• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    火星峡谷网研究的现状、问题与展望

    史语桐 杨勇 赵健楠 黄俊 肖龙

    史语桐, 杨勇, 赵健楠, 黄俊, 肖龙, 2024. 火星峡谷网研究的现状、问题与展望. 地球科学, 49(1): 359-374. doi: 10.3799/dqkx.2022.124
    引用本文: 史语桐, 杨勇, 赵健楠, 黄俊, 肖龙, 2024. 火星峡谷网研究的现状、问题与展望. 地球科学, 49(1): 359-374. doi: 10.3799/dqkx.2022.124
    Shi Yutong, Yang Yong, Zhao Jiannan, Huang Jun, Xiao Long, 2024. Achievements, Issues and Prospects in the Study of Martian Valley Networks. Earth Science, 49(1): 359-374. doi: 10.3799/dqkx.2022.124
    Citation: Shi Yutong, Yang Yong, Zhao Jiannan, Huang Jun, Xiao Long, 2024. Achievements, Issues and Prospects in the Study of Martian Valley Networks. Earth Science, 49(1): 359-374. doi: 10.3799/dqkx.2022.124

    火星峡谷网研究的现状、问题与展望

    doi: 10.3799/dqkx.2022.124
    基金项目: 

    国家自然科学基金项目 42002305

    国家自然科学基金项目 41830214

    国家自然科学基金项目 42241111

    民用航天技术预先研究项目 D020101

    中国博士后科学基金面上项目 2021M702999

    详细信息
      作者简介:

      史语桐(1997-),女,博士研究生,主要从事行星地质学研究. ORCID: 0000-0002-4277-1028. E-mail: ytshi@cug.edu.cn

      通讯作者:

      肖龙,E-mail: longxiao@cug.edu.cn

    • 中图分类号: P691

    Achievements, Issues and Prospects in the Study of Martian Valley Networks

    • 摘要: 广泛分布于火星表面的谷网地貌作为火星地质环境演变的记录者,对认识火星地质历史时期的环境变化、了解火星古气候与宜居性具有重要意义.随着中国火星探测计划的开展,详细了解火星谷网的研究进展尤为重要.对火星谷网地貌的探测历史、形貌分类、时空分布、成因假说等方面的研究进展进行了总结,在此基础上提出了当前火星谷网研究中存在的主要问题与争议,并认为未来可着重在谷网侵蚀沉积物的识别分析、谷网对古气候重建所提供的地质学证据与理论模型预测结果的协调、以及火星与地球谷网的类比等方面开展研究.

       

    • 图  1  火星谷网的全球分布

      谷网识别数据源自Alemanno et al.2018).背景图为据MOLA数据制作的彩色地形图

      Fig.  1.  The global distribution of Martian valley networks

      图  2  几种常见的火星谷网形貌类型

      a.峡谷网络(valley networks,47°10′44″E,9°18′4″N);b.径向河谷(longitudinal valleys,38°45′18″E,19°11′5″N);c.与火山有关的河谷(valleys on volcanos,174°17′15″E,8°44′5″S);d.与裂谷有关的河谷(valleys related to rifts,84°40′22″W,8°15′42″S);e.单支河谷或谷网段(single valleys and valley segments,140°0′52″W,63°20′53″S);f.小型外流渠道(small outflow channels,16°13′28″W,22°10′15″N).白色箭头标注在谷网旁,其指向代表谷网流向.背景图为THEMIS影像叠加MOLA高程数据,由红色过渡至蓝色表示高程降低.谷网形貌类别的划分引自Alemanno et al.2018

      Fig.  2.  Commonly observed morphological types of Martian valley networks

      图  3  火星谷网横纵剖面特征示例

      所选谷网位于火星Huygens撞击坑南部边缘处(19°S,55°E).图a中黄色虚线大致代表谷缘位置.图中b的白色实线表示图c中的纵剖面线,剖面始终点分别位于A、B两点所示的位置.谷网影像底图为CTX影像叠加MOLA高程数据,由红色过渡至绿色代表高程降低,影像图中与谷网交切的红色短线与图a中的横剖面一一对应

      Fig.  3.  The longitudinal and traverse profile of an example Martian valley network

      图  4  具有不同水源和侵蚀特征的火星谷网

      a.大气降水地表径流侵蚀(92°31′46″W,42°2′46″S);b.冰川侵蚀(37°7′25″E,10°8′40″S);c.地下水基蚀(147°12′28″W,5°27′30″S);d.冰下河侵蚀(29°1′45″E,15°53′3″N).背景图为THEMIS影像叠加MOLA高程数据,由红色过渡至蓝色表示高程降低.4种水源分类引自Galofre et al.2020

      Fig.  4.  Martian valley networks with different types of water sources

      图  5  火星水成扇状沉积的全球分布

      扇状沉积识别引自Wilson et al.,2021.背景图为MOLA彩色地形图

      Fig.  5.  Distribution of Martian deltas and alluvial fans

      表  1  四种不同水源作用下典型谷网的形貌对比

      Table  1.   Morphological comparison of valley networks with different water sources

      地表径流侵蚀1~2 冰川侵蚀3 地下水侵蚀4 冰下河侵蚀5
      汇流角 锐角 近直角 锐角 锐角
      河流等级 最大 较小
      长宽比 最大 最小
      纵剖面起伏程度 较大 最小 最大
      注:1. Craddock and Howard (2002); 2. Ramirez and Craddock (2018); 3. Bouquety et al. (2019); 4. Harrison and Grimm (2005); 5.Galofre et al. (2020).
      下载: 导出CSV

      表  2  近期研究中显示火星早期气候的证据和可能影响气候变化的机制

      Table  2.   Evidences of the climate of early Mars and possible climate change mechanisms from recent studies

      气候证据 温暖 湿润 寒冷 干燥 升温
      D/H值 1
      含水矿物 2‒3
      流水地貌 3‒8 4‒7, 10 6, 10‒14 3, 6, 8‒9, 11‒14
      稀薄的光照 15
      CO2-H2O大气 16 16
      SO2 17 17
      CH4 18‒19 18‒19, 23
      H2 19 19
      蛇纹石化 19
      倾角变化 18
      卷云 20‒21
      撞击作用 22
      火山作用 17‒19
      注:实心点表示得到普遍认同的证据或机制,空心圆表示具有缺陷的证据或机制.1. Villanueva et al. (2015); 2. Bibring et al. (2006); 3. Ramirez and Craddock (2018); 4. Craddock and Howard (2002); 5. Ansan and Mangold (2013); 6. Craddock and Lorenz (2017); 7. Luo et al. (2017); 8. Ramirez et al. (2020); 9. Seybold et al. (2018); 10. Kamada et al. (2020); 11. Cassanelli and Head (2019); 12. Galofre et al. (2020); 13. Wordsworth et al. (2013); 14. Palumbo and Head (2018); 15. Gough (1981); 16. Kasting (1991); 17. Postawko and Kuhn (1986); 18. Kite et al. (2017); 19. Wordsworth et al. (2017); 20. Urata and Toon (2013); 21. Ramirez and Kasting (2017); 22. Steakley et al. (2019); 23. Zhang et al. (2021).
      下载: 导出CSV
    • Alemanno, G., Orofino, V., Mancarella, F., 2018. Global Map of Martian Fluvial Systems: Age and Total Eroded Volume Estimations. Earth and Space Science, 5(10): 560-577. https://doi.org/10.1029/2018ea000362
      Anderson, R. S., Molnar, P., Kessler, M. A., 2006. Features of Glacial Valley Profiles Simply Explained. Journal of Geophysical Research, 111: F01004. https://doi.org/10.1029/2005jf000344
      Ansan, V., Mangold, N., 2006. New Observations of Warrego Valles, Mars: Evidence for Precipitation and Surface Runoff. Planetary and Space Science, 54(3): 219-242. https://doi.org/10.1016/j.pss.2005.12.009
      Ansan, V., Mangold, N., 2013.3D Morphometry of Valley Networks on Mars from HRSC/MEX DEMs: Implications for Climatic Evolution through Time. Journal of Geophysical Research: Planets, 118(9): 1873-1894. https://doi.org/10.1002/jgre.20117
      Ansan, V., Mangold, N., Masson, P., et al., 2008. Topography of Valley Networks on Mars from Mars Express High Resolution Stereo Camera Digital Elevation Models. Journal of Geophysical Research: Planets, 113(E7): E07006. https://doi.org/10.1029/2007je002986
      Armitage, J. J., Warner, N. H., Goddard, K., et al., 2011. Timescales of Alluvial Fan Development by Precipitation on Mars. Geophysical Research Letters, 38(17): L17203. https://doi.org/10.1029/2011gl048907
      Bahia, R. S., Covey-Crump, S., Jones, M. A., et al., 2022. Discordance Analysis on a High-Resolution Valley Network Map of Mars: Assessing the Effects of Scale on the Conformity of Valley Orientation and Surface Slope Direction. Icarus, 383: 115041. https://doi.org/10.1016/j.icarus.2022.115041
      Baker, V. R., Strom, R. G., Gulick, V. C., et al., 1991. Ancient Oceans, Ice Sheets and the Hydrological Cycle on Mars. Nature, 352(6336): 589-594. https://doi.org/10.1038/352589a0
      Barnhart, C. J., Howard, A. D., Moore, J. M., 2009. Long-Term Precipitation and Late-Stage Valley Network Formation: Landform Simulations of Parana Basin, Mars. Journal of Geophysical Research: Planets, 114(E1): E01003. https://doi.org/10.1029/2008je003122
      Bibring, J. P., Langevin, Y., Mustard, J. F., et al., 2006. Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science, 312(5772): 400-404. https://doi.org/10.1126/science.1122659
      Bibring, J. P., Langevin, Y., Poulet, F., et al., 2004. Perennial Water Ice Identified in the South Polar Cap of Mars. Nature, 428(6983): 627-630. https://doi.org/10.1038/nature02461
      Boatwright, B. D., Head, J. W., 2019. Simulating Early Mars Hydrology with the MARSSIM Landform Evolution Model: New Insights from an Integrated System of Precipitation, Infiltration, and Groundwater Flow. Planetary and Space Science, 171: 17-33. https://doi.org/10.1016/j.pss.2019.04.001
      Bouquety, A., Sejourné, A., Costard, F., et al., 2019. Morphometric Evidence of 3.6 Ga Glacial Valleys and Glacial Cirques in Martian Highlands: South of Terra Sabaea. Geomorphology, 334: 91-111. https://doi.org/10.1016/j.geomorph.2019.02.022
      Byrne, S., 2009. The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences, 37: 535-560. https://doi.org/10.1146/annurev.earth.031208.100101
      Carr, M. H., 1974. Tectonism and Volcanism of the Tharsis Region of Mars. Journal of Geophysical Research, 79(26): 3943-3949. https://doi.org/10.1029/jb079i026p03943
      Carr, M. H., 1995. The Martian Drainage System and the Origin of Valley Networks and Fretted Channels. Journal of Geophysical Research: Planets, 100(E4): 7479-7507. https://doi.org/10.1029/95je00260
      Carr, M. H., 2012. The Fluvial History of Mars. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1966): 2193-2215. https://doi.org/10.1098/rsta.2011.0500
      Carr, M. H., Chuang, F. C., 1997. Martian Drainage Densities. Journal of Geophysical Research: Planets, 102(E4): 9145-9152. https://doi.org/10.1029/97je00113
      Carr, M. H., Head, J. W., 2003. Basal Melting of Snow on Early Mars: A Possible Origin of Some Valley Networks. Geophysical Research Letters, 30(24): 2245. https://doi.org/10.1029/2003gl018575
      Carr, M. H., Malin, M. C., 2000. Meter-Scale Characteristics of Martian Channels and Valleys. Icarus, 146(2): 366-386. https://doi.org/10.1006/icar.2000.6428
      Carter, J., Poulet, F., Bibring, J. P., et al., 2013. Hydrous Minerals on Mars as Seen by the CRISM and OMEGA Imaging Spectrometers: Updated Global View. Journal of Geophysical Research: Planets, 118(4): 831-858. https://doi.org/10.1029/2012je004145
      Cassanelli, J. P., Head, J. W., 2019. Assessing the Formation of Valley Networks on a Cold Early Mars: Predictions for Erosion Rates and Channel Morphology. Icarus, 321: 216-231. https://doi.org/10.1016/j.icarus.2018.11.020
      Chan, N. H., Perron, J. T., Mitrovica, J. X., et al., 2018. New Evidence of an Ancient Martian Ocean from the Global Distribution of Valley Networks. Journal of Geophysical Research: Planets, 123(8): 2138-2150. https://doi.org/10.1029/2018je005536
      Clifford, S. M., 1993. A Model for the Hydrologic and Climatic Behavior of Water on Mars. Journal of Geophysical Research: Planets, 98(E6): 10973-11016. https://doi.org/10.1029/93je00225
      Craddock, R. A., Howard, A. D., 2002. The Case for Rainfall on a Warm, Wet Early Mars. Journal of Geophysical Research: Planets, 107(E11): 5111. https://doi.org/10.1029/2001je001505
      Craddock, R. A., Lorenz, R. D., 2017. The Changing Nature of Rainfall during the Early History of Mars. Icarus, 293: 172-179. https://doi.org/10.1016/j.icarus.2017.04.013
      Craddock, R. A., Maxwell, T. A., Howard, A. D., 1997. Crater Morphometry and Modification in the Sinus Sabaeus and Margaritifer Sinus Regions of Mars. Journal of Geophysical Research: Planets, 102(E6): 13321-13340. https://doi.org/10.1029/97je01084
      Di Achille, G., Hynek, B. M., 2010. Ancient Ocean on Mars Supported by Global Distribution of Deltas and Valleys. Nature Geoscience, 3(7): 459-463. https://doi.org/10.1038/ngeo891
      Dundas, C. M., Bramson, A. M., Ojha, L., et al., 2018. Exposed Subsurface Ice Sheets in the Martian Mid-Latitudes. Science, 359(6372): 199-201. https://doi.org/10.1126/science.aao1619
      Fassett, C. I., Head, J. W., 2005. Fluvial Sedimentary Deposits on Mars: Ancient Deltas in a Crater Lake in the Nili Fossae Region. Geophysical Research Letters, 32(14): L14201. https://doi.org/10.1029/2005gl023456
      Fassett, C. I., Head, J. W., 2008. The Timing of Martian Valley Network Activity: Constraints from Buffered Crater Counting. Icarus, 195(1): 61-89. https://doi.org/10.1016/j.icarus.2007.12.009
      Feulner, G., 2012. The Faint Young Sun Problem. Reviews of Geophysics, 50(2): RG2006. https://doi.org/10.1029/2011rg000375
      Forget, F., Wordsworth, R., Millour, E., et al., 2013.3D Modelling of the Early Martian Climate under a Denser CO2 Atmosphere: Temperatures and CO2 Ice Clouds. Icarus, 222(1): 81-99. https://doi.org/10.1016/j.icarus.2012.10.019
      Galofre, A. G., Jellinek, A. M., 2017a. Global Catalogue of the Martian Valley Networks: Evidences for Fluvial, Sapping and Subglacial Processes on Early Mars. In: Fourth International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life. Lunar and Planetary Institute, Flagstaff.
      Galofre, A. G., Jellinek, A. M., 2017b. The Geometry and Complexity of Spatial Patterns of Terrestrial Channel Networks: Distinctive Fingerprints of Erosional Regimes. Journal of Geophysical Research: Earth Surface, 122(4): 1037-1059. https://doi.org/10.1002/2016jf003825
      Galofre, A. G., Jellinek, A. M., Osinski, G. R., 2020. Valley Formation on Early Mars by Subglacial and Fluvial Erosion. Nature Geoscience, 13(10): 663-668. https://doi.org/10.1038/s41561-020-0618-x
      Glotch, T. D., Bandfield, J. L., Tornabene, L. L., et al., 2010. Distribution and Formation of Chlorides and Phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37(16): L16202. https://doi.org/10.1029/2010gl044557
      Goldspiel, J. M., Squyres, S. W., 2000. Groundwater Sapping and Valley Formation on Mars. Icarus, 148(1): 176-192. https://doi.org/10.1006/icar.2000.6465
      Gou, S., Yue, Z. Y., Di, K. C., et al., 2017. Advances in Aqueous Minerals Detection on Martian Surface. Journal of Remote Sensing, 21(4): 531-548 (in Chinese with English abstract).
      Gou, S., Yue, Z. Y., Di, K. C., et al., 2019. Comparative Study between Rivers in Tarim Basin in Northwest China and Evros Vallis on Mars. Icarus, 328: 127-140. https://doi.org/10.1016/j.icarus.2019.03.017
      Gough, D. O., 1981. Solar Interior Structure and Luminosity Variations. Physics of Solar Variations. Dordrecht: Springer, Netherlands, 21-34. https://doi.org/10.1007/978-94-010-9633-1_4
      Gulick, V. C., 2001. Origin of the Valley Networks on Mars: A Hydrological Perspective. Geomorphology, 37(3-4): 241-268. https://doi.org/10.1016/S0169-555X(00)00086-6
      Gulick, V. C., Baker, V. R., 1990. Origin and Evolution of Valleys on Martian Volcanoes. Journal of Geophysical Research: Solid Earth, 95(B9): 14325-14344. https://doi.org/10.1029/jb095ib09p14325
      Halevy, I., Head, J. W., 2014. Episodic Warming of Early Mars by Punctuatedvolcanism. Nature Geoscience, 7(12): 865-868. https://doi.org/10.1038/ngeo2293
      Harrison, K. P., Grimm, R. E., 2005. Groundwater-Controlled Valley Networks and the Decline of Surface Runoff on Early Mars. Journal of Geophysical Research: Planets, 110(E12): E12S16. https://doi.org/10.1029/2005je002455
      Head, J. W., Marchant, D. R., 2014. The Climate History of Early Mars: Insights from the Antarctic McMurdo Dry Valleys Hydrologic System. Antarctic Science, 26(6): 774-800. https://doi.org/10.1017/s0954102014000686
      Heldmann, J. L., Pollard, W., McKay, C. P., et al., 2013. The High Elevation Dry Valleys in Antarctica as Analog Sites for Subsurface Ice on Mars. Planetary and Space Science, 85: 53-58. https://doi.org/10.1016/j.pss.2013.05.019
      Hoke, M. R. T., Hynek, B. M., Tucker, G. E., 2011. Formation Timescales of Large Martian Valley Networks. Earth and Planetary Science Letters, 312(1-2): 1-12. https://doi.org/10.1016/j.epsl.2011.09.053
      Holt, J. W., Safaeinili, A., Plaut, J. J., et al., 2008. Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars. Science, 322(5905): 1235-1238. https://doi.org/10.1126/science.1164246
      Hynek, B., 2016. Research Focus: The Great Climate Paradox of Ancient Mars. Geology, 44(10): 879-880. https://doi.org/10.1130/focus102016.1
      Hynek, B. M., Beach, M., Hoke, M. R. T., 2010. Updated Global Map of Martian Valley Networks and Implications for Climate and Hydrologic Processes. Journal of Geophysical Research, 115(E9): E09008. https://doi.org/10.1029/2009je003548
      Irwin, R. P., Tooth, S., Craddock, R. A., et al., 2014. Origin and Development of Theater-Headed Valleys in the Atacama Desert, Northern Chile: Morphological Analogs to Martian Valley Networks. Icarus, 243: 296-310. https://doi.org/10.1016/j.icarus.2014.08.012
      Jaumann, R., Nass, A., Tirsch, D., et al., 2010. The Western Libya Montes Valley System on Mars: Evidence for Episodic and Multi-Genetic Erosion Events during the Martian History. Earth and Planetary Science Letters, 294(3-4): 272-290. https://doi.org/10.1016/j.epsl.2009.09.026
      Kamada, A., Kuroda, T., Kasaba, Y., et al., 2020. A Coupled Atmosphere-Hydrosphere Global Climate Model of Early Mars: A "Cool and Wet" Scenario for the Formation of Water Channels. Icarus, 338: 113567. https://doi.org/10.1016/j.icarus.2019.113567
      Kasting, J. F., 1991. CO2 Condensation and the Climate of Early Mars. Icarus, 94(1): 1-13. https://doi.org/10.1016/0019-1035(91)90137-I
      Kasting, J. F., 1997. Warming Early Earth and Mars. Science, 276(5316): 1213. https://doi.org/10.1126/science.276.5316.1213
      Kite, E. S., 2019. Geologic Constraints on Early Mars Climate. Space Science Reviews, 215(1): 1-47. https://doi.org/10.1007/s11214-018-0575-5
      Kite, E. S., Gao, P., Goldblatt, C., et al., 2017. Methane Bursts as a Trigger for Intermittent Lake-Forming Climates on Post-Noachian Mars. Nature Geoscience, 10(10): 737-740. https://doi.org/10.1038/ngeo3033
      Kochel, R., Piper, J. F., 1986. Morphology of Large Valleys on Hawaii-Evidence for Groundwater Sapping and Comparisons with Martian Valleys. Journal of Geophysical Research: Solid Earth, 91(B13): E175-E192.
      Laity, J. E., Malin, M. C., 1985. Sapping Processes and the Development of Theater-Headed Valley Networks on the Colorado Plateau. Geological Society of America Bulletin, 96(2): 203-217. https://doi.org/10.1130/0016-7606(1985)96203: spatdo>2.0.co;2 doi: 10.1130/0016-7606(1985)96203:spatdo>2.0.co;2
      Lapotre, M. G. A., Lamb, M. P., 2018. Substrate Controls on Valley Formation by Groundwater on Earth and Mars. Geology, 46(6): 531-534. https://doi.org/10.1130/g40007.1
      Li, X. B., Ji, J. L., Cao, Z. M., et al., 2021. The Climatic Significance of the Color of the Paleo-Neogene Fluvial and Lacustrine Sediments in the Northern Qaidam Basin. Earth Science, 46(9): 3278-3289 (in Chinese with English abstract).
      Liu, Y., Liu, Z. H., Wu, X., et al., 2021. Evolution of Water Environment on Mars. Acta Geologica Sinica, 95(9): 2725-2741 (in Chinese with English abstract).
      Liu, Y., Wu, X., Liu, Z. H., et al., 2021. Geological Evolution and Habitable Environment of Mars: Progress and Prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436. https://doi.org/10.19975/j.dqyxx.2021-025
      Lucchitta, B. K., 1980. Martian Outflow Channels Sculptured by Glaciers Ⅱ. In: Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 634-636.
      Lucchitta, B. K., 1983. Permafrost on Mars: Polygonally Fractured Ground. In: Permafrost: 4th International Conference Proceedings. National Academy Pess, Washington, D. C., 744-749.
      Luo, W., Cang, X. Z., Howard, A. D., 2017. New Martian Valley Network Volume Estimate Consistent with Ancient Ocean and Warm and Wet Climate. Nature Communications, 8: 15766. https://doi.org/10.1038/ncomms15766
      Luo, W., Howard, A. D., 2008. Computer Simulation of the Role of Groundwater Seepage in Forming Martian Valley Networks. Journal of Geophysical Research: Planets, 113(E5): E05002. https://doi.org/10.1029/2007je002981
      Luo, W., Stepinski, T. F., 2009. Computer-Generated Global Map of Valley Networks on Mars. Journal of Geophysical Research: Planets, 114(E11): E11010. https://doi.org/10.1029/2009je003357
      Marchant, D. R., Head, J. W., 2007. Antarctic Dry Valleys: Microclimate Zonation, Variable Geomorphic Processes, and Implications for Assessing Climate Change on Mars. Icarus, 192(1): 187-222. https://doi.org/10.1016/j.icarus.2007.06.018
      Matsubara, Y., Howard, A. D., Irwin, R. P., 2018. Constraints on the Noachian Paleoclimate of the Martian Highlands from Landscape Evolution Modeling. Journal of Geophysical Research: Planets, 123(11): 2958-2979. https://doi.org/10.1029/2018je005572
      McEwen, A. S., Ojha, L., Dundas, C. M., et al., 2011. Seasonal Flows on Warm Martian Slopes. Science, 333(6043): 740-743. https://doi.org/10.1126/science.1204816
      McKay, C. P., Davis, W. L., 1991. Duration of Liquid Water Habitats on Early Mars. Icarus, 90(2): 214-221. https://doi.org/10.1016/0019-1035(91)90102-Y
      Mellon, M. T., Feldman, W. C., Prettyman, T. H., 2004. The Presence and Stability of Ground Ice in the Southern Hemisphere of Mars. Icarus, 169(2): 324-340. https://doi.org/10.1016/j.icarus.2003.10.022
      Moore, J. M., Howard, A. D., 2005. Large Alluvial Fans on Mars. Journal of Geophysical Research: Planets, 110(E4): E04005. https://doi.org/10.1029/2004je002352
      Orofino, V., Alemanno, G., Di Achille, G., et al., 2018. Estimate of the Water Flow Duration in Large Martian Fluvial Systems. Planetary and Space Science, 163: 83-96. https://doi.org/10.1016/j.pss.2018.06.001
      Palumbo, A. M., Head, J. W., 2017. An Analysis of Seasonal Temperature Variation intheAntarctic Mcmurdo Dry Valleys: Implications for Early Martian Climate and Valley Network Formation. In: Lunar and Planetary Science Conference. Lunar and Planetary Institute, The Woodlands, 2192.
      Palumbo, A. M., Head, J. W., 2018. Early Mars Climate History: Characterizing a "Warm and Wet" Martian Climate with a 3-D Global Climate Model and Testing Geological Predictions. Geophysical Research Letters, 45(19): 10249-10258. https://doi.org/10.1029/2018gl079767
      Palumbo, A. M., Head, J. W., Wilson, L., 2020. Rainfall on Noachian Mars: Nature, Timing, and Influence on Geologic Processes and Climate History. Icarus, 347: 113782. https://doi.org/10.1016/j.icarus.2020.113782
      Pan, L., Carter, J., Quantin-Nataf, C., 2019. Hydrated Silica in Martian Alluvial Fans and Deltas. In: Ninth International Conference on Mars. The California Institute of Technology, Pasadena, 6239.
      Postawko, S. E., Kuhn, W. R., 1986. Effect of the Greenhouse Gases (CO2, H2O, SO2) on Martian Paleoclimate. Journal of Geophysical Research: Solid Earth, 91(B4): 431-438. https://doi.org/10.1029/jb091ib04p0d431
      Ramirez, R. M., Craddock, R. A., 2018. The Geological and Climatological Case for a Warmer and Wetter Early Mars. Nature Geoscience, 11(4): 230-237. https://doi.org/10.1038/s41561-018-0093-9
      Ramirez, R. M., Craddock, R. A., Usui, T., 2020. Climate Simulations of Early Mars with Estimated Precipitation, Runoff, and Erosion Rates. Journal of Geophysical Research: Planets, 125(3): e2019JE006160. https://doi.org/10.1029/2019je006160
      Ramirez, R. M., Kasting, J. F., 2017. Could Cirrus Clouds Have Warmed Early Mars? Icarus, 281: 248-261. https://doi.org/10.1016/j.icarus.2016.08.016
      Rosenberg, E. N., Palumbo, A. M., Cassanelli, J. P., et al., 2019. The Volume of Water Required to Carve the Martian Valley Networks: Improved Constraints Using Updated Methods. Icarus, 317: 379-387. https://doi.org/10.1016/j.icarus.2018.07.017
      Sagan, C., Toon, O. B., Gierasch, P. J., 1973. Climatic Change on Mars. Science, 181(4104): 1045-1049. https://doi.org/10.1126/science.181.4104.1045
      Schaefer, E. I., McEwen, A. S., Sutton, S. S., 2019. A Case Study of Recurring Slope Lineae (RSL) at Tivat Crater: Implications for RSL Origins. Icarus, 317: 621-648. https://doi.org/10.1016/j.icarus.2018.07.014
      Schumm, S. A., 1974. Structural Origin of Large Martian Channels. Icarus, 22(3): 371-384. https://doi.org/10.1016/0019-1035(74)90184-5
      Seybold, H. J., Kite, E., Kirchner, J. W., 2018. Branching Geometry of Valley Networks on Mars and Earth and Its Implications for Early Martian Climate. Science Advances, 4(6): eaar6692. https://doi.org/10.1126/sciadv.aar6692
      Shi, Y. T., Zhao, J. N., Xiao, L., et al., 2022. An Arid-Semiarid Climate during the Noachian-Hesperian Transition in the Huygens Region, Mars: Evidence from Morphological Studies of Valley Networks. Icarus, 373: 114789. https://doi.org/10.1016/j.icarus.2021.114789
      Steakley, K., Murphy, J., Kahre, M., et al., 2019. Testing the Impact Heating Hypothesis for Early Mars with a 3-D Global Climate Model. Icarus, 330: 169-188. https://doi.org/10.1016/j.icarus.2019.04.005
      Strahler, A. N., 1957. Quantitative Analysis of Watershed Geomorphology. Eos, Transactions American Geophysical Union, 38(6): 913-920. doi: 10.1029/TR038i006p00913
      Tanaka, K. L., Jr Skinner, J. A., Dohm, J. M., et al., 2014. Geologic Map of Mars. U. S. Geol. Surv. Sci. Invest., 3292.
      Toon, O. B., Pollack, J. B., Ward, W., et al., 1980. The Astronomical Theory of Climatic Change on Mars. Icarus, 44(3): 552-607. https://doi.org/10.1016/0019-1035(80)90130-X
      Urata, R. A., Toon, O. B., 2013. Simulations of the Martian Hydrologic Cycle with a General Circulation Model: Implications for the Ancient Martian Climate. Icarus, 226(1): 229-250. https://doi.org/10.1016/j.icarus.2013.05.014
      Vaz, D. A., Di Achille, G., Hynek, B. M., et al., 2020. Martian Fan Deposits: Insights on Depositional Processes and Origin from Mass Balance Survey. Earth and Planetary Science Letters, 533: 116049. https://doi.org/10.1016/j.epsl.2019.116049
      Villanueva, G., Villanueva, G., Mumma, M., et al., 2015. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs. Science, 348(6231): 218-221. doi: 10.1126/science.aaa3630
      Wang, J. A., Xiao, L., Reiss, D., et al., 2018. Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. Journal of Geophysical Research: Planets, 123(9): 2336-2364. https://doi.org/10.1029/2018je005719
      Williams, R. M. E., Phillips, R. J., 2001. Morphometric Measurements of Martian Valley Networks from Mars Orbiter Laser Altimeter (MOLA) Data. Journal of Geophysical Research: Planets, 106(E10): 23737-23751. https://doi.org/10.1029/2000je001409
      Wilson, S. A., Morgan, A. M., Howard, A. D., et al., 2021. The Global Distribution of Craters with Alluvial Fans and Deltas on Mars. Geophysical Research Letters, 48(4): e2020GL091653. doi: 10.1029/2020GL091653
      Wordsworth, R. D., Forget, F., Millour, E., et al., 2013. Global Modelling of the Early Martian Climate under a Denser CO2 Atmosphere: Water Cycle and Ice Evolution. Icarus, 222(1): 1-19. https://doi.org/10.1016/j.icarus.2012.09.036
      Wordsworth, R. D., Kalugina, Y., Lokshtanov, S., et al., 2017. Transient Reducing Greenhouse Warming on Early Mars. Geophysical Research Letters, 44(2): 665-671. https://doi.org/10.1002/2016gl071766
      Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., et al., 2015. Comparison of "Warm and Wet" and "Cold and Icy" Scenarios for Early Mars in a 3-D Climate Model. Journal of Geophysical Research: Planets, 120(6): 1201-1219. https://doi.org/10.1002/2015je004787
      Wordsworth, R. D., Knoll, A. H., Hurowitz, J., et al., 2021. A Coupled Model of Episodic Warming, Oxidation and Geochemical Transitions on Early Mars. Nature Geoscience, 14(3): 127-132. https://doi.org/10.1038/s41561-021-00701-8
      Xiao, L., 2021. Mars on Earth: A Study of the Qaidam Basin. World Scientific Publishing House, Singapore.
      Xiao, L., Wang, J., Dang, Y. N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164: 84-101. https://doi.org/10.1016/j.earscirev.2016.11.003
      Ye, B. L., Huang, J., Michalski, J., et al., 2019. Geomorphologic Characteristics of Polygonal Features on Chloride-Bearing Deposits on Mars: Implications for Martian Hydrology and Astrobiology. Journal of Earth Science, 30(5): 1049-1058. https://doi.org/10.1007/s12583-019-1212-2
      Zhang, L., Jin, M. G., Liu, Y. F., et al., 2021. Concentration Variation Characteristics of Atmospheric Greenhouse Gases at Waliguan and Shangdianzi in China. Earth Science, 46(8): 2984-2998 (in Chinese with English abstract).
      Zhao, J. N., Shi, Y. T., Zhang, M. J., et al., 2021. Advances in Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.09.009
      Zhao, J. N., Wang, J., Zhang, M. J., et al., 2021. Unique Curvilinear Ridges in the Qaidam Basin, NW China: Implications for Martian Fluvial Ridges. Geomorphology, 372: 107472. https://doi.org/10.1016/j.geomorph.2020.107472
      Zhao, J. N., Xiao, L., 2016. Achievements, Issues and Prospects in Study of Martian Paleolakes. Earth Science, 41(9): 1572-1582 (in Chinese with English abstract).
      Zhao, J. N., Xiao, L., Glotch, T. D., 2020. Paleolakes in the Northwest Hellas Region, Mars: Implications for the Regional Geologic History and Paleoclimate. Journal of Geophysical Research: Planets, 125(3): e2019JE006196. https://doi.org/10.1029/2019je006196
      芶盛, 岳宗玉, 邸凯昌, 等, 2017. 火星表面含水矿物探测进展. 遥感学报, 21(4): 531-548.
      李星波, 季军良, 曹展铭, 等, 2021. 柴达木盆地北缘古‒新近纪河湖相沉积物颜色的气候意义. 地球科学, 46(9): 3278-3289. doi: 10.3799/dqkx.2020.329
      刘洋, 刘正豪, 吴兴, 等, 2021. 火星的水环境演化. 地质学报, 95(9): 2725-2741. doi: 10.3969/j.issn.0001-5717.2021.09.007
      张林, 靳孟贵, 刘延锋, 等, 2021. 中国瓦里关和上甸子大气温室气体浓度变化特征. 地球科学, 46(8): 2984-2998. doi: 10.3799/dqkx.2020.267
      赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755-2768.
      赵健楠, 肖龙, 2016. 火星古湖泊研究的现状、问题与展望. 地球科学, 41(9): 1572-1582. doi: 10.3799/dqkx.2016.505
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  404
    • HTML全文浏览量:  548
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-14
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回