谷岩石圈结构演化示意图

      Fig.  8.  Diagram showing the evolution of lithospheric structure, and rifting processes in the Baikal Rift

      表  1  模型物理参数(Ranalli,1995

      Table  1.   Physical parameters used in models (Ranalli, 1995)

      分层 密度
      (kg/m3
      应力指数 活化能
      (kJ/mol)
      活化体积
      (m3/mol)
      内摩擦角 热扩散系数
      (m2/s)
      放射热
      ($ \mathrm{\mu }\mathrm{W}/{\mathrm{m}}^{3} $)
      比热容
      (J$ ·\mathrm{k}{\mathrm{g}}^{‒1}·{\mathrm{K}}^{‒1} $)
      指数因子(MPan$ · $s‒1
      空气(水) 1 1 0 0 / 1×10‒9 0 100 1.0×10‒12
      上地壳a
      (湿石英)
      2 700 4 223 3.1×10‒6 15°~2° 1×10‒6 0.7 1 000 3.2×10‒4
      克拉通型下地壳a
      (湿石英)
      2 950 4 223 3.1×10‒6 15°~2° 1×10‒6 0.7 1 000 3.2×10‒4
      造山带型下地壳a
      (湿石英)
      2 950 4 223 3.1×10‒6 15°~2° 1×10‒6 0.7 1 000 3.2×10‒4
      岩石圈地幔b
      (干橄榄石)
      3 300 3.5 540 2.0×10‒5 15°~2° 1×10‒6 0.02×10‒6 1 000 3.5×1022
      地幔b
      (干橄榄石)
      3 300 3.5 540 2.0×10‒5 15°~2° 1×10‒6 / 1 000 3.5×1022
      薄弱缝合带c
      (干橄榄石)
      2 720 3.5 540 2.0×10‒5 15°~2° 1×10‒6 7.67×10‒7 1 000 3.5×1022
      注:所有岩石具有相同的热膨胀系数($ \mathrm{\alpha }= $3×10‒5 K‒1)和压缩系数($ \beta $=1×10‒5 MPa‒1);塑性变形机制中以应变软化来表示软弱断层的形成过程,即当有效应变≥0.5时,内聚强度由15 MPa线性减小至3 MPa;有效内摩擦角由15°减小为2°. 数据来源:a来自Gleason and Tullis, 1995; b来自Karato and Wu, 1993; c来自Goetze et al., 1978.
      下载: 导出CSV
    • Anan'in, L. V., Mordvinova, V. V., Gots', M. F., et al., 2009. Velocity Structure of the Crust and Upper Mantle in the Baikal Rift Zone from the Long-Term Observations of Broad-Band Seismic Stations. Doklady Earth Sciences, 428(1): 1067-1070. https://doi.org/10.1134/S1028334X09070058
      Barruol, G., Deschamps, A., Déverchère, J., et al., 2008. Upper Mantle Flow beneath and around the Hangay Dome, Central Mongolia. Earth and Planetary Science Letters, 274(1-2): 221-233. https://doi.org/10.1016/j.epsl.2008.07.027
      Burov, E. B., Houdry, F., Diament, M., et al., 1994. A Broken Plate beneath the North Baikal Rift Zone Revealed by Gravity Modelling. Geophysical Research Letters, 21(2): 129-132. https://doi.org/10.1029/93gl03078
      Calais, E., Vergnolle, M., San'kov, V., et al., 2003. GPS Measurements of Crustal Deformation in the Baikal-Mongolia Area (1994-2002): Implications for Current Kinematics of Asia. Journal of Geophysical Research: Solid Earth, 108(B10): 2501. https://doi.org/10.1029/2002JB002373
      Corti, G., Calignano, E., Petit, C., et al., 2011. Controls of Lithospheric Structure and Plate Kinematics on Rift Architecture and Evolution: An Experimental Modeling of the Baikal Rift. Tectonics, 30(3): TC3011. https://doi.org/10.1029/2011TC002871
      Cunningham, W. D., 2001. Cenozoic Normal Faulting and Regional Doming in the Southern Hangay Region, Central Mongolia: Implications for the Origin of the Baikal Rift Province. Tectonophysics, 331(4): 389-411. https://doi.org/10.1016/S0040-1951(00)00228-6
      Dobrynina, A. A., Sankov, V. A., Chechelnitsky, V. V., 2016. New Data on Seismic Wave Attenuation in the Lithosphere and Upper Mantle of the Northeastern Flank of the Baikal Rift System. Doklady Earth Sciences, 468(1): 485-489. https://doi.org/10.1134/S1028334X16050044
      Fournier, M., Jolivet, L., Huchon, P., et al., 1994. Neogene Strike-Slip Faulting in Sakhalin and the Japan Sea Opening. Journal of Geophysical Research: Solid Earth, 99(B2): 2701-2725. https://doi.org/10.1029/93jb02026
      Fullea, J., Lebedev, S., Agius, M. R., et al., 2012. Lithospheric Structure in the Baikal-Central Mongolia Region from Integrated Geophysical-Petrological Inversion of Surface-Wave Data and Topographic Elevation. Geochemistry, Geophysics, Geosystems, 13(8): Q0AK09. https://doi.org/10.1029/2012GC004138
      Gao, S., Davis, P. M., Liu, H., et al., 1994. Seismic Anisotropy and Mantle Flow beneath the Baikal Rift Zone. Nature, 371(6493): 149-151. https://doi.org/10.1038/371149a0
      Gao, S. S., Liu, K. H., Chen, C. Z., 2004. Significant Crustal Thinning beneath the Baikal Rift Zone: New Constraints from Receiver Function Analysis. Geophysical Research Letters, 31(20): L20610. https://doi.org/10.1029/2004GL020813
      Gao, S. S., Liu, K. H., Davis, P. M., et al., 2003. Evidence for Small-Scale Mantle Convection in the Upper Mantle beneath the Baikal Rift Zone. Journal of Geophysical Research: Solid Earth, 108(B4): 2194. https://doi.org/10.1029/2002JB002039
      Gleason, G. C., Tullis, J., 1995. A Flow Law for Dislocation Creep of Quartz Aggregates Determined with the Molten Salt Cell. Tectonophysics, 247(1-4): 1-23. https://doi.org/10.1016/0040-1951(95)00011-B
      Goetze, C., 1978. The Mechanisms of Creep in Olivine. Phil. Trans. R. Soc. Lond. A. , 288: 99-119. doi: 10.1098/rsta.1978.0008
      Heki, K., Miyazaki, S., Takahashi, H., et al., 1999. The Amurian Plate Motion and Current Plate Kinematics in Eastern Asia. Journal of Geophysical Research: Solid Earth, 104(B12): 29147-29155. https://doi.org/10.1029/1999jb900295
      Hutchinson, D. R., Golmshtok, A. J., Zonenshain, L. P., et al., 1992. Depositional and Tectonic Framework of the Rift Basins of Lake Baikal from Multichannel Seismic Data. Geology, 20(7): 589. https://doi.org/10.1130/0091-7613(1992)0200589: datfot>2.3.co;2 doi: 10.1130/0091-7613(1992)0200589:datfot>2.3.co;2
      Ivanov, A. V., Demonterova, E. I., He, H. Y., et al., 2015. Volcanism in the Baikal Rift: 40 Years of Active-versus-passive Model Discussion. Earth-Science Reviews, 148: 18-43. https://doi.org/10.1016/j.earscirev.2015.05.011
      Jolivet, M., Arzhannikov, S., Arzhannikova, A., et al., 2013a. Geomorphic Mesozoic and Cenozoic Evolution in the Oka-Jombolok Region (East Sayan Ranges, Siberia). Journal of Asian Earth Sciences, 62: 117-133. https://doi.org/10.1016/j.jseaes.2011.09.017
      Jolivet, M., Arzhannikov, S., Chauvet, A., et al., 2013b. Accommodating Large-Scale Intracontinental Extension and Compression in a Single Stress-Field: A Key Example from the Baikal Rift System. Gondwana Research, 24(3-4): 918-935. https://doi.org/10.1016/j.gr.2012.07.017
      Karato, S. I., Wu, P., 1993. Rheology of the Upper Mantle: A Synthesis. Science, 260(5109): 771-778. https://doi.org/10.1126/science.260.5109.771
      Li, L. S., Wang, Z. C., Xiao, A. C., et al., 2021. Rift System in Northern Yangtze Block during Nanhua Period: Implications from Gravity Anomaly and Sedimentology. Earth Science, 46(10): 3496-3508 (in Chinese with English abstract).
      Liu, S. W., Wang, L. S., Li, C., 2007. Rheology of Continental Lithosphere: An Overview. Progress in Geophysics, 22(4): 1209-1214 (in Chinese with English abstract).
      Lunina, O. V., Gladkov, A. S., Nevedrova, N. N., 2010. Tectonics, Stress State, and Geodynamics of the Mesozoic and Cenozoic Rift Basins in the Baikal Region. Geotectonics, 44(3): 237-261. https://doi.org/10.1134/S0016852110030039
      Mordvinova, V. V., Kobelev, M. M., Treussov, A. V., et al., 2016. Deep Structure of the Siberian Platform-Central Asian Mobile Belt Transition Zone from Teleseismic Data. Geodynamics & Tectonophysics, 7(1): 85-103. https://doi.org/10.5800/gt-2016-7-1-0198
      Nielsen, C., Thybo, H., 2009. No Moho Uplift below the Baikal Rift Zone: Evidence from a Seismic Refraction Profile across Southern Lake Baikal. Journal of Geophysical Research: Solid Earth, 114(B8): B08306. https://doi.org/10.1029/2008JB005828
      Parfenov, L. M., Prokop'ev, A. V., Spektor, V. B., 2001. Geodynamics of Mountains in Eastern Yakutia and Opening of the Eurasian Basin. Geologiyai Geofizika, 42 (4), 708-725.
      Petit, C., Burov, E., Déverchère, J., 1997. On the Structure and Mechanical Behaviour of the Extending Lithosphere in the Baikal Rift from Gravity Modelling. Earth and Planetary Science Letters, 149(1-4): 29-42. https://doi.org/10.1016/S0012-821X(97)00067-8
      Petit, C., Burov, E., Tiberi, C., 2008. Strength of the Lithosphere and Strain Localisation in the Baikal Rift. Earth and Planetary Science Letters, 269(3-4): 523-529. https://doi.org/10.1016/j.epsl.2008.03.012
      Petit, C., Déverchère, J., 2006. Structure and Evolution of the Baikal Rift: A Synthesis. Geochemistry, Geophysics, Geosystems, 7(11): Q11016. https://doi.org/10.1029/2006GC001265
      Ranalli, G., 1995. Rheology of the Earth. Springer Science & Business Media, London.
      Ros, E., Pérez-Gussinyé, M., Araújo, M., et al., 2017. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic. Geochemistry, Geophysics, Geosystems, 18(12): 4538-4557. https://doi.org/10.1002/2017GC007212
      San'kov, V. A., Parfeevets, A. V., Lukhnev, A. V., et al., 2011. Late Cenozoic Geodynamics and Mechanical Coupling of Crustal and Upper Mantle Deformations in the Mongolia-Siberia Mobile Area. Geotectonics, 45(5): 378-393. https://doi.org/10.1134/s0016852111050049
      Seminsky, K. Z., 2009. Major Factors of the Evolution of Basins and Faults in the Baikal Rift Zone: Tectonophysical Analysis. Geotectonics, 43(6): 486-500. https://doi.org/10.1134/s001685210906003x
      Thybo, H., Nielsen, C. A., 2009. Magma-Compensated Crustal Thinning in Continental Rift Zones. Nature, 457(7231): 873-876. https://doi.org/10.1038/nature07688
      Tiberi, C., Diament, M., Déverchère, J., et al., 2003. Deep Structure of the Baikal Rift Zone Revealed by Joint Inversion of Gravity and Seismology. Journal of Geophysical Research: Solid Earth, 108(B3): 2133. https://doi.org/10.1029/2002JB001880
      Wang, K., Chen, L., Xiong, X., et al., 2020. The Role of Lithospheric Heterogeneities in Continental Rifting: Implications for Rift Diversity in the North China Craton. Journal of Geodynamics, 139: 101765. https://doi.org/10.1016/j.jog.2020.101765
      Watts, A. B., Burov, E. B., 2003. Lithospheric Strength and Its Relationship to the Elastic and Seismogenic Layer Thickness. Earth and Planetary Science Letters, 213(1-2): 113-131. https://doi.org/10.1016/S0012-821X(03)00289-9
      Wessel, P., Luis, J. F., Uieda, L., et al., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. https://doi.org/10.1029/2019gc008515
      Wu, H. T., Huang, Z. C., Zhao, D. P., 2021. Deep Structure beneath the Southwestern Flank of the Baikal Rift Zone and Adjacent Areas. Physics of the Earth and Planetary Interiors, 310(1-2): 106616. https://doi.org/10.1016/j.pepi.2020.106616
      Zhang, Y., Li, J. H., Cheng, P., 2021. Comparison of Salt Structure Deformation Periods of Conjugated Salt Basins in Central Segment of South Atlantic. Earth Science, 46(6): 2218-2229 (in Chinese with English abstract).
      Zhao, D. P., Lei, J. S., Inoue, T., et al., 2006. Deep Structure and Origin of the Baikal Rift Zone. Earth and Planetary Science Letters, 243(3-4): 681-691. https://doi.org/10.1016/j.epsl.2006.01.033
      Zhao, H. L., Deng, J. F., Chen, F. J., et al., 1996. Cenozoic Volcanism, Deep Action and Continental Rift Basin in Northeast China. Earth Science, 21(6): 615-619 (in Chinese with English abstract).
      Zorin, Y. A., Turutanov, E. K., Mordvinova, V. V., et al., 2003. The Baikal Rift Zone: The Effect of Mantle Plumes on Older Structure. Tectonophysics, 371(1-4): 153-173. https://doi.org/10.1016/S0040-1951(03)00214-2
      李路顺, 汪泽成, 肖安成, 等, 2021. 扬子北缘南华纪裂谷系统: 基于重力异常及沉积学证据. 地球科学, 46(10): 3496-3508. doi: 10.3799/dqkx.2020.395
      刘绍文, 王良书, 李成, 2007. 大陆岩石圈流变学研究进展. 地球物理学进展, 22(4): 1209-1214.
      章雨, 李江海, 程鹏, 2021. 南大西洋中段共轭盐盆盐构造变形期次对比及意义. 地球科学, 46(6): 2218-2229. doi: 10.3799/dqkx.2020.033
      赵海玲, 邓晋福, 陈发景, 等, 1996. 东北地区新生代火山作用、深部作用与大陆裂谷型盆地. 地球科学, 21(6): 615-619. http://www.earth-science.net/article/id/448
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  412
    • HTML全文浏览量:  457
    • PDF下载量:  101
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-21
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回