Main Controlling Factors of Structure of Baikal Rift: Based on Geodynamic Numerical Simulation
-
摘要: 贝加尔裂谷位于西伯利亚克拉通和萨彦‒贝加尔造山带的拼合部位,两侧岩石圈结构及流变性存在明显差异,区域构造演化过程复杂.通过数值模拟方法,正演贝加尔裂谷区岩石圈形变过程,探讨下地壳流变性及先存薄弱缝合带对贝加尔裂谷构造发育的影响.结果显示:裂谷伸展中心两侧岩石圈下地壳流变学性质差异导致应力向造山带一侧传递,裂谷两侧发育不对称的构造样式,其中造山带一侧主要为大区域的铲状断层,而在克拉通一侧主要为小范围的高角度正断层;当岩石圈拼合部位存在先存薄弱缝合带时,会限制应力向造山带一侧传递,导致造山带一侧断裂的发育规模减小,裂谷呈现“窄且深凹陷”的不对称构造特征.Abstract: The Baikal rift is located in the convergent zone of the Siberian craton and Sayan-Baikal belt. There are obvious differences in the lithospheric structure and rheological property between the two sides of the rift, and the regional tectonic evolution is complex. Here it investigate the influence of rheological property of the lower crust and preexisting weak zone on the evolution of the Baikal rift using numerical simulation. The results show that the difference in the rheology of the lower crust on both sides of the rift extension center leads to the propagation of stress to the Sayan-Baikal belt, in which large-scale listric faults mainly develop on the Sayan-Baikal belt side, while small-scale high-angle normal faults mainly develop on the cratonic side. If there is a weak zone in the suture zone of lithosphere, the transfer of stress to the side of the Sayan-Baikal belt is limited, resulting in a reduced scale of faulting on the side of Sayan-Baikal belt, and the development of the asymmetric structure of "narrow and deep depression".
-
Key words:
- Baikal Rift /
- rheology of lower crust /
- weak zone /
- structural development /
- numerical modeling /
- structural geology
-
图 2 贝加尔裂谷区构造背景图(据Petit et al., 2006修改)
Fig. 2. Regional tectonics of Baikal rift
图 3 贝加尔裂谷区剖面示意图(据Hutchinson et al., 1992)
Fig. 3. Profile of the Baikal Rift
表 1 模型物理参数(Ranalli,1995)
Table 1. Physical parameters used in models (Ranalli, 1995)
分层 密度
(kg/m3)应力指数 活化能
(kJ/mol)活化体积
(m3/mol)内摩擦角 热扩散系数
(m2/s)放射热
($ \mathrm{\mu }\mathrm{W}/{\mathrm{m}}^{3} $)比热容
(J$ ·\mathrm{k}{\mathrm{g}}^{‒1}·{\mathrm{K}}^{‒1} $)指数因子(MPa‒n$ · $s‒1) 空气(水) 1 1 0 0 / 1×10‒9 0 100 1.0×10‒12 上地壳a
(湿石英)2 700 4 223 3.1×10‒6 15°~2° 1×10‒6 0.7 1 000 3.2×10‒4 克拉通型下地壳a
(湿石英)2 950 4 223 3.1×10‒6 15°~2° 1×10‒6 0.7 1 000 3.2×10‒4 造山带型下地壳a
(湿石英)2 950 4 223 3.1×10‒6 15°~2° 1×10‒6 0.7 1 000 3.2×10‒4 岩石圈地幔b
(干橄榄石)3 300 3.5 540 2.0×10‒5 15°~2° 1×10‒6 0.02×10‒6 1 000 3.5×1022 地幔b
(干橄榄石)3 300 3.5 540 2.0×10‒5 15°~2° 1×10‒6 / 1 000 3.5×1022 薄弱缝合带c
(干橄榄石)2 720 3.5 540 2.0×10‒5 15°~2° 1×10‒6 7.67×10‒7 1 000 3.5×1022 注:所有岩石具有相同的热膨胀系数($ \mathrm{\alpha }= $3×10‒5 K‒1)和压缩系数($ \beta $=1×10‒5 MPa‒1);塑性变形机制中以应变软化来表示软弱断层的形成过程,即当有效应变≥0.5时,内聚强度由15 MPa线性减小至3 MPa;有效内摩擦角由15°减小为2°. 数据来源:a来自Gleason and Tullis, 1995; b来自Karato and Wu, 1993; c来自 Goetze et al., 1978 . -
Anan'in, L. V., Mordvinova, V. V., Gots', M. F., et al., 2009. Velocity Structure of the Crust and Upper Mantle in the Baikal Rift Zone from the Long-Term Observations of Broad-Band Seismic Stations. Doklady Earth Sciences, 428(1): 1067-1070. https://doi.org/10.1134/S1028334X09070058 Barruol, G., Deschamps, A., Déverchère, J., et al., 2008. Upper Mantle Flow beneath and around the Hangay Dome, Central Mongolia. Earth and Planetary Science Letters, 274(1-2): 221-233. https://doi.org/10.1016/j.epsl.2008.07.027 Burov, E. B., Houdry, F., Diament, M., et al., 1994. A Broken Plate beneath the North Baikal Rift Zone Revealed by Gravity Modelling. Geophysical Research Letters, 21(2): 129-132. https://doi.org/10.1029/93gl03078 Calais, E., Vergnolle, M., San'kov, V., et al., 2003. GPS Measurements of Crustal Deformation in the Baikal-Mongolia Area (1994-2002): Implications for Current Kinematics of Asia. Journal of Geophysical Research: Solid Earth, 108(B10): 2501. https://doi.org/10.1029/2002JB002373 Corti, G., Calignano, E., Petit, C., et al., 2011. Controls of Lithospheric Structure and Plate Kinematics on Rift Architecture and Evolution: An Experimental Modeling of the Baikal Rift. Tectonics, 30(3): TC3011. https://doi.org/10.1029/2011TC002871 Cunningham, W. D., 2001. Cenozoic Normal Faulting and Regional Doming in the Southern Hangay Region, Central Mongolia: Implications for the Origin of the Baikal Rift Province. Tectonophysics, 331(4): 389-411. https://doi.org/10.1016/S0040-1951(00)00228-6 Dobrynina, A. A., Sankov, V. A., Chechelnitsky, V. V., 2016. New Data on Seismic Wave Attenuation in the Lithosphere and Upper Mantle of the Northeastern Flank of the Baikal Rift System. Doklady Earth Sciences, 468(1): 485-489. https://doi.org/10.1134/S1028334X16050044 Fournier, M., Jolivet, L., Huchon, P., et al., 1994. Neogene Strike-Slip Faulting in Sakhalin and the Japan Sea Opening. Journal of Geophysical Research: Solid Earth, 99(B2): 2701-2725. https://doi.org/10.1029/93jb02026 Fullea, J., Lebedev, S., Agius, M. R., et al., 2012. Lithospheric Structure in the Baikal-Central Mongolia Region from Integrated Geophysical-Petrological Inversion of Surface-Wave Data and Topographic Elevation. Geochemistry, Geophysics, Geosystems, 13(8): Q0AK09. https://doi.org/10.1029/2012GC004138 Gao, S., Davis, P. M., Liu, H., et al., 1994. Seismic Anisotropy and Mantle Flow beneath the Baikal Rift Zone. Nature, 371(6493): 149-151. https://doi.org/10.1038/371149a0 Gao, S. S., Liu, K. H., Chen, C. Z., 2004. Significant Crustal Thinning beneath the Baikal Rift Zone: New Constraints from Receiver Function Analysis. Geophysical Research Letters, 31(20): L20610. https://doi.org/10.1029/2004GL020813 Gao, S. S., Liu, K. H., Davis, P. M., et al., 2003. Evidence for Small-Scale Mantle Convection in the Upper Mantle beneath the Baikal Rift Zone. Journal of Geophysical Research: Solid Earth, 108(B4): 2194. https://doi.org/10.1029/2002JB002039 Gleason, G. C., Tullis, J., 1995. A Flow Law for Dislocation Creep of Quartz Aggregates Determined with the Molten Salt Cell. Tectonophysics, 247(1-4): 1-23. https://doi.org/10.1016/0040-1951(95)00011-B Goetze, C., 1978. The Mechanisms of Creep in Olivine. Phil. Trans. R. Soc. Lond. A. , 288: 99-119. doi: 10.1098/rsta.1978.0008 Heki, K., Miyazaki, S., Takahashi, H., et al., 1999. The Amurian Plate Motion and Current Plate Kinematics in Eastern Asia. Journal of Geophysical Research: Solid Earth, 104(B12): 29147-29155. https://doi.org/10.1029/1999jb900295 Hutchinson, D. R., Golmshtok, A. J., Zonenshain, L. P., et al., 1992. Depositional and Tectonic Framework of the Rift Basins of Lake Baikal from Multichannel Seismic Data. Geology, 20(7): 589. https://doi.org/10.1130/0091-7613(1992)0200589: datfot>2.3.co;2 doi: 10.1130/0091-7613(1992)0200589:datfot>2.3.co;2 Ivanov, A. V., Demonterova, E. I., He, H. Y., et al., 2015. Volcanism in the Baikal Rift: 40 Years of Active-versus-passive Model Discussion. Earth-Science Reviews, 148: 18-43. https://doi.org/10.1016/j.earscirev.2015.05.011 Jolivet, M., Arzhannikov, S., Arzhannikova, A., et al., 2013a. Geomorphic Mesozoic and Cenozoic Evolution in the Oka-Jombolok Region (East Sayan Ranges, Siberia). Journal of Asian Earth Sciences, 62: 117-133. https://doi.org/10.1016/j.jseaes.2011.09.017 Jolivet, M., Arzhannikov, S., Chauvet, A., et al., 2013b. Accommodating Large-Scale Intracontinental Extension and Compression in a Single Stress-Field: A Key Example from the Baikal Rift System. Gondwana Research, 24(3-4): 918-935. https://doi.org/10.1016/j.gr.2012.07.017 Karato, S. I., Wu, P., 1993. Rheology of the Upper Mantle: A Synthesis. Science, 260(5109): 771-778. https://doi.org/10.1126/science.260.5109.771 Li, L. S., Wang, Z. C., Xiao, A. C., et al., 2021. Rift System in Northern Yangtze Block during Nanhua Period: Implications from Gravity Anomaly and Sedimentology. Earth Science, 46(10): 3496-3508 (in Chinese with English abstract). Liu, S. W., Wang, L. S., Li, C., 2007. Rheology of Continental Lithosphere: An Overview. Progress in Geophysics, 22(4): 1209-1214 (in Chinese with English abstract). Lunina, O. V., Gladkov, A. S., Nevedrova, N. N., 2010. Tectonics, Stress State, and Geodynamics of the Mesozoic and Cenozoic Rift Basins in the Baikal Region. Geotectonics, 44(3): 237-261. https://doi.org/10.1134/S0016852110030039 Mordvinova, V. V., Kobelev, M. M., Treussov, A. V., et al., 2016. Deep Structure of the Siberian Platform-Central Asian Mobile Belt Transition Zone from Teleseismic Data. Geodynamics & Tectonophysics, 7(1): 85-103. https://doi.org/10.5800/gt-2016-7-1-0198 Nielsen, C., Thybo, H., 2009. No Moho Uplift below the Baikal Rift Zone: Evidence from a Seismic Refraction Profile across Southern Lake Baikal. Journal of Geophysical Research: Solid Earth, 114(B8): B08306. https://doi.org/10.1029/2008JB005828 Parfenov, L. M., Prokop'ev, A. V., Spektor, V. B., 2001. Geodynamics of Mountains in Eastern Yakutia and Opening of the Eurasian Basin. Geologiyai Geofizika, 42 (4), 708-725. Petit, C., Burov, E., Déverchère, J., 1997. On the Structure and Mechanical Behaviour of the Extending Lithosphere in the Baikal Rift from Gravity Modelling. Earth and Planetary Science Letters, 149(1-4): 29-42. https://doi.org/10.1016/S0012-821X(97)00067-8 Petit, C., Burov, E., Tiberi, C., 2008. Strength of the Lithosphere and Strain Localisation in the Baikal Rift. Earth and Planetary Science Letters, 269(3-4): 523-529. https://doi.org/10.1016/j.epsl.2008.03.012 Petit, C., Déverchère, J., 2006. Structure and Evolution of the Baikal Rift: A Synthesis. Geochemistry, Geophysics, Geosystems, 7(11): Q11016. https://doi.org/10.1029/2006GC001265 Ranalli, G., 1995. Rheology of the Earth. Springer Science & Business Media, London. Ros, E., Pérez-Gussinyé, M., Araújo, M., et al., 2017. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic. Geochemistry, Geophysics, Geosystems, 18(12): 4538-4557. https://doi.org/10.1002/2017GC007212 San'kov, V. A., Parfeevets, A. V., Lukhnev, A. V., et al., 2011. Late Cenozoic Geodynamics and Mechanical Coupling of Crustal and Upper Mantle Deformations in the Mongolia-Siberia Mobile Area. Geotectonics, 45(5): 378-393. https://doi.org/10.1134/s0016852111050049 Seminsky, K. Z., 2009. Major Factors of the Evolution of Basins and Faults in the Baikal Rift Zone: Tectonophysical Analysis. Geotectonics, 43(6): 486-500. https://doi.org/10.1134/s001685210906003x Thybo, H., Nielsen, C. A., 2009. Magma-Compensated Crustal Thinning in Continental Rift Zones. Nature, 457(7231): 873-876. https://doi.org/10.1038/nature07688 Tiberi, C., Diament, M., Déverchère, J., et al., 2003. Deep Structure of the Baikal Rift Zone Revealed by Joint Inversion of Gravity and Seismology. Journal of Geophysical Research: Solid Earth, 108(B3): 2133. https://doi.org/10.1029/2002JB001880 Wang, K., Chen, L., Xiong, X., et al., 2020. The Role of Lithospheric Heterogeneities in Continental Rifting: Implications for Rift Diversity in the North China Craton. Journal of Geodynamics, 139: 101765. https://doi.org/10.1016/j.jog.2020.101765 Watts, A. B., Burov, E. B., 2003. Lithospheric Strength and Its Relationship to the Elastic and Seismogenic Layer Thickness. Earth and Planetary Science Letters, 213(1-2): 113-131. https://doi.org/10.1016/S0012-821X(03)00289-9 Wessel, P., Luis, J. F., Uieda, L., et al., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. https://doi.org/10.1029/2019gc008515 Wu, H. T., Huang, Z. C., Zhao, D. P., 2021. Deep Structure beneath the Southwestern Flank of the Baikal Rift Zone and Adjacent Areas. Physics of the Earth and Planetary Interiors, 310(1-2): 106616. https://doi.org/10.1016/j.pepi.2020.106616 Zhang, Y., Li, J. H., Cheng, P., 2021. Comparison of Salt Structure Deformation Periods of Conjugated Salt Basins in Central Segment of South Atlantic. Earth Science, 46(6): 2218-2229 (in Chinese with English abstract). Zhao, D. P., Lei, J. S., Inoue, T., et al., 2006. Deep Structure and Origin of the Baikal Rift Zone. Earth and Planetary Science Letters, 243(3-4): 681-691. https://doi.org/10.1016/j.epsl.2006.01.033 Zhao, H. L., Deng, J. F., Chen, F. J., et al., 1996. Cenozoic Volcanism, Deep Action and Continental Rift Basin in Northeast China. Earth Science, 21(6): 615-619 (in Chinese with English abstract). Zorin, Y. A., Turutanov, E. K., Mordvinova, V. V., et al., 2003. The Baikal Rift Zone: The Effect of Mantle Plumes on Older Structure. Tectonophysics, 371(1-4): 153-173. https://doi.org/10.1016/S0040-1951(03)00214-2 李路顺, 汪泽成, 肖安成, 等, 2021. 扬子北缘南华纪裂谷系统: 基于重力异常及沉积学证据. 地球科学, 46(10): 3496-3508. doi: 10.3799/dqkx.2020.395 刘绍文, 王良书, 李成, 2007. 大陆岩石圈流变学研究进展. 地球物理学进展, 22(4): 1209-1214. 章雨, 李江海, 程鹏, 2021. 南大西洋中段共轭盐盆盐构造变形期次对比及意义. 地球科学, 46(6): 2218-2229. doi: 10.3799/dqkx.2020.033 赵海玲, 邓晋福, 陈发景, 等, 1996. 东北地区新生代火山作用、深部作用与大陆裂谷型盆地. 地球科学, 21(6): 615-619. http://www.earth-science.net/article/id/448 -