• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    赣南会昌辉石闪长岩中磷灰石和锆石的年代学、成因矿物学及铀成矿指示意义

    曾认宇 潘家永 苏惠 甘德斌 钟福军 杜后发 严杰 张辰光

    曾认宇, 潘家永, 苏惠, 甘德斌, 钟福军, 杜后发, 严杰, 张辰光, 2023. 赣南会昌辉石闪长岩中磷灰石和锆石的年代学、成因矿物学及铀成矿指示意义. 地球科学, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127
    引用本文: 曾认宇, 潘家永, 苏惠, 甘德斌, 钟福军, 杜后发, 严杰, 张辰光, 2023. 赣南会昌辉石闪长岩中磷灰石和锆石的年代学、成因矿物学及铀成矿指示意义. 地球科学, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127
    Zeng Renyu, Pan Jiayong, Su Hui, Gan Debin, Zhong Fujun, Du Houfa, Yan Jie, Zhang Chenguang, 2023. Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization. Earth Science, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127
    Citation: Zeng Renyu, Pan Jiayong, Su Hui, Gan Debin, Zhong Fujun, Du Houfa, Yan Jie, Zhang Chenguang, 2023. Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization. Earth Science, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127

    赣南会昌辉石闪长岩中磷灰石和锆石的年代学、成因矿物学及铀成矿指示意义

    doi: 10.3799/dqkx.2022.127
    基金项目: 

    国家自然科学基金项目 41902075

    国家自然科学基金项目 42030809

    国家自然科学基金项目 42002095

    国家自然科学基金项目 42162013

    江西省自然科学基金资助项目 20232BAB213061

    核资源与环境国家重点实验室开放基金项目 2020NRE13

    国家留学基金委访问学者项目 202008360018

    详细信息
      作者简介:

      曾认宇(1989-),男,博士,讲师,主要从事岩浆岩及相关矿床的研究.ORCID:0000-0002-3796-1054,E-mail:zengrenyu@126.com

    • 中图分类号: P597;P611

    Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization

    • 摘要: 华南中生代幔源岩浆的时空分布与铀成矿具有密切的联系.然而,解释幔源岩浆中锆石的成因和来源,厘清幔源岩浆的侵位年龄,一直是相关研究的重点和难点.以赣南会昌地区出露的一处幔源辉石闪长岩为研究对象,对其开展了锆石和磷灰石的矿相学、矿物地球化学和年代学系统研究.会昌辉石闪长岩的SiO2在55.74%~57.71%之间,富集LREE和LILE,亏损HREE和HFSE.磷灰石属于氟磷灰石,显示了115.0±4.9 Ma的交点年龄和114.7±2.3 Ma的加权平均年龄,代表了会昌辉石闪长岩的侵位年龄;锆石的206Pb/238U年龄介于233~271 Ma,εHft)在-3.0~-1.4之间,为来源于深部Ⅰ型花岗岩的捕获锆石.结合前人在区域上的研究,华南板块在印支期主要处于挤压环境,形成了大量的S型和Ⅰ型花岗岩;到了白垩纪,华南板块整体处于伸展环境,存在多期次的幔源岩浆活动.而在这种伸展环境中,天水和幔源流体带来了充足的O2和CO2等矿化剂,这为浸取矿源层中的U元素,进而形成铀矿提供了重要的条件.

       

    • 图  1  赣南会昌地区地质简图(修改自王洪作等,2018

      1. 花岗岩;2. 橄榄玄粗质火山岩;3. 辉石闪长岩;4. 晚白垩世赣州组红色碎屑沉积岩;5. 震旦系‒寒武系;6. 断层;7. 铀矿床;8. 采样点

      Fig.  1.  Simplified geological map of Huichang area in southern Jiangxi Province (modified from Wang et al., 2018)

      图  2  会昌辉石闪长岩野外、镜下及背散射照片

      Amp. 角闪石;Px. 辉石;Pl. 斜长石;Ap. 磷灰石;Zo. 黝帘石

      Fig.  2.  Representative field photographs, microphotographs and back scattered electron images of the Huichang pyroxene diorite

      图  3  SiO2-(Na2O+K2O)图解(a;底图据Middlemost,1994);(b)SiO2-K2O图解(b;底图据Rickwood,1989);(c)K2O-Na2O图解(c;底图据Turner et al.,1996);Ta/Yb-Ce/Yb图解(d;底图据Müller et al.,1992

      会昌橄榄玄粗质火山岩数据引用自章邦桐等(2008)贺振宇等(2008)

      Fig.  3.  SiO2-(Na2O+K2O) diagram (a; after Middlemost, 1994); SiO2-K2O diagram (b; after Rickwood, 1989); K2O-Na2O diagram (c; after Turner et al., 1996); Ta/Yb-Ce/Yb diagram (d; after Müller et al., 1992)

      图  4  稀土元素球粒陨石标准化配分模式(a),微量元素原始地幔标准化图(b)

      会昌橄榄玄粗质火山岩数据引用自章邦桐等(2008)贺振宇等(2008);球粒陨石和原始地幔的标准化取自Sun and McDonough(1989)

      Fig.  4.  Chondrite-normalized REE patterns (a), primitive mantle-normalized trace-element patterns (b)

      图  5  磷灰石和锆石的透射光、CL和BSE图像

      Fig.  5.  Transmitted light images, CL images and BSE images of apatite and zircons

      图  6  磷灰石的卤素元素F-Cl-OH三角图解(a)和锆石稀土元素配分图(b)

      球粒陨石标准化取自Sun and McDonough(1989)

      Fig.  6.  Ternary F-Cl-OH diagram for the apatites (a); chondrite-normalized REE patterns for zircons (b)

      图  7  磷灰石的Tera-Wasserburg谐和图(a);磷灰石的普通铅校正加权平均206Pb/238U年龄图(b);锆石U-Pb谐和图(c);锆石年龄直方图(d)

      Fig.  7.  Tera-Wasserburg concordia diagrams of apatite (a); weighted mean diagrams of common-Pb corrected 238U/206Pb ages of apatite (b); concordia diagrams of the zircon U-Pb dating (c); age histogram diagram of zircon (d)

      图  8  锆石Hf同位素演化图

      华夏基底数据引自Yu et al.(2010);富城岩体和珠兰埠岩体数据引自任海涛等(2013)高彭(2016)王洪作等(2018);三条虚线代表的地壳演化趋势线引自于津海等(2007)

      Fig.  8.  Zircon εHf(t)-age(Ma) diagrams

      图  9  锆石原岩类型判别图(底图据Belousova et al.,2002

      Fig.  9.  Source magma discrimination diagrams of zircon (after Belousova et al., 2002)

      图  10  花岗岩成因类型锆石微量元素判别图

      图a据Burnham and Berry(2017);图b、c据Wang et al.(2012)

      Fig.  10.  Zircon trace element discrimination diagram of granitoids genetic types

      图  11  Th/Yb-Nb/Yb图(a;底图据Pearce and Peate,1995);Rb/Sr-Ba/Rb图解(b;虚线数值据Furman and Graham,1999);εNd(t)-La/Nb图解(c;底图据Meng et al.,2012);(Hf/Sm)N-(Ta/La)N图解(d;底图据La Flèche et al., 1998

      图a、b、d中会昌橄榄玄粗质火山岩数据引用自章邦桐等(2008)贺振宇等(2008);图c中会昌橄榄玄粗质火山岩数据引用自Chen et al.(2008)Meng et al.(2012)

      Fig.  11.  Th/Yb-Nb/Yb diagram (a; after Pearce and Peate, 1995); Rb/Sr-Ba/Rb diagram (b; the values of dashed line from Furman and Graham, 1999); εNd(t)-La/Nb diagram (c; after Meng et al., 2012); (Hf/Sm)N-(Ta/La)N diagram (d; after La Flèche et al., 1998)

      图  12  会昌辉石闪长岩和会昌橄榄玄粗质火山岩的Harker图解

      Fig.  12.  Harker variation diagrams for the Huichang pyroxene diorite and Huichang shoshonitic volcanics

      图  13  Zr/Y-Zr图解(a;底图据Pearce and Norry, 1979)和Th/Hf-Ta/Hf图解(b;底图据汪云亮等,2001

      会昌橄榄玄粗质火山岩数据引用自章邦桐等(2008)贺振宇等(2008)

      Fig.  13.  Zr/Y-Zr diagram (a; after Pearce and Norry, 1979) and Th/Hf-Ta/Hf diagram (b; after Wang et al., 2001)

      表  1  会昌辉石闪长岩的主量(%)、微量元素(10-6)组成

      Table  1.   Major element (%) and trace element (10-6) compositions of the Huichang pyroxene diorite

      样品号 ZY-04-1 ZY-04-2 ZY-04-3 ZY-04-5 ZY-04-6
      SiO2 57.03 57.71 56.98 56.36 55.74
      TiO2 0.97 0.95 0.96 0.94 0.96
      Al2O3 17.04 16.82 16.63 16.84 16.66
      Fe2O3 7.76 7.43 8.12 8.43 8.23
      MnO 0.28 0.24 0.28 0.31 0.29
      MgO 3.77 3.65 4.15 3.70 4.02
      CaO 5.87 5.48 5.10 4.62 5.42
      K2O 2.59 2.76 2.84 2.82 2.68
      Na2O 2.42 3.09 2.96 3.24 2.87
      P2O5 0.27 0.27 0.27 0.28 0.27
      LOI 1.67 1.42 1.73 3.00 2.38
      V 255 222 223 207 225
      Cr 10 15 22 10 19
      Ni 2.2 2.4 2.8 2.7 3.2
      Ga 21.6 22.0 20.8 22.6 20.9
      Rb 223 200 194 210 177
      Sr 309 393 344 228 349
      Y 26.2 24.4 26.1 24.8 25.2
      Zr 183 176 179 167 175
      Nb 10.6 11.2 11.2 11.1 10.8
      Sn 2.3 1.8 1.5 2.1 1.5
      Cs 20.70 18.65 24.00 18.15 18.55
      Ba 234 463 384 286 455
      Hf 4.6 4.5 4.6 4.3 4.5
      Ta 0.53 0.57 0.57 0.55 0.55
      W 1.5 1.1 1.8 2.0 1.8
      Th 7.28 7.09 7.43 6.81 7.13
      U 1.12 2.01 1.24 1.74 1.65
      La 33.2 31.8 34.1 29.2 32.2
      Ce 65.7 63.3 68.6 59.5 65.1
      Pr 7.72 7.51 8.05 7.02 7.65
      Nd 30.4 29.8 31.6 27.1 30.1
      Sm 6.11 5.98 6.38 5.36 6.00
      Eu 1.57 1.53 1.56 1.35 1.58
      Gd 5.02 4.61 4.79 4.11 4.57
      Tb 0.84 0.82 0.85 0.74 0.80
      Dy 4.77 4.60 4.81 4.30 4.69
      Ho 0.98 0.92 0.98 0.90 0.94
      Er 2.76 2.65 2.74 2.64 2.78
      Tm 0.41 0.38 0.40 0.39 0.40
      Yb 2.57 2.49 2.61 2.53 2.51
      Lu 0.39 0.40 0.42 0.40 0.40
      Pb 14.5 15.6 25.1 16.3 26.8
      ΣREE 162.44 156.79 167.89 145.54 159.72
      LaN/YbN 9.27 9.16 9.37 8.28 9.20
      δEu 0.87 0.89 0.86 0.88 0.92
      δCe 1.01 1.00 1.02 1.02 1.02
      Mg# 49.28 49.56 50.55 46.75 49.42
      注:Mg#=molar Mg/(Mg+Fe)×100.
      下载: 导出CSV

      表  2  会昌辉石闪长岩中磷灰石的LA⁃ICP⁃MS U⁃Pb同位素测试结果

      Table  2.   In-situ LA-ICP-MS U-Pb dating results for the apatite from the Huichang pyroxene diorite

      测点 Th U Th/U 207Pb/235U 206Pb/238U 207Pb/206Pb
      (10-6 Ratio 2σ Ratio 2σ Ratio 2σ
      1 1 2 0.42 23.242 40 1.529 31 0.210 48 0.009 62 0.800 88 0.049 62
      9 8 114 0.07 9.361 12 0.397 29 0.096 41 0.003 88 0.704 24 0.012 10
      11 48 31 1.54 3.372 13 0.185 74 0.045 94 0.002 03 0.532 39 0.022 67
      15 2 1 1.19 68.458 88 3.580 29 0.619 57 0.024 07 0.801 39 0.036 45
      17 1 104 0.01 1.174 42 0.051 83 0.026 93 0.000 89 0.316 28 0.012 02
      19 6 95 0.06 7.979 06 0.314 72 0.084 80 0.003 16 0.682 44 0.011 50
      27 7 40 0.18 16.168 81 0.940 69 0.151 95 0.008 05 0.771 75 0.024 15
      30 3 58 0.05 9.289 29 0.412 72 0.094 48 0.003 95 0.713 09 0.013 83
      34 1 59 0.02 11.767 73 0.443 46 0.119 26 0.004 11 0.715 67 0.014 26
      35 6 71 0.09 8.636 66 0.598 55 0.092 99 0.005 84 0.673 61 0.025 78
      37 24 32 0.76 8.693 60 0.421 41 0.090 35 0.003 75 0.697 85 0.022 76
      38 12 42 0.30 3.832 26 0.181 86 0.050 12 0.001 79 0.554 54 0.022 55
      40 1 48 0.02 14.462 43 1.029 76 0.138 11 0.009 26 0.759 46 0.023 57
      41 5 53 0.10 5.383 14 0.203 84 0.063 20 0.002 14 0.617 80 0.013 53
      下载: 导出CSV

      表  3  会昌辉石闪长岩中锆石的LA⁃ICP⁃MS U⁃Pb同位素测试结果

      Table  3.   In-situ LA-ICP-MS U-Pb dating results for the zircon from the Huichang pyroxene diorite

      Analysis Pb Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      (10-6 Ratio 1σ Ratio 1σ Ratio 1σ (Ma) 1σ (Ma) 1σ (Ma) 1σ
      02 24 393 380 1.03 0.054 14 0.002 59 0.275 53 0.012 70 0.037 17 0.000 69 376 107 247 10 235 4
      03 21 307 356 0.86 0.052 51 0.002 26 0.273 11 0.011 74 0.037 41 0.000 61 309 131 245 9 237 4
      04 37 606 554 1.09 0.056 99 0.002 51 0.297 97 0.012 59 0.037 95 0.000 60 500 98 265 10 240 4
      05 25 492 317 1.55 0.050 91 0.002 53 0.277 76 0.015 24 0.038 92 0.000 69 235 115 249 12 246 4
      07 25 392 410 0.96 0.050 06 0.002 01 0.263 61 0.010 99 0.038 41 0.000 81 198 93 238 9 243 5
      08 72 1 579 894 1.77 0.055 29 0.001 73 0.283 41 0.008 87 0.036 99 0.000 55 433 73 253 7 234 3
      09 15 255 237 1.08 0.052 78 0.002 87 0.284 66 0.016 52 0.039 15 0.000 97 320 124 254 13 248 6
      10 15 221 246 0.90 0.050 00 0.002 43 0.265 85 0.013 38 0.038 52 0.000 68 195 115 239 11 244 4
      11 9 138 132 1.05 0.049 07 0.003 66 0.269 57 0.020 02 0.040 03 0.000 87 150 167 242 16 253 5
      12 24 408 374 1.09 0.051 80 0.002 32 0.278 39 0.012 19 0.038 78 0.000 57 276 102 249 10 245 4
      15 40 859 564 1.52 0.054 26 0.002 14 0.277 38 0.011 02 0.037 04 0.000 62 389 89 249 9 234 4
      16 17 285 265 1.08 0.052 10 0.002 70 0.276 26 0.013 74 0.039 28 0.000 75 300 149 248 11 248 5
      17 24 439 329 1.33 0.056 25 0.002 46 0.312 26 0.013 75 0.040 35 0.000 72 461 103 276 11 255 4
      18 31 584 437 1.34 0.047 23 0.002 13 0.261 79 0.011 77 0.040 44 0.000 67 61 104 236 9 256 4
      20 19 293 302 0.97 0.060 02 0.002 89 0.325 61 0.017 14 0.039 21 0.000 77 606 104 286 13 248 5
      21 20 253 320 0.79 0.048 40 0.002 12 0.287 21 0.013 26 0.042 90 0.000 79 120 104 256 10 271 5
      23 30 507 465 1.09 0.052 15 0.002 18 0.283 50 0.011 57 0.039 66 0.000 63 300 94 253 9 251 4
      24 28 563 395 1.43 0.056 07 0.002 20 0.304 47 0.012 78 0.039 37 0.000 80 454 87 270 10 249 5
      25 24 366 350 1.05 0.054 81 0.002 33 0.305 70 0.013 54 0.040 37 0.000 71 406 96 271 11 255 4
      26 15 246 215 1.14 0.053 39 0.003 22 0.286 38 0.016 94 0.039 34 0.000 67 346 132 256 13 249 4
      27 46 941 636 1.48 0.050 20 0.001 84 0.265 55 0.010 58 0.038 29 0.000 67 211 85 239 8 242 4
      29 27 445 414 1.08 0.059 66 0.002 26 0.319 92 0.012 26 0.038 79 0.000 65 591 83 282 9 245 4
      30 21 356 341 1.04 0.050 01 0.002 64 0.257 09 0.013 47 0.037 42 0.000 79 195 122 232 11 237 5
      31 34 717 478 1.50 0.049 95 0.002 30 0.255 68 0.012 15 0.036 84 0.000 60 191 107 231 10 233 4
      下载: 导出CSV

      表  4  会昌辉石闪长岩的Hf同位素组成

      Table  4.   Zircon Hf isotopic data of the Huichang pyroxene diorite

      测点 T(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ εHf(t) 1σ TDM1(Ma) TDM2(Ma)
      5 246 0.033 871 0.001 080 0.282 573 0.000 013 ‒2.21 0.45 963 1 386
      7 242 0.026 487 0.000 906 0.282 575 0.000 013 ‒2.20 0.45 956 1 381
      8 234 0.036 998 0.001 158 0.282 593 0.000 014 ‒1.77 0.49 937 1 348
      9 248 0.023 490 0.000 828 0.282 589 0.000 014 ‒1.57 0.50 935 1 347
      16 248 0.027 699 0.000 958 0.282 562 0.000 013 ‒2.53 0.45 975 1 407
      18 256 0.028 551 0.000 997 0.282 547 0.000 012 ‒2.91 0.41 998 1 437
      20 248 0.019 453 0.000 695 0.282 593 0.000 015 ‒1.38 0.52 925 1 334
      24 249 0.026 877 0.000 932 0.282 574 0.000 011 ‒2.08 0.40 958 1 380
      29 245 0.023 343 0.000 808 0.282 572 0.000 014 ‒2.23 0.50 958 1 386
      31 233 0.027 311 0.000 885 0.282 558 0.000 014 ‒2.99 0.50 979 1 424
      下载: 导出CSV
    • Bell, E. A., Boehnke, P., Hopkins-Wielicki, M. D., et al., 2015. Distinguishing Primary and Secondary Inclusion Assemblages in Jack Hills Zircons. Lithos, 234-235: 15-26. https://doi.org/10.1016/j.lithos.2015.07.014
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Belousova, E. A., Jiménez, J. M. G., Graham, I., et al., 2015. The Enigma of Crustal Zircons in Upper-Mantle Rocks: Clues from the Tumut Ophiolite, Southeast Australia. Geology, 43(2): 119-122. https://doi.org/10.1130/g36231.1
      Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010
      Burnham, A. D., Berry, A. J., 2017. Formation of Hadean Granites by Melting of Igneous Crust. Nature Geoscience, 10(6): 457-461. https://doi.org/10.1038/ngeo2942
      Cao, H. J., Huang, G. L., Xu, L. L., et al., 2013. The Ar-Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton. Acta Geologica Sinica, 87(7): 957-966 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.07.005
      Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? : Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1-2): 83-92. https://doi.org/10.1016/j.lithos.2008.06.009
      Chen, H., Hu, R. Z., Bi, X. W., et al., 2012. Calcite Sm-Nd Isochron Age and Its Geological Significance of the 6722 Uranium Ore Deposit, Southern Jiangxi Province, China. Acta Mineralogica Sinica, 32(1): 52-59 (in Chinese with English abstract).
      Cochrane, R., Spikings, R. A., Chew, D., et al., 2014. High Temperature (> 350 ℃) Thermochronology and Mechanisms of Pb Loss in Apatite. Geochimica et Cosmochimica Acta, 127: 39-56. https://doi.org/10.1016/j.gca.2013.11.028
      Deng, P., Ren, J. S., Ling, H. F., et al., 2012. SHRIMP Zircon U-Pb Ages and Tectonic Implications for Indosinian Granitoids of Southern Zhuguangshan Granitic Composite, South China. Chinese Science Bulletin, 57(13): 1542-1552. https://doi.org/10.1007/s11434-011-4951-8
      Furman, T., Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Developments in Geotectonics, 24: 237-262. https://doi.org/10.1016/s0024-4937(99)00031-6.
      Gao, P., 2016. A Geochemical Study of Mesozoic Granites from the Nanling Range in South China (Dissertation). University of Science and Technoiogy of China, Hefei (in Chinese with English abstract).
      Harlov, D. E., 2015. Apatite: A Fingerprint for Metasomatic Processes. Elements, 11(3): 171-176. https://doi.org/10.2113/gselements.11.3.171
      He, Z. Y., Xu, X. S., Wang, X. L., et al., 2008. Geochronology and Geochemistry of Shoshonitic Volcanics in Southern Jiangxi Province. Acta Petrologica Sinica, 24(11): 2524-2536 (in Chinese with English abstract).
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hu, R. Z., Bi, X. W., Su, W. C., et al., 2004. The Relationship between Uranium Metallogenesis and Crustal Extension during the Cretaceous—Tertiary in South China. Earth Science Frontiers, 11(1): 153-160 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2004.01.012
      Hughes, J. M., Rakovan, J., 2002. The Crystal Structure of Apatite, Ca5(PO4)3(F, OH, Cl). Reviews in Mineralogy and Geochemistry, 48(1): 1-12. https://doi.org/10.2138/rmg.2002.48.1
      Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5
      La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/S0009-2541(98)00002-3
      Li, S. Z., Zang, Y. B., Wang, P. C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction. Earth Science Frontiers, 24(4): 213-225 (in Chinese with English abstract).
      Li, W. R., Costa, F., 2020. A Thermodynamic Model for F-Cl-OH Partitioning between Silicate Melts and Apatite Including Non-Ideal Mixing with Application to Constraining Melt Volatile Budgets. Geochimica et Cosmochimica Acta, 269: 203-222. https://doi.org/10.1016/j.gca.2019.10.035
      Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, Se China. Geochimica, 26(2): 14-31 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1997.02.004
      Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. https://doi.org/10.1007/s11434-007-0259-0
      Li, Z., Chen, B., 2014. Geochronology and Geochemistry of the Paleoproterozoic Meta-Basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 255: 653-667. https://doi.org/10.1016/j.precamres.2014.07.003
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      Liang, X. Q., Li, X. H., Qiu, Y. X., et al., 2005. Indosinian Collisional Orogeny: Evidence from Structural and Sedimentary Geology in Shiwandashan Basin, South China. Geotectonica et Metallogenia, 29(1): 99-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2005.01.014
      Ling, H. F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract).
      Ludwig, K. R., 2003. Isoplot/Ex, Version 3: A Geochronological Toolkit for Microsoft Excel. Geochronology Center Berkeley, Berkeley.
      Luo, J. C., Hu, R. Z., Fayek, M., et al., 2015. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China. Ore Geology Reviews, 65: 968-978. https://doi.org/10.1016/j.oregeorev.2014.06.016
      Mao, J. R., Takahashi, Y., Kee, W. S., et al., 2011. Characteristics and Geodynamic Evolution of Indosinian Magmatism in South China: A Case Study of the Guikeng Pluton. Lithos, 127(3-4): 535-551. https://doi.org/10.1016/j.lithos.2011.09.011
      Meng, L. F., Li, Z. X., Chen, H. L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133: 127-140. https://doi.org/10.1016/j.lithos.2011.11.022
      Menzies, M. A., 1989. Cratonic, Circumcratonic and Oceanic Mantle Domains Beneath the Western United States. Journal of Geophysical Research: Solid Earth, 94(B6): 7899-7915. https://doi.org/10.1029/JB094iB06p07899
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Min, M. Z., Luo, X. Z., Du, G. S., et al., 1999. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China. Ore Geology Reviews, 14(2): 105-127. https://doi.org/10.1016/S0169-1368(98)00020-1
      Müller, D., Rock, N. M. S., Groves, D. I., 1992. Geochemical Discrimination between Shoshonitic and Potassic Volcanic Rocks in Different Tectonic Settings: A Pilot Study. Mineralogy and Petrology, 46(4): 259-289. https://doi.org/10.1007/BF01173568
      Niu, Y. L., Gilmore, T., Mackie, S., et al., 2002. Mineral Chemistry, Whole-Rock Compositions, and Petrogenesis of Leg 176 Gabbros: Data and Discussion. In: Natland, J. H., Dick, H. J. B., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.proc.sr.176.011.2002
      Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Pochon, A., Poujol, M., Gloaguen, E., et al., 2016. U-Pb LA-ICP-MS Dating of Apatite in Mafic Rocks: Evidence for a Major Magmatic Event at the Devonian-Carboniferous Boundary in the Armorican Massif (France). American Mineralogist, 101(11): 2430-2442. https://doi.org/10.2138/am-2016-5736
      Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3-4): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1
      Qi, H. W., Hu, R. Z., 2000. Comparison between Uranium Ore-Forming Fluids and Magmatic Fluids of Granites, Southern China-A Preliminary Study. Acta Mineralogica Sinica, 20(4): 401-405 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2000.04.014
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Ren, H. T., Wu, J. Q., Ye, X. F., 2013. Zircon U-Pb Age and Geochemical Characteristics of Peraluminous Fine-Grained Granite in Western Part of the Fucheng Pluton, Jiangxi Province. Geological Journal of China Universities, 19(2): 327-345 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.02.015
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Shaw, A., Downes, H., Thirlwall, M. F., 1993. The Quartz-Diorites of Limousin: Elemental and Isotopic Evidence for Devono-Carboniferous Subduction in the Hercynian Belt of the French Massif Central. Chemical Geology, 107(1-2): 1-18. https://doi.org/10.1016/0009-2541(93)90098-4
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003
      Shu, L. S., Zhou, X. M., 2002. Late Mesozoic Tectonism of Southeast China. Geological Review, 48(3): 249-260 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2002.03.004
      Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821X(75)90088-6
      Sun, L. Q., 2018. Petrogenesis of the Mesozoic Granites in the Zhuguangshan Area in the Nanling Region and Their Implications for the Uranium Mineralization (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tan, Q. L., Wang, Y. J., Zhang, Y. Z., et al., 2017. Taohong Diorite from Pingshui Region in Eastern Jiangnan Orogen: Evidence for Early Neoproterozoic Oceanic Crust Subduction. Earth Science, 42(2): 173-190 (in Chinese with English abstract).
      Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
      Turner, S., Wilde, S., Wörner, G., et al., 2020. An Andesitic Source for Jack Hills Zircon Supports Onset of Plate Tectonics in the Hadean. Nature Communications, 11: 1241. https://doi.org/10.1038/s41467-020-14857-1
      Wang, D. Z., 2004. The Study of Granitic Rocks in South China: Looking Back and Forward. Geological Journal of China Universities, 10(3): 305-314 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2004.03.001
      Wang, H. Z., Zhao, Y. D., Chen, P. R., et al., 2018. Petrogenesis of the Zhulanbu Composite Pluton and Its Implications for Tectonic Setting. Acta Petrologica et Mineralogica, 37(2): 175-196 (in Chinese with English abstract).
      Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-, S- and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027
      Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      Wu, H., Xia, Y., Zhou, K. K., et al., 2020. Highly Fractionated Granite Magmas Maybe the Main Uranium Source of Granite-Type Uranium Deposits in South China: Evidence from the Uranium Content of Zircon in Southern Zhuguangshan Granitic Composite. Acta Petrologica Sinica, 36(2): 589-600 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.02.16
      Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/BF03184122
      Xie, G. Q., 2003. Late Mesozoic and Cenozoic Mafic Dikes (Bodies) from Southeastern China: Geological and Geochemical Characteristics and Its Geodynamics-A Case of Jiangxi Province (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
      Xing, K., Shu, Q. H., 2021. Applications of Apatite in Study of Ore Deposits: A Review. Mineral Deposits, 40(2): 189-205 (in Chinese with English abstract).
      Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1-4): 97-114. https://doi.org/10.1016/j.precamres.2010.05.016
      Yu, J. H., Wang, L. J., Wang, X. L., et al., 2007. Geochemistry and Geochronology of the Fucheng Complex in the Southeastern Jiangxi Province, China. Acta Petrologica Sinica, 23(6): 1441-1456 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.020
      Zeng, L., Chen, Z. H., Sun, F. Y., et al., 2016. U-Pb Dating of Zircons and Ore-Bearing Potential of Zhulanbu Intrusions in the Southern Jiangxi Province. Rock and Mineral Analysis, 35(2): 199-207 (in Chinese with English abstract).
      Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2016. Geochemistry, Zircon U-Pb Dating and Hf Isotopies Composition of Paleozoic Granitoids in Jinchuan, NW China: Constraints on Their Petrogenesis, Source Characteristics and Tectonic Implication. Journal of Asian Earth Sciences, 121: 20-33. https://doi.org/10.1016/j.jseaes.2016.02.009
      Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2018. Paleoproterozoic Multiple Tectonothermal Events in the Longshoushan Area, Western North China Craton and Their Geological Implication: Evidence from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Minerals, 8(9): 361. https://doi.org/10.3390/min8090361
      Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2021. Petrogenesis and Tectonic Significance of the Early Devonian Lamprophyres and Diorites in the Alxa Block, NW China. Geochemistry, 81(1): 125685. https://doi.org/10.1016/j.chemer.2020.125685
      Zeng, R. Y., Lai, J. Q., Zhang, L. J., 2016. Petrogenesis of Mafic Microgranular Enclaves: Evidence from Petrography, Whole-Rock and Mineral Chemistry of Ziyunshan Pluton, Central Hunan. Earth Science, 41(9): 1461-1478 (in Chinese with English abstract).
      Zhang, B. T., Wu, J. Q., Ling, H. F., et al., 2008. Geochemical Evidence of Element and Sr-O-Nd-Pb Isotopes for Petrogenesis of the Huichang Early Cretaceous Shoshonite, Southern Jiangxi Province. Acta Geologica Sinica, 82(7): 986-997 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.07.017
      Zhang, C. G., Zeng, R. Y., Li, C. M., et al., 2021. Late Permian High-Ti Basalt in Western Guangxi, SW China and Its Link with the Emeishan Large Igneous Province: Geochronological and Geochemical Perspectives. Frontiers in Earth Science, 9: 729955. https://doi.org/10.3389/feart.2021.729955
      Zhang, G. S., Peng, R., Wen, H. J., et al., 2021. Genesis of E-MORB-Like Mafic Dykes in Southwestern Fujian Province, SE China: Evidence from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd Isotope. Earth Science, 46(12): 4230-4246 (in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112002
      Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. https://doi.org/10.1016/j.gr.2012.09.005
      Zhang, X. T., Pan, J. Y., Xia, F., et al., 2022. Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region. Earth Science, 47(1): 192-205 (in Chinese with English abstract).
      Zhang, Y. Q., Xu, X. B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract).
      Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhong, F. J., Yan, J., Xia, F., et al., 2019. In-Situ U-Pb Isotope Geochronology of Uraninite for Changjiang Granite-Type Uranium Ore Field in Northern Guangdong, China: Implications for Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2727-2744 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.07
      Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      曹豪杰, 黄国龙, 许丽丽, 等, 2013. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征. 地质学报, 87(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201307006.htm
      陈恒, 胡瑞忠, 毕献武, 等, 2012. 赣南6722铀矿床方解石Sm-Nd等时线年龄及其地质意义. 矿物学报, 32(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201201009.htm
      高彭, 2016. 华南陆块南岭地区中生代花岗岩地球化学研究(博士学位论文). 合肥: 中国科学技术大学.
      贺振宇, 徐夕生, 王孝磊, 等, 2008. 赣南橄榄安粗质火山岩的年代学与地球化学. 岩石学报, 24(11): 2524-2536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811008.htm
      胡瑞忠, 毕献武, 苏文超, 等, 2004. 华南白垩‒第三纪地壳拉张与铀成矿的关系. 地学前缘, 11(1): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401016.htm
      李三忠, 臧艺博, 王鹏程, 等, 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm
      李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm
      梁新权, 李献华, 丘元禧, 等, 2005. 华南印支期碰撞造山: 十万大山盆地构造和沉积学证据. 大地构造与成矿学, 29(1): 99-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK20050100D.htm
      凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm
      戚华文, 胡瑞忠, 2000. 华南花岗岩岩浆期后热液与铀成矿热液的初步对比. 矿物学报, 20(4): 401-405. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200004013.htm
      任海涛, 吴俊奇, 叶锡芳, 等, 2013. 江西富城岩体西部过铝质细粒花岗岩锆石U-Pb年龄和地球化学特征. 高校地质学报, 19(2): 327-345. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201302015.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      舒良树, 周新民, 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200203004.htm
      孙立强, 2018. 南岭诸广山地区中生代花岗岩成因及其对铀成矿作用的启示(博士学位论文). 南京: 南京大学.
      谭清立, 王岳军, 张玉芝, 等, 2017. 江南东段平水地区桃红闪长岩: 早新元古代洋壳消减的证据. 地球科学, 42(2): 173-190. doi: 10.3799/dqkx.2017.014
      王德滋, 2004. 华南花岗岩研究的回顾与展望. 高校地质学报, 10(3): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200403000.htm
      王洪作, 赵友东, 陈培荣, 等, 2018. 赣南珠兰埠复式岩体成因及其构造意义. 岩石矿物学杂志, 37(2): 175-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201802001.htm
      汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      伍皓, 夏彧, 周恳恳, 等, 2020. 高分异花岗岩浆可能是华南花岗岩型铀矿床主要铀源: 来自诸广山南体花岗岩锆石铀含量的证据. 岩石学报, 36(2): 589-600. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002016.htm
      谢桂青, 2003. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例(博士学位论文). 贵阳: 中国科学院地球化学研究所.
      邢凯, 舒启海, 2021. 磷灰石在矿床学研究中的应用. 矿床地质, 40(2): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202102001.htm
      于津海, 王丽娟, 王孝磊, 等, 2007. 赣东南富城杂岩体的地球化学和年代学研究. 岩石学报, 23(6): 1441-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706019.htm
      曾乐, 陈郑辉, 孙丰月, 等, 2016. 赣南珠兰埠岩体锆石U-Pb年代学研究及其含矿性评价. 岩矿测试, 35(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602013.htm
      曾认宇, 赖健清, 张利军, 等, 2016. 湘中紫云山岩体暗色微粒包体的成因: 岩相学、全岩及矿物地球化学证据. 地球科学, 41(9): 1461-1478. doi: 10.3799/dqkx.2016.512
      章邦桐, 吴俊奇, 凌洪飞, 等, 2008. 会昌早白垩世橄榄玄粗岩(shoshonite)成因的元素及Sr-O-Nd-Pb同位素地球化学证据. 地质学报, 82(7): 986-997. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807019.htm
      张贵山, 彭仁, 温汉捷, 等, 2021. 闽西南E-MORB型基性岩墙成因: 来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据. 地球科学, 46(12): 4230-4246. doi: 10.3799/dqkx.2021.062
      张笑天, 潘家永, 夏菲, 等, 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192-205. doi: 10.3799/dqkx.2021.046
      张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901033.htm
      钟福军, 严杰, 夏菲, 等, 2019. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义. 岩石学报, 35(9): 2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm
    • dqkxzx-48-9-3258-附表1-2.docx
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  448
    • HTML全文浏览量:  532
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-06
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回