• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例

    周辰傲 宋述光

    周辰傲, 宋述光, 2023. 碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例. 地球科学, 48(12): 4481-4494. doi: 10.3799/dqkx.2022.117
    引用本文: 周辰傲, 宋述光, 2023. 碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例. 地球科学, 48(12): 4481-4494. doi: 10.3799/dqkx.2022.117
    Zhou Chen'ao, Song Shuguang, 2023. Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt. Earth Science, 48(12): 4481-4494. doi: 10.3799/dqkx.2022.117
    Citation: Zhou Chen'ao, Song Shuguang, 2023. Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt. Earth Science, 48(12): 4481-4494. doi: 10.3799/dqkx.2022.117

    碰撞后岩浆作用与陆壳生长:以柴北缘超高压变质带为例

    doi: 10.3799/dqkx.2022.117
    基金项目: 

    国家自然科学基金 91955202

    详细信息
      作者简介:

      周辰傲(1995-),博士研究生,研究方向为岩石学. E-mail: chenaozhou@pku.edu.cn

      通讯作者:

      宋述光,教授,岩石学专业. ORCID: 0000-0002-0595-7691. E-mail: sgsong@pku.edu.cn

    • 中图分类号: P597

    Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt

    • 摘要: 碰撞后岩浆活动对于了解造山带垮塌和去根过程及陆壳生长具有重要意义.总结了柴北缘超高压变质带中形成于400~360 Ma的碰撞后花岗岩-辉长岩侵入体和镁铁质岩脉的年代学和地球化学特征.其中,花岗岩侵入体具有典型的I-型花岗岩特征,形成于壳幔相互作用的岩浆混合.来自地幔的镁铁质岩脉可以划分为两组:(1)392~375 Ma中基性岩脉;(2)约360 Ma超基性岩脉.其地球化学特征表明,镁铁质岩脉的微量元素和同位素随形成时间的变新而逐渐亏损,地幔源区从岩石圈地幔变为软流圈地幔.这种源自地幔的镁铁质岩浆活动是碰撞后岩浆活动开始和造山带垮塌的关键指标.结合碰撞后岩浆作用的特征,提出了一个地球动力学模型来解释柴北缘约35百万年(Ma)的造山带垮塌去根过程,在395~375 Ma发生缓慢的岩石圈地幔侵蚀,360 Ma前岩石圈发生拆沉作用,岩石圈地幔垮塌,同时软流圈地幔上升.地幔岩浆的加入表明碰撞后阶段是大陆生长的重要时期.

       

    • 图  1  柴北缘超高压变质带地质简图(a); 都兰岩体地质简图及样品年龄数据(b); 锡铁山地质简图及统计数据采样点(c)

      a.据Zhou et al.,(2021)修改;b.据Wang et al.2014)和Zhou et al.2021);c.据Zhao et al.2018)和Zhou et al.2021

      Fig.  1.  Simplified geological map of the North Qaidam ultrahigh-pressure metamorphic belt (NQUB) (a); geological map of the Dulan terrane and geochronology data (b); geological map of the Xitieshan terrane and geochronology data (c)

      图  2  都兰地体碰撞后花岗闪长岩及其基性包体(MME) (a);都兰地体碰撞后黑云母花岗岩及其基性包体(b);都兰地体373~360 Ma闪长岩及超基性岩脉(c);锡铁山地体基性岩脉(d)

      Fig.  2.  The post-collisional granodiorite and mafic magmatic enclaves (MME) in Dulan terrane (a), the post-collisional biotite granites and MME in Dulan terrane (b), the 373-360 Ma diorite and ultrabasic dykes in Dulan terrane (c), the basic dykes in Xitieshan terrane (d)

      图  3  柴北缘碰撞造山带碰撞后岩浆岩样品TAS图解(a); K2O-SiO2图解(b); Y-Nb图解(c); Yb+Nb-Rb图解(d)

      a.据Le Maitre(1989);d.数据统计自Wang et al.2014);Zhao et al.2018);Zhou et al.2021

      Fig.  3.  TAS diagram of post-collision magmatic samples from the NQUB (a), K2O vs. SiO2 diagram (b), Y vs. Nb diagram (c), Yb+Nb vs. Rb diagram (d)

      图  4  柴北缘碰撞造山带碰撞后岩浆岩样品稀土元素球粒陨石标准化分布图和微量元素原始地幔标准化蛛网图

      数据统计自Wang et al.2014);Zhao et al.2018);Zhou et al.2021

      Fig.  4.  Chondrite-normalized REE and primitive mantle-normalized multi-element patterns for the post-collision magmatic samples from the NQUB

      图  5  柴北缘碰撞造山带碰撞后岩浆岩Hf同位素与结晶年龄的关系

      数据统计自Wang et al.2014);张延军等(2016);Zhao et al.2018);Zhou et al.2021

      Fig.  5.  The diagram of εHf(t) vs. crystallization age from the post-collision magmatism in the NQUB

      图  6  柴北缘碰撞造山带碰撞后岩浆岩样品Sr-Nd同位素特征

      数据统计自Wang et al.2014);Zhao et al.2018);Zhou et al.2021

      Fig.  6.  εNd(t) vs. ISr(t) diagram for the post-collision magmatic samples from the NQUB

      图  7  柴北缘碰撞造山带碰撞后镁铁质岩浆岩; La/Ba和La/Nb比值图解(a)和Th/Yb和Nb/Yb比值图解(b)

      数据统计自Zhao et al.2018);Zhou et al.2021

      Fig.  7.  La/Ba versus La/Nb diagram (a), Th/Yb vs. Nb/Yb diagram (b)

      图  8  柴北缘大陆碰撞造山带从大陆碰撞、折返到造山带垮塌的构造演化示意图

      a.俯冲大陆地壳的折返;b.造山带垮塌早期的热对流侵蚀作用;c.造山垮塌晚期岩石圈拆沉

      Fig.  8.  Tectonic model for post-collisional evolution of the NQUB

      表  1  柴北缘超高压碰撞造山带碰撞后岩浆岩年龄统计

      Table  1.   Summary on ages of post-collisional magmas in the North Qaidam collisional orogenic belt

      位置 岩石定名 样品号 年龄
      (Ma)
      ± N 方法 参考文献
      都兰野马滩 中性岩脉 9C-67 392.9 1.3 15 LA-ICPMS Zhou et al.(2021)
      都兰野马滩 中性岩脉 Q14-14 380.4 4.9 15 LA-ICPMS Zhou et al.(2021)
      都兰野马滩 基性岩脉 18CB-28 382.9 1.1 30 LA-ICPMS Zhou et al.(2021)
      都兰野马滩 超基性岩脉 Q14-06 360.0 1.7 8 LA-ICPMS Zhou et al.(2021)
      都兰沙流河 英云闪长岩 10DL-44 392.1 4.5 9 LA-ICPMS Wang et al.(2014)
      都兰沙流河 英云闪长岩 10DL-42 390.9 4.1 23 LA-ICPMS Wang et al.(2014)
      都兰野马滩 花岗闪长岩(MME围岩) 07DL-99 386.4 2.1 25 LA-ICPMS Wang et al.(2014)
      都兰野马滩 花岗闪长岩 07DL-79 379.1 2.2 20 LA-ICPMS Wang et al.(2014)
      都兰野马滩 暗色包体MME 07DL-78 380.3 2.5 24 LA-ICPMS Wang et al.(2014)
      都兰野马滩 黑云母二长花岗岩 07DL-97 379.5 5.3 10 LA-ICPMS Wang et al.(2014)
      都兰野马滩 黑云母二长花岗岩 07DL-102 366.7 2.6 22 LA-ICPMS Wang et al.(2014)
      都兰野马滩 闪长岩 10DL-24 373.7 2.4 25 LA-ICPMS Wang et al.(2014)
      都兰野马滩 花岗岩 CL-571 397.0 4 7 SHRIMP 吴才来等(2014)
      都兰沙流河 石英闪长岩 CL-561 381.0 5 12 SHRIMP 吴才来等(2014)
      都兰野马滩 花岗闪长岩 CL99-40 397.0 3 14 SHRIMP 吴才来等(2014)
      都兰察察公麻 花岗闪长岩 CL5765 372.4 3.6 9 SHRIMP 吴才来等(2014)
      都兰察察公麻 花岗闪长岩 CLL577 382.5 3.6 8 SHRIMP 吴才来等(2014)
      大柴旦嗷唠河 石英闪长岩 CL05-105 372.1 2.6 10 SHRIMP 吴才来等(2007)
      大柴旦巴嘎柴达木湖南 花岗岩 CL05-108 374.5 1.6 12 SHRIMP 吴才来等(2007)
      大柴旦大羊沟 花岗岩 CL05-116 372.0 2.7 13 SHRIMP 吴才来等(2007)
      锡铁山岩体 花岗岩 CL05-108 374.5 1.6 12 SHRIMP 吴才来等(2007)
      锡铁山岩体 基性岩脉 18CB-83 375.4 3.2 21 LA-ICPMS Zhou et al.(2021)
      锡铁山岩体 辉长岩 18CB-84 367.9 3.2 18 LA-ICPMS Zhou et al.(2021)
      锡铁山岩体 辉长岩 B1204-1 372.0 2 19 LA-ICPMS Zhao et al.(2018)
      锡铁山岩体 花岗岩 B1205-1 372.0 3 10 LA-ICPMS Zhao et al.(2018)
      锡铁山岩体 花岗岩 B1301-1 372.0 2 19 LA-ICPMS Zhao et al.(2018)
      锡铁山岩体 花岗岩 B1201-1 371.0 2 13 LA-ICPMS Zhao et al.(2018)
      注:据Wang et al. (2014); Wu et al.(2007, 2014); Zhao et al.(2018); Zhou et al.(2021).
      下载: 导出CSV
    • Abbassene, F., Chazot, G., Bellon, H., et al., 2016. A 17 Ma Onset for the Post-Collisional K-Rich Calc-Alkaline Magmatism in the Maghrebides: Evidence from Bougaroun (Northeastern Algeria) and Geodynamic Implications. Tectonophysics, 674: 114-134. https://doi.org/10.1016/j.tecto.2016.02.013
      Bénard, A., Arculus, R. J., Nebel, O., et al., 2017. Silica-Enriched Mantle Sources of Subalkaline Picrite-Boninite-Andesite Island Arc Magmas. Geochimica et Cosmochimica Acta, 199: 287-303. https://doi.org/10.1016/j.gca.2016.09.030
      Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      Cawood, P. A., Kroner, A., 2009. Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318(1): 351-372. https://doi.org/10.1144/sp318.0
      Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism: Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456: 182-195. https://doi.org/10.1016/j.epsl.2016.09.033
      Dong, J. L., Song, S. G., Su, L., et al., 2019. Onset of the North-South Gravity Lineament, NE China: Constraints of Late Jurassic Bimodal Volcanic Rocks. Lithos, 334-335: 58-68. https://doi.org/10.1016/j.lithos.2019.03.016
      England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561
      Fitton, J. G., James, D., Kempton, P. D., et al., 1988. The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. Journal of Petrology, Special_Volume(1): 331-349. https://doi.org/10.1093/petrology/special_volume.1.331
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162
      Griffin, W. L., O'Reilly, S. Y., Afonso, J. C., et al., 2009. The Composition and Evolution of Lithospheric Mantle: A Re-Evaluation and Its Tectonic Implications. Journal of Petrology, 50(7): 1185-1204. https://doi.org/10.1093/petrology/egn033
      Handy, M. R., Schmid, S. M., Bousquet, R., et al., 2010. Reconciling Plate-Tectonic Reconstructions of Alpine Tethys with the Geological-Geophysical Record of Spreading and Subduction in the Alps. Earth-Science Reviews, 102(3-4): 121-158. https://doi.org/10.1016/j.earscirev.2010.06.002
      Houseman, G. A., McKenzie, D. P., Molnar, P., 1981. Convective Instability of a Thickened Boundary Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts. Journal of Geophysical Research: Solid Earth, 86(B7): 6115-6132. https://doi.org/10.1029/jb086ib07p06115
      Huw Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
      Karsli, O., Chen, B., Aydin, F., et al., 2007. Geochemical and Sr-Nd-Pb Isotopic Compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for Magma Interaction in the Genesis of High-K Calc-Alkaline Granitoids in a Post-Collision Extensional Setting. Lithos, 98(1-4): 67-96. https://doi.org/10.1016/j.lithos.2007.03.005
      Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary Terms (2nd Edition). Blackwell Scientific Publications, Oxford, 193.
      Liégeois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids. the Use of Sliding Normalization. Lithos, 45(1-4): 1-28. https://doi.org/10.1016/s0024-4937(98)00023-1
      Mattinson, C. G., Wooden, J. L., Liou, J. G., et al., 2006. Geochronology and Tectonic Significance of Middle Proterozoic Granitic Orthogneiss, North Qaidam HP/UHP Terrane, Western China. Mineralogy and Petrology, 88(1-2): 227-241. https://doi.org/10.1007/s00710-006-0149-1
      Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257(in Chinese with English abstract).
      Molnar, P., Houseman, G. A., Conrad, C. P., 1998. Rayleigh-Taylor Instability and Convective Thinning of Mechanically Thickened Lithosphere: Effects of Non-Linear Viscosity Decreasing Exponentially with Depth and of Horizontal Shortening of the Layer. Geophysical Journal International, 133(3): 568-584. https://doi.org/10.1046/j.1365-246x.1998.00510.x
      Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth: A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Prelević, D., Akal, C., Foley, S. F., et al., 2012. Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle: The Case of Southwestern Anatolia, Turkey. Journal of Petrology, 53(5): 1019-1055. https://doi.org/10.1093/petrology/egs008
      Saunders, A. D., Storey, M., Kent, R. W., et al., 1992. Consequences of Plume-Lithosphere Interactions. Geological Society, London, Special Publications, 68(1): 41-60. https://doi.org/10.1144/gsl.sp.1992.068.01.04
      Song, S. G., Niu, Y. L., Su, L., et al., 2014a. Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59-84. https://doi.org/10.1016/j.earscirev.2013.11.010
      Song, S. G., Niu, Y. L., Su, L., et al., 2014b. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130: 42-62. https://doi.org/10.1016/j.gca.2014.01.008
      Song, S. G., Su, L., Li, X. H., et al., 2012. Grenville-Age Orogenesis in the Qaidam-Qilian Block: The Link between South China and Tarim. Precambrian Research, 220: 9-22.
      Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8): 1284-1304. https://doi.org/10.1007/s11430-015-5102-x
      Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1-2): 99-118. https://doi.org/10.1016/j.epsl.2005.02.036
      Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435-455. https://doi.org/10.1093/petrology/egi080
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Thomas, W. A., 1983. Continental Margins, Orogenic Belts, and Intracratonic Structures. Geology, 11(5): 270-272. https://doi.org/10.1130/0091-7613(1983)11270:cmobai>2.0.co;2 doi: 10.1130/0091-7613(1983)11270:cmobai>2.0.co;2
      Topuz, G., Okay, A. I., Altherr, R., et al., 2011. Post-Collisional Adakite-Like Magmatism in the Ağvanis Massif and Implications for the Evolution of the Eocene Magmatism in the Eastern Pontides (NE Turkey). Lithos, 125(1-2): 131-150. https://doi.org/10.1016/j.lithos.2011.02.003
      Torsvik, T. H., Smethurst, M. A., Meert, J. G., et al., 1996. Continental Break-up and Collision in the Neoproterozoic and Palaeozoic: A Tale of Baltica and Laurentia. Earth-Science Reviews, 40(3-4): 229-258. https://doi.org/10.1016/0012-8252(96)00008-6
      Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210-211: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006
      Williams, H., Turner, S., Kelley, S., et al., 2001. Age and Composition of Dikes in Southern Tibet: New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism. Geology, 29(4): 339. https://doi.org/10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2 doi: 10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2
      Wu, C. L., Gao, Y. H., Li, Z. L., et al., 2014. Zircon SHRIMP Dating of Dulan Granite and Granite Chronological Framework of Ultra-High Pressure Belt in Northern Qaidam Basin. Scientia Sinica (Terrae), 44(10): 2142-2165(in Chinese). doi: 10.1360/zd-2014-44-10-2142
      Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007. Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861-1875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.08.008
      Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2015. Episodic Refertilization and Metasomatism of Archean Mantle: Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet, China). Contributions to Mineralogy and Petrology, 169(3): 31. https://doi.org/10.1007/s00410-015-1126-7
      Xu, W. L., Zhao, Z. F., Dai, L. Q., 2020. Post-Collisional Mafic Magmatism: Record of Lithospheric Mantle Evolution in Continental Orogenic Belt. Scientia Sinica (Terrae), 50(12): 1906-1918(in Chinese). doi: 10.1360/SSTe-2019-0267
      Yang, L. M., Song, S. G., Su, L., et al., 2019. Heterogeneous Oceanic Arc Volcanic Rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW China). Journal of Petrology, 60(1): 85-116. https://doi.org/10.1093/petrology/egy107
      Yang, S. X., Su, L., Song, S. G., et al., 2020. Melting of Subducted Continental Crust during Collision and Exhumation: Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt, NW China. Lithos, 378-379: 105794. https://doi.org/10.1016/j.lithos.2020.105794
      Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190-211. https://doi.org/10.1016/j.earscirev.2019.02.016
      Zhang, Y. J., Sun, F. Y., Xu, C. H., et al., 2016. Geochronology, Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin, NW China. Earth Science, 41(11): 1830-1844(in Chinese with English abstract).
      Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zhao, Z. X., Wei, J. H., Santosh, M., et al., 2018. Late Devonian Postcollisional Magmatism in the Ultrahigh-Pressure Metamorphic Belt, Xitieshan Terrane, NW China. GSA Bulletin, 130(5-6): 999-1016. https://doi.org/10.1130/b31772.1
      Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
      Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      Zhou, C. N., Song, S. G., Allen, M. B., et al., 2021. Post-Collisional Mafic Magmatism: Insights into Orogenic Collapse and Mantle Modification from North Qaidam Collisional Belt, NW China. Lithos, 398/399: 106311. https://doi.org/10.1016/j.lithos.2021.106311
      莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160
      吴才来, 郜源红, 李兆丽, 等, 2014. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架. 中国科学: 地球科学, 44(10): 2142-2165.
      吴才来, 郜源红, 吴锁平, 等, 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年. 岩石学报, 23(8): 1861-1875.
      许文良, 赵子福, 戴立群, 2020. 碰撞后镁铁质岩浆作用: 大陆造山带岩石圈地幔演化的物质记录. 中国科学: 地球科学, 50(12): 1906-1918.
      张延军, 孙丰月, 许成瀚, 等, 2016. 柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素. 地球科学, 41(11): 1830-1844. doi: 10.3799/dqkx.2016.127
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  318
    • HTML全文浏览量:  409
    • PDF下载量:  93
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-17
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回