• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川灯影组白云石化流体多样化特征及白云岩差异性成因

    李文奇 刘汇川 李平平 倪智勇 王艺壬

    李文奇, 刘汇川, 李平平, 倪智勇, 王艺壬, 2023. 四川灯影组白云石化流体多样化特征及白云岩差异性成因. 地球科学, 48(9): 3360-3377. doi: 10.3799/dqkx.2022.126
    引用本文: 李文奇, 刘汇川, 李平平, 倪智勇, 王艺壬, 2023. 四川灯影组白云石化流体多样化特征及白云岩差异性成因. 地球科学, 48(9): 3360-3377. doi: 10.3799/dqkx.2022.126
    Li Wenqi, Liu Huichuan, Li Pingping, Ni Zhiyong, Wang Yiren, 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 48(9): 3360-3377. doi: 10.3799/dqkx.2022.126
    Citation: Li Wenqi, Liu Huichuan, Li Pingping, Ni Zhiyong, Wang Yiren, 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 48(9): 3360-3377. doi: 10.3799/dqkx.2022.126

    四川灯影组白云石化流体多样化特征及白云岩差异性成因

    doi: 10.3799/dqkx.2022.126
    基金项目: 

    国家自然科学基金项目 2462018YJRC030

    国家自然科学基金项目 2462020YXZZ020

    详细信息
      作者简介:

      李文奇(1994-),男,博士在读,从事岩石地球化学研究. ORCID:0000-0003-4824-7275. E-mail:lwqcup@163.com

      通讯作者:

      刘汇川,E-mail: lhc@cup.edu.cn

    • 中图分类号: P588.24

    Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China

    • 摘要: 灯影组白云岩是四川盆地超深层油气勘探的重点领域,但目前人们对该套白云岩成因争议仍较大,且缺乏系统研究.通过对四川盆地灯影组白云岩C-O-Sr同位素和稀土元素数据的系统分析来研究白云石化流体的化学性质和成因,进而约束白云岩的差异性成因机制.研究表明:(1)灯影组白云岩碳同位素值较均一,δ13C值基本分布在0‰~+5.0‰之间,而氧同位素值变化较大.近地表环境基质白云岩和早期白云石胶结物δ18O均大于-8.0‰,埋藏环境白云石胶结物δ18O均小于-8.0‰,而热液白云石化胶结物δ18O均小于-10.0‰.(2)基质白云岩和早期白云石胶结物具有与同期海水相似的87Sr/86Sr值(0.708~0.709),指示其继承于海水流体;而埋藏环境白云石胶结物87Sr/86Sr比值明显大于同期海水,指示其为地层流体和深部热液流体来源.(3)灯影组白云岩稀土元素均亏损轻稀土元素、富集重稀土元素.基质白云岩和早期白云石胶结物可见Ce负异常、未见Eu明显异常,说明白云石化流体来源于海水;埋藏环境白云石胶结物可见明显Eu正异常.不同沉积环境下白云石化流体化学性质和来源的不同,是四川盆地灯影组白云岩成因的控制因素.近地表环境下海水来源的白云石化流体,主要受新元古代震旦系灯影组“文石‒白云石海”环境下高频海平面波动的控制;而在埋藏环境中地层流体和深部热液来源的白云石化流体,则主要受后期构造作用控制.本研究可为认识白云岩成因、晚埃迪卡拉系海水化学条件及超深层油气勘探开发提供了有益参考.

       

    • 图  1  四川盆地灯影组岩相古地理格局

      赵文智等(2017)修改

      Fig.  1.  Lithofacies and paleogeographic map of the Dengying Formation in Sichuan basin

      图  2  四川盆地灯影组地层年龄格架

      Condon et al.(2005)Jiang et al.(2007)郝毅等(2017)修改

      Fig.  2.  Generalized stratigraphic column of the Dengying Formation in Sichuan basin

      图  3  四川盆地灯影组白云石共生次序

      Peng et al.(2018)Hu et al.(2020)修改

      Fig.  3.  Dolomite paragenetic sequence of the Dengying Formation in Sichuan basin

      图  4  四川盆地灯影组白云岩碳氧同位素交会图

      图中数据引自王国芝等(2014)冯明友等(2016)蒋裕强等(2016)邬铁等(2016)Peng et al.(2018)金民东等(2019)Wang et al.(2020)Zhou et al.(2020);前寒武海水数据来源于Fairchild and Spiro(1987)

      Fig.  4.  δ13C versus δ18O plots of the Dengying Formation dolomite in Sichuan basin

      图  5  四川盆地灯影组白云岩锶同位素值分布

      数据引自宋光永等(2009)张杰等(2014)Wang et al.(2020)

      Fig.  5.  Diagram showing 87Sr/86Sr for the Dengying Formation dolomite in Sichuan basin

      图  6  四川盆地灯影组白云岩PAAS标准化稀土元素

      REE标准化值引自Taylor and McLennan(1985). 图中数据引自邬铁等(2016)Peng et al.(2018)Wang et al.(2020)Zhou et al.(2020). 现代海水数据引自Alibo and Nozaki(1999);中大西洋洋中脊热液流体数据引自Douville et al.(2002)

      Fig.  6.  PASS-normalized REE patterns of the Dengying Formation dolomite in Sichuan basin

      图  7  四川盆地灯影组白云岩差异性成因模式

      Ding et al.(2019)Ning et al.(2020)Zhou et al.(2020)Zhang et al.(2018)修改

      Fig.  7.  Forming models of the Dengying Formation dolomite in Sichuan basin

      表  1  四川盆地灯影组白云岩差异性岩性及成因机理

      Table  1.   Summary of the lithologies and genesis mechanisms of the Dengying Formation in Sichuan basin

      成岩阶段 岩性划分 岩性 成岩流体 沉积环境 白云石化机理 白云岩成因
      准同生 基质白云岩 泥晶白云石 海水 近地表
      环境
      毛细管浓缩白云石化渗透回流白云石化微
      生物白云石化
      近地表白
      云石化
      粉‒细晶白云石
      藻泥晶白云石
      近地表环境白
      云石胶结物
      叶片状白云石胶结物
      负延性束状白云石胶结物
      正延性束状白云石胶结物 孔隙海水 - 原生沉淀
      正延性放射状
      白云石胶结物
      浅埋藏 埋藏环境胶结物 细晶白云石胶结物 地层流体 埋藏
      环境
      埋藏白云石化 构造作用
      中‒深
      埋藏
      中‒粗晶白云石胶结物
      马鞍状白云石胶结物 深部热液
      (岩浆)
      热液白云石化
      下载: 导出CSV
    • Algeo, T. J., Luo, G. M., Song, H. Y., et al., 2015. Reconstruction of Secular Variation in Seawater Sulfate Concentrations. Biogeosciences, 12(7): 2131-2151. https://doi.org/10.5194/bg-12-2131-2015
      Alibo, D. S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. https://doi.org/10.1016/S0016-7037(98)00279-8
      Alonso-Zarza, A. M., Bustamante, L., Huerta, P., et al., 2016. Chabazite and Dolomite Formation in a Dolocrete Profile: An Example of a Complex Alkaline Paragenesis in Lanzarote, Canary Islands. Sedimentary Geology, 337: 1-11. https://doi.org/10.1016/j.sedgeo.2016.02.018
      Baker, P. A., Kastner, M., 1981. Constraints on the Formation of Sedimentary Dolomite. Science, 213(4504): 214-216. https://doi.org/10.1126/science.213.4504.214
      Banerjee, A., 2016. Estimation of Dolomite Formation: Dolomite Precipitation and Dolomitization. Journal of the Geological Society of India, 87(5): 561-572. https://doi.org/10.1007/s12594-016-0430-9
      Bao, Z. D., Ji, H. C., Liang, T., et al., 2019. Primary Dolostones of the Meso-Neoproterozoic: Cases on Typical Platforms in China. Journal of Palaeogeography, 21(6): 869-884 (in Chinese with English abstract).
      Bau, M., 1991. Rare-Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium. Chemical Geology, 93(3-4): 219-230. https://doi.org/10.1016/0009-2541(91)90115-8
      Beckert, J., Vandeginste, V., John, C. M., 2015. Exploring the Geological Features and Processes that Control the Shape and Internal Fabrics of Late Diagenetic Dolomite Bodies (Lower Khuff Equivalent-Central Oman Mountains). Marine and Petroleum Geology, 68: 325-340. https://doi.org/10.1016/j.marpetgeo.2015.08.038
      Burns, S. J., McKenzie, J. A., Vasconcelos, C., 2002. Dolomite Formation and Biogeochemical Cycles in the Phanerozoic. Sedimentology, 47: 49-61. https://doi.org/10.1046/j.1365-3091.2000.00004.x
      Cai, W. K., Liu, J. H., Zhou, C. H., et al., 2021. Structure, Genesis and Resources Efficiency of Dolomite: New Insights and Remaining Enigmas. Chemical Geology, 573: 120191. https://doi.org/10.1016/j.chemgeo.2021.120191
      Chen, R. K., 1994. Application of Stable Oxygen and Carbon Isotope in the Research of Carbonate Disgenetic Environment. Acta Sedimentologica Sinica, 12(4): 11-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB404.001.htm
      Compton, J. S., 1988. Degree of Supersaturation and Precipitation of Organogenic Dolomite. Geology, 16(4): 318-321. https://doi.org/10.1130/0091-7613(1988)0160318: dosapo>2.3.co;2 doi: 10.1130/0091-7613(1988)0160318:dosapo>2.3.co;2
      Compston, W., Zhang, Z., Cooper, J., et al., 2008. Further SHRIMP Geochronology on the Early Cambrian of South China. American Journal of Science, 308(4): 399-420. https://doi.org/10.2475/04.2008.01
      Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98. https://doi.org/10.1126/science.1107765
      Cui, H., Grazhdankin, D. V., Xiao, S. H., et al., 2016. Redox-Dependent Distribution of Early Macro-Organisms: Evidence from the Terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 122-139. https://doi.org/10.1016/j.palaeo.2016.08.015
      Cui, H., Xiao, S. H., Cai, Y. P., et al., 2019. Sedimentology and Chemostratigraphy of the Terminal Ediacaran Dengying Formation at the Gaojiashan Section, South China. Geological Magazine, 156(11): 1924-1948. https://doi.org/10.1017/S0016756819000293
      Derry, L. A., Jacobsen, S. B., 1990. The Chemical Evolution of Precambrian Seawater: Evidence from REEs in Banded Iron Formations. Geochimica et Cosmochimica Acta, 54(11): 2965-2977. https://doi.org/10.1016/0016-7037(90)90114-Z
      Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2019. Cavity-Filling Dolomite Speleothems and Submarine Cements in the Ediacaran Dengying Microbialites, South China: Responses to High-Frequency Sea-Level Fluctuations in an 'Aragonite-Dolomite Sea'. Sedimentology, 66(6): 2511-2537. https://doi.org/10.1111/sed.12605
      Ding, Y., Li, Z. W., Liu, S. G., et al., 2021. Sequence Stratigraphy and Tectono-Depositional Evolution of a Late Ediacaran Epeiric Platform in the Upper Yangtze Area, South China. Precambrian Research, 354: 106077. https://doi.org/10.1016/j.precamres.2020.106077
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Douville, E., Charlou, J. L., Oelkers, E. H., et al., 2002. The Rainbow Vent Fluids (36°14'N, MAR): The Influence of Ultramafic Rocks and Phase Separation on Trace Metal Content in Mid-Atlantic Ridge Hydrothermal Fluids. Chemical Geology, 184(1-2): 37-48. https://doi.org/10.1016/S0009-2541(01)00351-5
      Du, Y., Fan, T. L., Machel, H. G., et al., 2018. Genesis of Upper Cambrian-Lower Ordovician Dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several Limitations from Petrology, Geochemistry, and Fluid Inclusions. Marine and Petroleum Geology, 91: 43-70. https://doi.org/10.1016/j.marpetgeo.2017.12.023
      Fairchild, I. J., Spiro, B., 1987. Petrological and Isotopic Implications of Some Contrasting Late Precambrian Carbonates, NE Spitsbergen. Sedimentology, 34(6): 973-989. https://doi.org/10.1111/j.1365-3091.1987.tb00587.x
      Feng, M. Y., Qiang, Z. T., Shen, P., et al., 2016. Evidences for Hydrothermal Dolomite of Sinian Dengying Formation in Gaoshiti-Moxi Area, Sichuan Basin. Acta Petrolei Sinica, 37(5): 587-598 (in Chinese with English abstract).
      Feng, M. Y., Wu, P. C., Qiang, Z. T., et al., 2017. Hydrothermal Dolomite Reservoir in the Precambrian Dengying Formation of Central Sichuan Basin, Southwestern China. Marine and Petroleum Geology, 82: 206-219. https://doi.org/10.1016/j.marpetgeo.2017.02.008
      Feng, M. Y., Wu, P. C., Yan, X. R., et al., 2017. Geochemistry and Significance of Shale in the Third Member of the Precambrian Dengying Formation, Ebian of Southwestern Sichuan. Bulletin of Mineralogy, Petrology and Geochemistry, 36(3): 493-501 (in Chinese with English abstract).
      Frimmel, H. E., 2009. Trace Element Distribution in Neoproterozoic Carbonates as Palaeoenvironmental Indicator. Chemical Geology, 258(3-4): 338-353. https://doi.org/10.1016/j.chemgeo.2008.10.033
      Han, Y. X., Li, Z., Han, D. L., et al., 2009. REE Characteristics of Matrix Dolomites and Its Origin of Lower Ordovidan in Eastern Tabei Area, Tarim Basin. Acta Petrologica Sinica, 25(10): 2405-2416 (in Chinese with English abstract).
      Hao, Y., Yang, X., Wang, Y. F., et al., 2017. Supergene Karstification in the Sinian Dengying Formation, Sichuan Basin. Sedimentary Geology and Tethyan Geology, 37(1): 48-54 (in Chinese with English abstract).
      Hardie, L. A., 2003. Secular Variations in Precambrian Seawater Chemistry and the Timing of Precambrian Aragonite Seas and Calcite Seas. Geology, 31(9): 785-788. https://doi.org/10.1130/g19657.1
      He, D. F., Li, D. S., Zhang, G. W., et al., 2011. Formation and Evolution of Multi-Cycle Superposed Sichuan Basin, China. Chinese Journal of Geology, 46(3): 589-606 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzkx201103001
      Hood, A. V. S., Wallace, M. W., 2018. Neoproterozoic Marine Carbonates and Their Paleoceanographic Significance. Global and Planetary Change, 160: 28-45. https://doi.org/10.1016/j.gloplacha.2017.11.006
      Hu, Y. J., Cai, C. F., Liu, D. W., et al., 2020. Formation, Diagenesis and Palaeoenvironmental Significance of Upper Ediacaran Fibrous Dolomite Cements. Sedimentology, 67(2): 1161-1187. https://doi.org/10.1111/sed.12683
      Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., et al., 2007. Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 261(1-2): 303-320. https://doi.org/10.1016/j.epsl.2007.07.009
      Jiang, Y. Q., Tao, Y. Z., Gu, Y. F., et al., 2016. Hydrothermal Dolomitization in Sinian Dengying Formation, Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 43(1): 51-60 (in Chinese with English abstract).
      Jin, M. D., Tan, X. C., Li, B. S., et al., 2019. Genesis of Dolomite in the Sinian Dengying Formation in the Sichuan Basin. Acta Sedimentologica Sinica, 37(3): 443-454 (in Chinese with English abstract).
      Jones, B., Luth, R. W., 2002. Dolostones from Grand Cayman, British West Indies. Journal of Sedimentary Research, 72(4): 559-569. https://doi.org/10.1306/122001720559
      Judith, C. V., 1997. Microbial Mediation of Modern Dolomite Precipitation and Diagenesis under Anoxic Conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67(3): 378-390. https://doi.org/10.1306/D4268577-2B26-11D7-8648000102C1865D
      Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409-430. https://doi.org/10.1016/0012-821X(93)90254-7
      Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1-4): 27-49. https://doi.org/10.1016/0301-9268(94)00070-8
      Last, W. M., Deckker, P. D., 1990. Modern and Holocene Carbonate Sedimentology of Two Saline Volcanic Maar Lakes, Southern Australia. Sedimentology, 37(6): 967-981. https://doi.org/10.1111/j.1365-3091.1990.tb01839.x
      Lei, H. Y., Zhu, L. F., 1992. Study of Origin of the Sinian Algal and Nonalgal Dolomitites in Sichuan Basin. Acta Sedimentologica Sinica, 10(2): 69-78 (in Chinese with English abstract).
      Li, D., Ling, H. F., Jiang, S. Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146(4): 465-484. https://doi.org/10.1017/s0016756809006268
      Li, W., Liu, J. J., Deng, S. H., et al., 2015. The Nature and Role of Late Sinian-Early Cambrian Tectonic Movement in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 36(5): 546-556, 563 (in Chinese with English abstract).
      Li, Y. Q., He, D. F., Wen, Z., 2013. Palaeogeography and Tectonic-Depositional Environment Evolution of the Late Sinian in Sichuan Basin and Adjacent Areas. Journal of Palaeogeography, 15(2): 231-245 (in Chinese with English abstract).
      Li, Y., He, D., Li, D., et al. 2020. Ediacaran (Sinian) Palaeogeographic Reconstruction of the Upper Yangtze Area, China, and Its Tectonic Implications. International Geology Review, 62: 1485-1509. doi: 10.1080/00206814.2019.1655670
      Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016
      Liu, S. G., Deng, B., Li, Z. W., et al., 2013. Geological Evolution of the Longmenshan Intracontinental Composite Orogen and the Eastern Margin of the Tibetan Plateau. Journal of Earth Science, 24(6): 874-890. https://doi.org/10.1007/s12583-013-0391-5
      Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multi-Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599 (in Chinese with English abstract).
      Machel, H. G., 2004. Concepts and Models of Dolomitization: A Critical Reappraisal. Geological Society, London, Special Publications, 235(1): 7-63. https://doi.org/10.1144/gsl.sp.2004.235.01.02 doi: 10.1144/GSL.SP.2004.235.01.02
      McKenzie, J. A., Vasconcelos, C., 2009. Dolomite Mountains and the Origin of the Dolomite Rock of Which They Mainly Consist: Historical Developments and New Perspectives. Sedimentology, 56(1): 205-219. https://doi.org/10.1111/j.1365-3091.2008.01027.x
      Meng, F. W., Ni, P., Schiffbauer, J. D., et al., 2011. Ediacaran Seawater Temperature: Evidence from Inclusions of Sinian Halite. Precambrian Research, 184(1-4): 63-69. https://doi.org/10.1016/j.precamres.2010.10.004
      Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3-4): 183-196. https://doi.org/10.1016/S0040-1951(00)00106-2
      Moffett, J. W., 1994. A Radiotracer Study of Cerium and Manganese Uptake onto Suspended Particles in Chesapeake Bay. Geochimica et Cosmochimica Acta, 58(2): 695-703. https://doi.org/10.1016/0016-7037(94)90499-5
      Narbonne, G. M., Xiao, S., Shields, G. A., et al., 2012. The Ediacaran Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., The Geologic Time Scale. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-59425-9.00018-4
      Ning, M., Lang, X. G., Huang, K. J., et al., 2020. Towards Understanding the Origin of Massive Dolostones. Earth and Planetary Science Letters, 545: 116403. https://doi.org/10.1016/j.epsl.2020.116403
      Peng, B., Li, Z. X., Li, G. R., et al., 2018. Multiple Dolomitization and Fluid Flow Events in the Precambrian Dengying Formation of Sichuan Basin, Southwestern China. Acta Geologica Sinica (English Edition), 92(1): 311-332. https://doi.org/10.1111/1755-6724.13507
      Porter, S. M., 2010. Calcite and Aragonite Seas and the de Novo Acquisition of Carbonate Skeletons. Geobiology, 8(4): 256-277. https://doi.org/10.1111/j.1472-4669.2010.00246.x
      Qian, Y. X., Feng, J. F., He, Z. L., et al., 2017. Applications of Petrography and Isotope Analysis of Micro-Drill Samples to the Study of Genesis of Grape-Like Dolomite of the Dengying Formation in the Sichuan Basin. Oil & Gas Geology, 38(4): 665-676. 10.11743/ogg20170404 doi: 10.11743/ogg20170404
      Qiang, S. T., Shen, P., Zhang, J., et al., 2017. The Evolution of Carbonate Sediment Diagenesis and Pore Fluid in Dengying Formation, Central Sichuan Basin. Acta Sedimentologica Sinica, 35(4): 797-811 (in Chinese with English abstract).
      Roberts, J. A., Kenward, P. A., Fowle, D. A., et al., 2013. Surface Chemistry Allows for Abiotic Precipitation of Dolomite at Low Temperature. Proceedings of the National Academy of Sciences of the United States of America, 110(36): 14540-14545. https://doi.org/10.1073/pnas.1305403110
      Sánchez-Román, M., Vasconcelos, C., Schmid, T., et al., 2008. Aerobic Microbial Dolomite at the Nanometer Scale: Implications for the Geologic Record. Geology, 36(11): 879-882. https://doi.org/10.1130/g25013a.1
      Shen, A. J., Hu, A. P., Cheng, T., et al., 2019. Laser Ablation in Situ U-Pb Dating and Its Application to Diagenesis-Porosity Evolution of Carbonate Reservoirs. Petroleum Exploration and Development, 46(6): 1062-1074 (in Chinese with English abstract).
      Shi, C. H., Cao, J., Selby, D., et al., 2020. Hydrocarbon Evolution of the Over-Mature Sinian Dengying Reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re-Os Geochronology. Marine and Petroleum Geology, 122: 104726. https://doi.org/10.1016/j.marpetgeo.2020.104726
      Song, G. Y., Liu, S. G., Huang, W. M., et al., 2009. Characteristics of Hydrothermal Dolomite of Upper Sinian Dengying Formation in the Dingshan-Lintanchang Structural Zone, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 706-715 (in Chinese with English abstract).
      Sverjensky, D. A., 1984. Prediction of Gibbs Free Energies of Calcite-Type Carbonates and the Equilibrium Distribution of Trace Elements between Carbonates and Aqueous Solutions. Geochimica et Cosmochimica Acta, 48(5): 1127-1134. https://doi.org/10.1016/0016-7037(84)90203-5
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
      Tucker, M. E., Wright, V. P., Dickson, A. D., 1990. Carbonate Sedimentology. Blackwell, Oxford.
      Vasconcelos, C., McKenzie, J. A., Bernasconi, S., et al., 1995. Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 377(6546): 220-222. https://doi.org/10.1038/377220a0
      Vasconcelos, C., McKenzie, J. A., Warthmann, R., et al., 2005. Calibration of the δ18O Paleothermometer for Dolomite Precipitated in Microbial Cultures and Natural Environments. Geology, 33(4): 317-320. https://doi.org/10.1130/g20992.1
      Wang, G. Z., Liu, S. G., Li, N., et al., 2014. Formation and Preservation Mechanism of High Quality Reservoir in Deep Burial Dolomite in the Dengying Formation on the Northern Margin of the Sichuan Basin. Acta Petrologica Sinica, 30(3): 667-678 (in Chinese with English abstract).
      Wang, L. C., Hu, G., Zhao, D. F., et al., 2022. Microbialites of Terminal Ediacaran in the Upper Yangtze Platform, China: From Mesoscopic to Nanoscale. Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110729. https://doi.org/10.1016/j.palaeo.2021.110729
      Wang, J. B., He, Z. L., Zhu, D. Y., et al., 2020. Petrological and Geochemical Characteristics of the Botryoidal Dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on Terminal Ediacaran "Dolomite Seas". Sedimentary Geology, 406: 105722. https://doi.org/10.1016/j.sedgeo.2020.105722
      Wang, S. F., Xiang, F., 1999. The Origin of the Dolostones from the Sinian Dengying Formation in the Ziyang District, Sichuan. Sedimentary Facies and Palaeogeography, 19(3): 21-29 (in Chinese with English abstract).
      Wu, T., Xie, S. Y., Zhang, D. W., et al., 2016. Geochemical Characteristics and Fluid Origin of the Dengying Formation Dolomites in Southern Sichuan Basin. Oil & Gas Geology, 37(5): 721-730 (in Chinese with English abstract).
      Xiao, S. H., Narbonne, G. M., Zhou, C. M., et al., 2016. Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes, 39(4): 540-555. https://doi.org/10.18814/epiiugs/2016/v39i4/103886
      Yao, T. T., Zhu, H. T., Yang, X. H., et al., 2020. Dolomite Origin of Shahejie Formation in Huanghekou Sag, Bohai Bay Basin. Earth Science, 45(10): 3567-3578 (in Chinese with English abstract).
      Zempolich, W. G., Wilkinson, B. H., Lohmann, K. C., 1988. Diagenesis of Late Proterozoic Carbonates: The Beck Spring Dolomite of Eastern California. Journal of Sedimentary Research, 58(4): 656-672. https://doi.org/10.1306/212f8e18-2b24-11d7-8648000102c1865d
      Zenger, D. H., 1972. Significance of Supratidal Dolomitization in the Geologic Record. Geological Society of America Bulletin, 83(1): 1-11. https://doi.org/10.1130/0016-7606(1972)83[1: sosdit]2.0.co;2 doi: 10.1130/0016-7606(1972)83[1:sosdit]2.0.co;2
      Zhai, Y. H., Guo, C. X., 1997. The Carbonate Diagenetic Model and Sequence of the Dengying Formation (Upper Sinian) on the Northern Margin of the Middle Yangtze Platform. Geology-Geochemistry, 25(2): 45-52 (in Chinese with English abstract).
      Zhang, J., Jones, B., Pan, L. Y., et al., 2014. Origin of Botryoidal Dolostone of the Sinian Dengying Formation in Sichuan Basin. Journal of Palaeogeography, 16(5): 715-725 (in Chinese with English abstract).
      Zhang, K. J., 1997. North and South China Collision along the Eastern and Southern North China Margins. Tectonophysics, 270(1-2): 145-156. https://doi.org/10.1016/S0040-1951(96)00208-9
      Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3-4): 236-249. https://doi.org/10.1016/j.earscirev.2012.06.001
      Zhang, K. J., Li, Q. H., Yan, L. L., et al., 2017. Geochemistry of Limestones Deposited in Various Plate Tectonic Settings. Earth-Science Reviews, 167: 27-46. https://doi.org/10.1016/j.earscirev.2017.02.003
      Zhang, S. L., Lü, Z. X., Wen, Y., et al., 2018. Origins and Geochemistry of Dolomites and Their Dissolution in the Middle Triassic Leikoupo Formation, Western Sichuan Basin, China. Minerals, 8(7): 289-303. https://doi.org/10.3390/min8070289
      Zhao, W. Z., Wei, G. Q., Yang, W., et al., 2017. Discovery of Wanyuan-Dazhou Intracratonic Rift and Its Exploration Significance in the Sichuan Basin, SW China. Petroleum Exploration and Development, 44(5): 659-669 (in Chinese with English abstract).
      Zhou, J. L., Li, G. R., Gao, Y. W. et al., 2015. Geochemistry and Origin of Dolomites of the Sinian Dengying Formation in South Sichuan Area. Journal of Northeast Petroleum University, 39(3): 67-75, 65 (in Chinese with English abstract).
      Zhou, Y., Yang, F. L., Ji, Y. L., et al., 2020. Characteristics and Controlling Factors of Dolomite Karst Reservoirs of the Sinian Dengying Formation, Central Sichuan Basin, Southwestern China. Precambrian Research, 343: 105708. https://doi.org/10.1016/j.precamres.2020.105708
      Zhu, R. X., Li, X. H., Hou, X. G., et al., 2009. U-Pb Geochronology of Ion Probe Zircon from Meishucun Section: Chronological Constraints on Precambrian-Cambrian Boundary. Science in China (Series D), 39(8): 1105-1111 (in Chinese).
      Zi, J. P., Jia, D., Wei, G. Q., et al., 2017. LA-ICP-MS U-Pb Zircon Ages of Volcaniclastic Beds of the Third Member of the Sinian(Ediacaran) Dengying Formation in Leshan, Sichuan, and a Discussion on the Rift Evolution in the Basin. Geological Review, 63(4): 1040-1049 (in Chinese with English abstract).
      鲍志东, 季汉成, 梁婷, 等, 2019. 中新元古界原生白云岩: 以中国典型台地区为例. 古地理学报, 21(6): 869-884. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201906001.htm
      陈荣坤, 1994. 稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用. 沉积学报, 12(4): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB404.001.htm
      冯明友, 强子同, 沈平, 等, 2016. 四川盆地高石梯‒磨溪地区震旦系灯影组热液白云岩证据. 石油学报, 37(5): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605003.htm
      冯明友, 伍鹏程, 鄢晓荣, 等, 2017. 四川峨边震旦系灯影组三段泥页岩地球化学特征及地质意义. 矿物岩石地球化学通报, 36(3): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201703015.htm
      韩银学, 李忠, 韩登林, 等, 2009. 塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因. 岩石学报, 25(10): 2405-2416. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910010.htm
      郝毅, 杨迅, 王宇峰, 等, 2017. 四川盆地震旦系灯影组表生岩溶作用研究. 沉积与特提斯地质, 37(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201701007.htm
      何登发, 李德生, 张国伟, 等, 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589-606. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htm
      蒋裕强, 陶艳忠, 谷一凡, 等, 2016. 四川盆地高石梯‒磨溪地区灯影组热液白云石化作用. 石油勘探与开发, 43(1): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201601007.htm
      金民东, 谭秀成, 李毕松, 等, 2019. 四川盆地震旦系灯影组白云岩成因. 沉积学报, 37(3): 443-454. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903001.htm
      雷怀彦, 朱莲芳, 1992. 四川盆地震旦系白云岩成因研究. 沉积学报, 10(2): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903001.htm
      李伟, 刘静江, 邓胜徽, 等, 2015. 四川盆地及邻区震旦纪末-寒武纪早期构造运动性质与作用. 石油学报, 36(5): 546-556, 563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htm
      李英强, 何登发, 文竹, 2013. 四川盆地及邻区晚震旦世古地理与构造‒沉积环境演化. 古地理学报, 15(2): 231-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302009.htm
      刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026
      强深涛, 沈平, 张健, 等, 2017. 四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化. 沉积学报, 35(4): 797-811. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201704014.htm
      沈安江, 胡安平, 程婷, 等, 2019. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩‒孔隙演化中的应用. 石油勘探与开发, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm
      宋光永, 刘树根, 黄文明, 等, 2009. 川东南丁山‒林滩场构造灯影组热液白云岩特征. 成都理工大学学报(自然科学版), 36(6): 706-715. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200906020.htm
      王国芝, 刘树根, 李娜, 等, 2014. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制. 岩石学报, 30(3): 667-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403006.htm
      王士峰, 向芳, 1999. 资阳地区震旦系灯影组白云岩成因研究. 岩相古地理, 19(3): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD903.002.htm
      邬铁, 谢淑云, 张殿伟, 等, 2016. 川南地区灯影组白云岩地球化学特征及流体来源. 石油与天然气地质, 37(5): 721-730. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605013.htm
      姚婷婷, 朱红涛, 杨香华, 等, 2020. 渤海湾盆地黄河口凹陷沙河街组白云岩成因机理. 地球科学, 45(10): 3567-3578. doi: 10.3799/dqkx.2020.227
      翟永红, 郭成贤, 1997. 中扬子台地北缘灯影组碳酸盐岩成岩作用序列及成岩模式. 地质地球化学, 25(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199702007.htm
      张杰, Jones, B., 潘立银, 等, 2014. 四川盆地震旦系灯影组葡萄状白云岩成因. 古地理学报, 16(5): 715-725. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201506004.htm
      赵文智, 魏国齐, 杨威, 等, 2017. 四川盆地万源‒达州克拉通内裂陷的发现及勘探意义. 石油勘探与开发, 44(5): 659-669. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705002.htm
      周吉羚, 李国蓉, 高鱼伟, 等, 2015. 川南地区震旦系灯影组白云岩地球化学特征及形成机制. 东北石油大学学报, 39(3): 67-75, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201503010.htm
      朱日祥, 李献华, 侯先光, 等, 2009. 梅树村剖面离子探针锆石U-Pb年代学: 对前寒武纪‒寒武纪界线的年代制约. 中国科学(D辑), 39(8): 1105-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200908009.htm
      资金平, 贾东, 魏国齐, 等, 2017. 四川乐山震旦系灯影组火山碎屑岩锆石LA-ICP-MSU-Pb定年及盆地裂陷演化讨论. 地质论评, 63(4): 1040-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201704017.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  603
    • HTML全文浏览量:  770
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-07
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回