• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    泥页岩中有机质:类型、热演化与有机孔隙

    刘贝

    刘贝, 2023. 泥页岩中有机质:类型、热演化与有机孔隙. 地球科学, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130
    引用本文: 刘贝, 2023. 泥页岩中有机质:类型、热演化与有机孔隙. 地球科学, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130
    Liu Bei, 2023. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130
    Citation: Liu Bei, 2023. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130

    泥页岩中有机质:类型、热演化与有机孔隙

    doi: 10.3799/dqkx.2022.130
    基金项目: 

    国家自然科学基金项目 42202167

    湖北省自然科学基金项目 2022CFB598

    详细信息
      作者简介:

      刘贝(1989-),男,教授,主要从事非常规油气地质研究. ORCID:0000-0003-1146-1227. E-mail:liubei12@cug.edu.cn

    • 中图分类号: P588

    Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores

    • 摘要: 泥页岩中的有机质作为石油和天然气的来源,其有机岩石学分类方案仍不明确,传统的煤岩学分类方法并不完全适用于泥页岩中的分散有机质.页岩中有机孔隙是页岩孔隙系统的重要组成部分,在很大程度上控制了页岩的含气量和孔隙度,但其成因及与有机质类型和热成熟度的关系仍存在争议.系统地总结了泥页岩中分散有机质的类型、不同类型有机质的热演化特征以及有机孔隙发育与保存的控制机理,并指出了存在问题及今后研究方向.泥页岩中的分散有机质包含5个显微组分组:镜质体、惰质体、类脂体、动物碎屑和次生有机质,每个显微组分组可再划分为多个显微组分.不同显微组分的成因和生烃潜力不同,有机孔隙发育程度也存在差异.页岩中有机孔隙包括原生孔隙和次生孔隙,后者是主要的有机孔隙类型,其形成与生油型有机质生烃过程密切相关,主要赋存在固体沥青或焦沥青中.有机质类型和热成熟度决定了次生有机孔隙的发育程度,而热成熟度、有机质含量、矿物组成和孔隙压力控制了其保存程度.烃源岩评价中对有机质生烃潜力的研究应建立在对显微组分以及不同显微组分生烃能力充分了解的基础上.非常规油气储层表征中对有机孔隙的研究应充分考虑有机质数量、类型、热成熟度以及页岩矿物学组成,准确地评价有机孔隙对页岩孔隙系统的贡献.

       

    • 图  1  页岩中镜质体显微照片,油浸反射光.美国Illinois盆地New Albany页岩,Ro 0.55%

      Fig.  1.  Photomicrographs of vitrinite in reflected white light and oil immersion. New Albany Shale of the Illinois basin, Ro 0.55%

      图  2  页岩中惰质体显微照片,油浸反射光.美国Illinois盆地New Albany页岩,Ro 0.55%

      Fig.  2.  Photomicrographs of inertinite in reflected white light and oil immersion. New Albany Shale of the Illinois basin, Ro 0.55%

      图  3  页岩中藻类体显微照片,油浸反射光(a)和荧光(b).美国Illinois盆地New Albany页岩,Ro 0.55%

      Fig.  3.  Photomicrographs of alginite in reflected white light and oil immersion (a) and in fluorescence mode (b). New Albany Shale of the Illinois basin, Ro 0.55%

      图  4  页岩中沥青质体显微照片,油浸反射光(a)和荧光(b).美国Illinois盆地New Albany页岩,Ro 0.55%

      Fig.  4.  Photomicrographs of bituminite in reflected white light and oil immersion (a) and in fluorescence mode (b). New Albany Shale of the Illinois Basin, Ro 0.55%

      图  5  页岩中动物碎屑显微照片,油浸反射光

      a.笔石,四川盆地五峰组-龙马溪组页岩,等效镜质体反射率Eq Ro 3.07%;b.几丁虫,美国Illinois盆地New Albany页岩,Ro 0.79%(Liu et al.,2022).c.虫颚,加拿大西北地区Ramparts组;d.有孔虫,瑞士侏罗纪地层.c和d来自Potter et al.1998

      Fig.  5.  Photomicrographs of zooclasts in reflected white light and oil immersion

      图  6  页岩中固体沥青和焦沥青显微照片,油浸反射光

      a.来自藻类体的前油沥青.藻类体的形状仍可识别出,表明大量生烃仍未开始.美国Illinois盆地New Albany页岩,Ro 0.84%;b.生油高峰阶段的固体沥青.美国Illinois盆地New Albany页岩,Ro 0.98%;c.凝析油和湿气阶段的后油沥青.美国Illinois盆地New Albany页岩,Ro 1.18%;d.干气窗内的焦沥青.美国Appalachian盆地Marcellus页岩,Ro 2.41%

      Fig.  6.  Photomicrographs of solid bitumen and pyrobitumen in reflected white light and oil immersion

      图  7  热演化过程中生油型有机质的演化路径

      据Jarvie et al.2007);Bernard and Horsfield(2014);Mastalerz et al.2018);Liu et al.2022

      Fig.  7.  Evolutionary pathway of oil-prone organic matter during thermal maturation

      图  8  页岩中有机孔隙扫描电镜照片.四川盆地五峰组-龙马溪组页岩,等效镜质体反射率Eq Ro 3.07%

      Fig.  8.  SEM images of organic matter-hosted pores in shales. Wufeng-Longmaxi Shale of the Sichuan Basin. Equivalent vitrinite reflectance Eq Ro 3.07%

      表  1  页岩中显微组分分类方法

      Table  1.   Classification of macerals in shales

      显微组分组 显微组分 备注 扫描电镜下特征
      镜质体(Ⅲ型干酪根) 镜质结构体 由于页岩中镜质体含量较少,并且粒径较小,识别不同的显微组分非常困难.因此,不适合划分显微组分.对于镜质体含量较高的页岩,仍可根据ICCP System 1994镜质体分类方案划分出不同的显微组分 以分散颗粒状存在于页岩基质中
      胶质结构体
      镜质碎屑体
      胶质碎屑体
      团块凝胶体
      凝胶体
      惰质体(Ⅳ型干酪根) 丝质体 同镜质体一样,页岩中惰质体含量较少且粒径较小,因此不适合划分显微组分.对于惰质体含量较高的页岩,仍可根据ICCP System 1994惰质体分类方案划分出不同的显微组分.丝质体、半丝质体和惰质碎屑体是页岩中常见的惰质体 以分散颗粒状存在于页岩基质中.部分惰质体具有细胞结构,可以作为鉴定标志.如果细胞结构不存在,很难与镜质体区分
      半丝质体
      真菌体
      粗粒体
      分泌体
      微粒体
      惰质碎屑体
      类脂体(Ⅰ型或Ⅱ型干酪根) 藻类体 藻类体、沥青质体和类脂碎屑体是页岩中常见的生油型组分,其他来自高等植物的显微组分在页岩中不常见,特别是海相页岩 藻类体由于其特有的形态在扫描电镜下较易识别.垂直层理面时为棒状,平行层理面时为圆形.生油型藻类体一般不存在于生油高峰(Ro 0.8%~1.0%)之后
      沥青质体
      类脂碎屑体
      孢子体
      角质体 沥青质体无固定形态,以条带状或透镜状存在于页岩基质中,通常含有粘土级的矿物包裹体.生油型沥青质体一般不存在于生油高峰(Ro 0.8~1.0%)之后
      木栓质体
      树脂体
      叶绿素体
      动物碎屑 笔石 在部分页岩中存在.其反射率可以用于成熟度评价,特别是在前泥盆系页岩中 以分散颗粒状存在于页岩基质中.动物碎屑可以根据其形貌特征鉴定.如果动物碎屑粒径较小且无识别特征,不易与镜质体和惰质体区分
      几丁虫
      虫颚
      有孔虫内衬
      次生有机质 固体沥青 生油高峰(Ro 0.8%~1.0%)之后,富含Ⅰ和Ⅱ型干酪根页岩中主要的有机质类型 固体沥青和焦沥青的赋存状态相似,以充填的形式存在于颗粒间孔或颗粒内部.低成熟度时,固体沥青和沥青质体较难区分
      焦沥青 干气窗内,富含Ⅰ和Ⅱ型干酪根页岩中主要的有机质类型.焦沥青和固体沥青的成熟度临界值为固体沥青反射率1.5%.对于含硫有机质,临界值为1.3%
      只存在于生油窗内 以油滴形式存在
      注:修改自Stasiuk et al.(2002); Mastalerz et al.(2018); Liu et al.(2022).
      下载: 导出CSV
    • Acholla, F. V., Orr, W. L., 1993. Pyrite Removal from Kerogen without Altering Organic Matter: The Chromous Chloride Method. Energy & Fuels, 7(3): 406-410. https://doi.org/10.1021/ef00039a012
      Ardakani, O. H., Sanei, H., Ghanizadeh, A., et al., 2018. Do All Fractions of Organic Matter Contribute Equally in Shale Porosity? A Case Study from Upper Ordovician Utica Shale, Southern Quebec, Canada. Marine and Petroleum Geology, 92: 794-808. https://doi.org/10.1016/j.marpetgeo.2017.12.009
      Bertrand, R., 1990. Correlations among the Reflectances of Vitrinite, Chitinozoans, Graptolites and Scolecodonts. Organic Geochemistry, 15(6): 565-574. https://doi.org/10.1016/0146-6380(90)90102-6
      Bertrand, R., Héroux, Y., 1987. Chitinozoan, Graptolite, and Scolecodont Reflectance as an Alternative to Vitrinite and Pyrobitumen Reflectance in Ordovician and Silurian Strata, Anticosti Island, Quebec, Canada. AAPG Bulletin, 71: 951-957. https://doi.org/10.1306/948878f7-1704-11d7-8645000102c1865d
      Bernard, S., Horsfield, B., 2014. Thermal Maturation of Gas Shale Systems. Annual Review of Earth and Planetary Sciences, 42: 635-651. https://doi.org/10.1146/annurev-earth-060313-054850
      Bernard, S., Horsfield, B., Schulz, H. M., et al., 2012. Geochemical Evolution of Organic-Rich Shales with Increasing Maturity: A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany). Marine and Petroleum Geology, 31(1): 70-89. https://doi.org/10.1016/j.marpetgeo.2011.05.010
      Bousige, C., Ghimbeu, C. M., Vix-Guterl, C., et al., 2016. Realistic Molecular Model of Kerogen's Nanostructure. Nature Materials, 15(5): 576-582. https://doi.org/10.1038/nmat4541
      Buchardt, B, Lewan, M. D., 1994. Reflectance of Vitrinite-Like Macerals as a Thermal Maturity Index for Cambrian-Ordovician Alum Shale, Southern Scandinavia. AAPG Bulletin, 74: 394-406. https://doi.org/10.1306/0c9b230d-1710-11d7-8645000102c1865d
      Cao, Q. A., Jiang, K., Wen, Z. T., et al., 2021. Characteristics of Organic Matter Pores and the Relationship with Current Pressure System of Lower Silurian Longmaxi Shales in Dingshan Field, Southern Sichuan, China. Geofluids, 2021: 1-15. https://doi.org/10.1155/2021/9967479
      Cardott, B. J., Landis, C. R., Curtis, M. E., 2015. Post-Oil Solid Bitumen Network in the Woodford Shale, USA: A Potential Primary Migration Pathway. International Journal of Coal Geology, 139: 106-113. https://doi.org/10.1016/j.coal.2014.08.012
      Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790(in Chinese with English abstract).
      Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
      Dai, S. F., Tang, Y. G., Jiang, Y. F., et al., 2021a. An In-Depth Interpretation of Definition and Classification of Macerals in Coal (ICCP System 1994) for Chinese Researchers, Ⅰ: Vitrinite. Journal of China Coal Society, 46(6): 1821-1832(in Chinese with English abstract).
      Dai, S. F., Wang, S. Q., Tang, Y. G., et al., 2021b. An In-Depth Interpretation of Definition and Classification of Macerals in Coal (ICCP System 1994) for Chinese Researchers, Ⅱ: Inertinite. Journal of China Coal Society, 46(7): 2212-2226 (in Chinese with English abstract).
      Dai, S. F., Zhao, L., Tang, Y. G., et al., 2021c. An In-Depth Interpretation of Definition and Classification of Macerals in Coal (ICCP System 1994) for Chinese Researchers, Ⅳ: Liptinite. Journal of China Coal Society, 46(9): 2965-2983(in Chinese with English abstract).
      Dong, T., Harris, N. B., 2020. The Effect of Thermal Maturity on Porosity Development in the Upper Devonian -Lower Mississippian Woodford Shale, Permian Basin, US: Insights into the Role of Silica Nanospheres and Microcrystalline Quartz on Porosity Preservation. International Journal of Coal Geology, 217: 103346. https://doi.org/10.1016/j.coal.2019.103346
      Durand, B., 1980. Sedimentary Organic Matter and Kerogen: Definition and Quantitative Importance of Kerogen. In: Durand, B., ed., Kerogen: Insoluble Organic Matter from Sedimentary Rocks. Editions Technip, Paris, 13-34.
      Feng, G. X., Chen, S. J., 1988. Relationship between the Reflectance of Bitumen and Vitrinite in Rock. Natural Gas Industry, 8(3): 20-25(in Chinese with English abstract).
      Fishman, N. S., Hackley, P. C., Lowers, H. A., et al., 2012. The Nature of Porosity in Organic-Rich Mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, Offshore United Kingdom. International Journal of Coal Geology, 103: 32-50. https://doi.org/10.1016/j.coal.2012.07.012
      Flores, D., Suárez-Ruiz, I., 2017. Organic Petrology in the study of Dispersed Organic Matter. In: Suárez-Ruiz, I., Filho, J. G. M., eds., The Role of Organic Petrology in the Exploration of Conventional and Unconventional Hydrocarbon Systems. Bentham Science Publishers, Sharjah, 34-76.
      French, K. L., Birdwell, J. E., Lewan, M. D., 2020. Trends in Thermal Maturity Indicators for the Organic Sulfur-Rich Eagle Ford Shale. Marine and Petroleum Geology, 118: 104459. https://doi.org/10.1016/j.marpetgeo.2020.104459
      Gong, J. M., Qiu, Z., Zou, C. N., et al., 2020. An Integrated Assessment System for Shale Gas Resources Associated with Graptolites and Its Application. Applied Energy, 262: 114524. https://doi.org/10.1016/j.apenergy.2020.114524
      Goodarzi, F., Norford, B. S., 1989. Variation of Graptolite Reflectance with Depth of Burial. International Journal of Coal Geology, 11(2): 127-141. https://doi.org/10.1016/0166-5162(89)90002-5
      Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36(in Chinese with English abstract).
      Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8-51. https://doi.org/10.1016/j.coal.2016.06.010
      Hackley, P. C., Walters, C. C., Kelemen, S. R., et al., 2017. Organic Petrology and Micro-Spectroscopy of Tasmanites Microfossils: Applications to Kerogen Transformations in the Early Oil Window. Organic Geochemistry, 114: 23-44. https://doi.org/10.1016/j.orggeochem.2017.09.002
      Han, D. X., 1996. Coal Petrology of China. China University of Mining & Technology Press, Beijing(in Chinese).
      Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
      ICCP, 1998. The New Vitrinite Classification (ICCP System 1994). Fuel, 77(5): 349-358. https://doi.org/10.1016/s0016-2361(98)80024-0
      ICCP, 2001. The New Inertinite Classification (ICCP System 1994). Fuel, 80(4): 459-471. https://doi.org/10.1016/s0016-2361(00)00102-2
      Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1): 65-79. https://doi.org/10.1016/0166-5162(89)90113-4
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      Jarvie, D. M., 2012a. Shale Resource Systems for Oil and Gas: Part 1: Shale-Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir 97, AAPG, Tulsa, 69-87.
      Jarvie, D. M., 2012b. Shale Resource Systems for Oil and Gas: Part 2: Shale-Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir 97, AAPG, Tulsa, 89-119.
      Katz, B. J., Arango, I., 2018. Organic Porosity: A Geochemist's View of the Current State of Understanding. Organic Geochemistry, 123: 1-16. https://doi.org/10.1016/j.orggeochem.2018.05.015
      Knapp, L. J., Ardakani, O. H., Uchida, S., et al., 2020. The Influence of Rigid Matrix Minerals on Organic Porosity and Pore Size in Shale Reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada. International Journal of Coal Geology, 227: 103525. https://doi.org/10.1016/j.coal.2020.103525
      Kus, J., Araujo, C. V., Borrego, A. G., et al., 2017. Identification of Alginite and Bituminite in Rocks other than Coal. 2006, 2009, and 2011 Round Robin Exercises of the ICCP Identification of Dispersed Organic Matter Working Group. International Journal of Coal Geology, 178: 26-38. https://doi.org/10.1016/j.coal.2017.04.013
      Landis, C. R., Castaño, J. R., 1995. Maturation and Bulk Chemical Properties of a Suite of Solid Hydrocarbons. Organic Geochemistry, 22(1): 137-149. https://doi.org/10.1016/0146-6380(95)90013-6
      Liu, B., Schieber, J., Mastalerz, M., 2017. Combined SEM and Reflected Light Petrography of Organic Matter in the New Albany Shale (Devonian-Mississippian) in the Illinois Basin: A Perspective on Organic Pore Development with Thermal Maturation. International Journal of Coal Geology, 184: 57-72. https://doi.org/10.1016/j.coal.2017.11.002
      Liu, B., Schieber, J., Mastalerz, M., 2019. Petrographic and Micro-FTIR Study of Organic Matter in the Upper Devonian New Albany Shale during Thermal Maturation: Implications for Kerogen Transformation. In: Camp, W., Milliken, K., Taylor, K., eds., Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. AAPG Memoir 120, AAPG, Tulsa, 165-188.
      Liu, B., Mastalerz, M., Schieber, J., et al., 2020a. Association of Uranium with Macerals in Marine Black Shales: Insights from the Upper Devonian New Albany Shale, Illinois Basin. International Journal of Coal Geology, 217: 103351. https://doi.org/10.1016/j.coal.2019.103351
      Liu, B., Teng, J., Mastalerz, M., et al., 2020b. Assessing the Thermal Maturity of Black Shales using Vitrinite Reflectance: Insights from Devonian Black Shales in the Eastern United States. International Journal of Coal Geology, 220: 103426. https://doi.org/10.1016/j.coal.2020.103426
      Liu, B., Teng, J. A., Mastalerz, M., et al., 2021. Compositional Control on Shale Pore Structure Characteristics across a Maturation Gradient: Insights from the Devonian New Albany Shale and Marcellus Shale in the Eastern United States. Energy & Fuels, 35(9): 7913-7929. https://doi.org/10.1021/acs.energyfuels.1c00526
      Liu, B., Mastalerz, M., Schieber, J., 2022. SEM Petrography of Dispersed Organic Matter in Black Shales: A Review. Earth-Science Reviews, 224: 103874. https://doi.org/10.1016/j.earscirev.2021.103874
      Liu, D. M., Jin, K. L., Ai, T. J., 1995. A Petrographic Classification and Organic Petrological Characteristics of Macerals of the Marine Hydrocarbon Source Rocks in the Tarim Basin. Acta Sedimentologica Sinica, 13(Suppl. 1): 124-133(in Chinese with English abstract).
      Liu, H. L., Wang, H. Y., Fang, C. H., et al., 2016. The Formation Mechanism of Over-Pressure Reservoir and Target Screening Index of the Marine Shale in the South China. Earth Science Frontiers, 23(2): 48-54(in Chinese with English abstract).
      Liu, Y., Zhu, Y. M., Liu, S. M., et al., 2018. Molecular Structure Controls on Micropore Evolution in Coal Vitrinite during Coalification. International Journal of Coal Geology, 199: 19-30. https://doi.org/10.1016/j.coal.2018.09.012
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Lu, S. F., Zhang, M., 2008. Oil and Gas Geochemistry. Petroleum Industry Press, Beijing(in Chinese).
      Luo, Q. Y., Zhong, N. N., Dai, N., et al., 2016. Graptolite-Derived Organic Matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of Southeastern Chongqing, China: Implications for Gas Shale Evaluation. International Journal of Coal Geology, 153: 87-98. https://doi.org/10.1016/j.coal.2015.11.014
      Luo, Q. Y., Hao, J. Y., Skovsted, C. B., et al., 2017. The Organic Petrology of Graptolites and Maturity Assessment of the Wufeng-Longmaxi Formations from Chongqing, China: Insights from Reflectance Cross-Plot Analysis. International Journal of Coal Geology, 183: 161-173. https://doi.org/10.1016/j.coal.2017.09.006
      Luo, Q. Y., Fariborz, G., Zhong, N. N., et al., 2020. Graptolites as Fossil Geo-Thermometers and Source Material of Hydrocarbons: An Overview of Four Decades of Progress. Earth-Science Reviews, 200: 103000. https://doi.org/10.1016/j.earscirev.2019.103000
      Ma, Y., Zhong, N. N., Cheng, L. J., et al., 2016. Pore Structure of the Graptolite-Derived OM in the Longmaxi Shale, Southeastern Upper Yangtze Region, China. Marine and Petroleum Geology, 72: 1-11. https://doi.org/10.1016/j.marpetgeo.2016.01.009
      Mastalerz, M., Drobniak, A., Stankiewicz, A. B., 2018. Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs: A Review. International Journal of Coal Geology, 195: 14-36. https://doi.org/10.1016/j.coal.2018.05.013
      Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194
      Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. https://doi.org/10.1306/07231212048
      Mukhopadhyay, P. K., Dow, W. G., 1994. Vitrinite Reflectance as A Maturity Parameter: Applications and Limitations. ACS Symposium Series 570, American Chemical Society, Washington, D. C., U. S. A..
      Passey, Q. R., Bohacs, K. M., Esch, W. L., et al., 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir - Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs. Society of Petroleum Engineers International Oil and Gas Conference and Exhibition in China, Beijing, China.
      Peters, K. E., Cassa, M. R., 1994. Applied Source Rock Geochemistry. In: Leslie, B. M., Wallace, G. D., eds., The Petroleum System: From Source to Trap. AAPG Memoir 60, AAPG, Tulsa, 93-120. https://doi.org/10.1306/m60585c5
      Petersen, H. I., Schovsbo, N. H., Nielsen, A. T., 2013. Reflectance Measurements of Zooclasts and Solid Bitumen in Lower Paleozoic Shales, Southern Scandinavia: Correlation to Vitrinite Reflectance. International Journal of Coal Geology, 114: 1-18. https://doi.org/10.1016/j.coal.2013.03.013
      Pickel, W., Kus, J., Flores, D., et al., 2017. Classification of Liptinite - ICCP System 1994. International Journal of Coal Geology, 169: 40-61. https://doi.org/10.1016/j.coal.2016.11.004
      Potter, J., Stasiuk, L. D., Cameron, A. R., 1998. A Petrographic Atlas of Canadian Coal Macerals and Dispersed Organic Matter. Calgary. Canadian Society for Coal Science and Organic Petrology-Geological Survey of Canada (Calgary)-Canmet Energy Technology Centre, Calgary.
      Qiu, Z., Liu, B., Dong, D. Z., et al., 2020. Silica Diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Reservoir Properties and Paleoproductivity. Marine and Petroleum Geology, 121: 104594. https://doi.org/10.1016/j.marpetgeo.2020.104594
      Qiu, Z., Zou, C. N., Li, X. Z., et al., 2018. Discussion on the Contribution of Graptolite to Organic Enrichment and Reservoir of Gas Shale: A Case Study of the Wufeng-Longmaxi Formations in South China. Natural Gas Geoscience, 29(5): 606-615(in Chinese with English abstract).
      Qiu, Z., Zou, C. N., Wang, H. Y., et al., 2020. Discussion on Characteristics and Controlling Factors of Differential Enrichment of Wufeng-Longmaxi Formations Shale Gas in South China. Natural Gas Geoscience, 31(2): 163-175(in Chinese with English abstract).
      Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
      Ryder, R. T., Hackley, P. C., Alimi, H., et al., 2013. Evaluation of Thermal Maturity in the Low Maturity Devonian Shales of the Northern Appalachian Basin. AAPG Eastern Section Meeting, Kalamazoo, Michigan, U. S. A..
      Sanei, H., 2020. Genesis of Solid Bitumen. Scientific Reports, 10: 15595. https://doi.org/10.1038/s41598-020-72692-2
      Schieber, J., 2010. Common Themes in the Formation and Preservation of Intrinsic Porosity in Shales and Mudstones-Illustrated with Examples across the Phanerozoic. SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, U. S. A..
      Schieber, J., 2013. SEM Observations on Ion-Milled Samples of Devonian Black Shales from Indiana and New York: The Petrographic Context of Multiple Pore Types. In: Wayne, K. C., Elizabeth, D., Barry, W., eds., Electron Microscopy of Shale Hydrocarbon Reservoirs. AAPG Memoir 102, AAPG, Tulsa, 153-171. https://doi.org/10.1306/13391711m1023589
      Schmidt, J. S., Menezes, T. R., Souza, I. V. A. F., et al., 2019. Comments on Empirical Conversion of Solid Bitumen Reflectance for Thermal Maturity Evaluation. International Journal of Coal Geology, 201: 44-50. https://doi.org/10.1016/j.coal.2018.11.012
      Schoenherr, J., Littke, R., Urai, J. L., et al., 2007. Polyphase Thermal Evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as Deduced by Maturity of Solid Reservoir Bitumen. Organic Geochemistry, 38(8): 1293-1318. https://doi.org/10.1016/j.orggeochem.2007.03.010
      Senftle, J. T., Brown, J. H., Larter, S. R., 1987. Refinement of Organic Petrographic Methods for Kerogen Characterization. International Journal of Coal Geology, 7(1): 105-117. https://doi.org/10.1016/0166-5162(87)90015-2
      Song, D. J., Tuo, J. C., Wang, Y. T., et al., 2019. Research Advances on Characteristics of Nanopore Structure of Organic-Rich Shales. Acta Sedimentologica Sinica, 37(6): 1309-1324(in Chinese with English abstract).
      Stasiuk, L. D., 1997. The Origin of Pyrobitumens in Upper Devonian Leduc Formation Gas Reservoirs, Alberta, Canada: An Optical and EDS Study of Oil to Gas Transformation. Marine and Petroleum Geology, 14(7-8): 915-929. https://doi.org/10.1016/S0264-8172(97)00031-7
      Stasiuk, L. D., Burgess, J., Thompson-Rizer, C., et al., 2002. Status Report on TSOP-ICCP Dispersed Organic Matter Classification Working Group. The Society for Organic Petrology Newsletter, 19(3): 14.
      Taylor, G. H., Teichmüller, M., Davis, A., et al., 1998. Organic Petrology. Gebrüder Borntraeger, Berlin-Stuttgart.
      Teichmüller, M., 1986. Organic Petrology of Source Rocks, History and State of the Art. Organic Geochemistry, 10(1-3): 581-599. https://doi.org/10.1016/0146-6380(86)90055-0
      Tenger, B., Lu, L. F., Yu, L. J., et al., 2021. Formation, Preservation and Connectivity Control of Organic Pores in Shale. Petroleum Exploration and Development, 48(4): 687-699(in Chinese with English abstract).
      Teng, J., Mastalerz, M., Hampton, L., 2017. Maceral Controls on Porosity Characteristics of Lithotypes of Pennsylvanian High Volatile Bituminous Coal: Example from the Illinois Basin. International Journal of Coal Geology, 172: 80-94. https://doi.org/10.1016/j.coal.2017.02.001
      Teng, J., Mastalerz, M., Liu, B., 2021. Petrographic and Chemical Structure Characteristics of Amorphous Organic Matter in Marine Black Shales: Insights from Pennsylvanian and Devonian Black Shales in the Illinois Basin. International Journal of Coal Geology, 235: 103676. https://doi.org/10.1016/j.coal.2021.103676
      Tissot B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence, 2nd. Springer-Verlag, Berlin.
      Thompson, C. L., Dembicki, H., 1986. Optical Characteristics of Amorphous Kerogens and the Hydrocarbon-Generating Potential of Source Rocks. International Journal of Coal Geology, 6(3): 229-249. https://doi.org/10.1016/0166-5162(86)90003-0
      Tu, J. Q., Chen, J. P., Zhang, D. J., et al., 2012. A Petrographic Classification of Macerals in Lacustrine Carbonate Source Rocks and Their Organic Petrological Characteristics: A Case Study on Jiuxi Basin, NW China. Acta Petrologica Sinica, 28(3): 917-926(in Chinese with English abstract).
      Tu, J. Q., Wang, S. Z., Fei, X. D., 1998. Discussion on Certain Problems to the Division of Organic Matter Types in Kerogen. Experimental Petroleum Geology, 20(2): 187-191, 186(in Chinese with English abstract).
      Vigran, J. O., Mørk, A., Forsberg, A. W., et al., 2008. Tasmanites Algae-Contributors to the Middle Triassic Hydrocarbon Source Rocks of Svalbard and the Barents Shelf. Polar Research, 27(3): 360-371. https://doi.org/10.1111/j.1751-8369.2008.00084.x
      Wang, B. Z., Wang, C. S., Wang, X. F., et al., 2019. Characteristics of Aromatic Compounds in High-Over Matured Marine Shale and Its Significance to Shale Gas. Earth Science, 44(11): 3705-3716(in Chinese with English abstract).
      Wang, F. Y., Fu, J. M., Liu, D. H., 1993. Source Rock Characteristics of Coal and Terrestrial Organic Matter and Maceral Classification. Chinese Science Bulletin, 38(23): 2164-2168(in Chinese). doi: 10.1360/csb1993-38-23-2164
      Wang, R. Y., Nie, H. K., Hu, Z. Q., et al., 2020. Controlling Effect of Pressure Evolution on Shale Gas Reservoirs: A Case Study of the Wufeng-Longmaxi Formation in the Sichuan Basin. Natural Gas Industry, 40(10): 1-11(in Chinese with English abstract).
      Wang, Y., Qiu, N. S., Ma, Z. L., et al., 2020. Evaluation of Equivalent Relationship between Vitrinite Reflectance and Solid Bitumen Reflectance. Journal of China University of Mining & Technology, 49(3): 563-575(in Chinese with English abstract).
      Wang, Y., Qiu, N. S., Yang, Y. F., et al., 2019. Thermal Maturity of Wufeng-Longmaxi Shale in Sichuan Basin. Earth Science, 44(3): 953-971(in Chinese with English abstract).
      Wang, Y. M., Dong, D. Z., Cheng, X. Z., et al., 2014. Electric Property Evidences of the Carbonification of Organic Matters in Marine Shales and Its Geologic Significance: A Case of the Lower Cambrian Qiongzhusi Shale in Southern Sichuan Basin. Natural Gas Industry, 34(8): 1-7(in Chinese with English abstract).
      Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. doi: 10.1007/s12583-019-1237-6
      Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171(in Chinese with English abstract).
      Xiao, X. M., Jin, K. L., 1990. A Petrographic Classification of Macerals in Terrestrial Hydrocarbon Source Rocks in China and Their Organic Petrological Characteristics. Acta Sedimentologica Sinica, 8(3): 22-34(in Chinese with English abstract).
      Xiao, X. M., Jin, K. L., 1991. Hydrocarbon Generation Characteristics of Macerals. Chinese Science Bulletin, (3): 208-211(in Chinese).
      Xu, X. M., Sun, W. L., Wang, S. Q., et al., 2019. Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China. Earth Science, 44(11): 3717-3724(in Chinese with English abstract).
      Yang, C., Xiong, Y. Q., Zhang, J. C., 2020. A Comprehensive Re-Understanding of the OM-Hosted Nanopores in the Marine Wufeng-Longmaxi Shale Formation in South China by Organic Petrology, Gas Adsorption, and X-Ray Diffraction Studies. International Journal of Coal Geology, 218: 103362. https://doi.org/10.1016/j.coal.2019.103362
      Yang, Y. F., 2016. Application of Bitumen and Graptolite Reflectance in the Silurian Longmaxi Shale, Southeastern Sichuan Basin. Petroleum Geology & Experiment, 38(4): 466-472(in Chinese with English abstract).
      Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38: 21-38. https://doi.org/10.1016/j.jngse.2016.11.037
      Zhao, W. Z., Jia, A. L., Wei, Y. S., et al., 2020. Progress in Shale Gas Exploration in China and Prospects for Future Development. China Petroleum Exploration, 25(1): 31-44(in Chinese with English abstract).
      Zou, C. N., Pan, S. Q., Jing, Z. H., et al., 2020. Shale Oil and Gas Revolution and Its Impact. Acta Petrolei Sinica, 41(1): 1-12(in Chinese with English abstract). doi: 10.1038/s41401-019-0299-4
      Zou, C. N., Qiu, Z., 2021. Preface: New Advances in Unconventional Petroleum Sedimentology in China. Acta Sedimentologica Sinica, 39(1): 1-9(in Chinese with English abstract).
      陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
      代世峰, 唐跃刚, 姜尧发, 等, 2021a. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ: 镜质体. 煤炭学报, 46(6): 1821-1832.
      代世峰, 王绍清, 唐跃刚, 等, 2021b. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅱ: 惰质体. 煤炭学报, 46(7): 2212-2226.
      代世峰, 赵蕾, 唐跃刚, 等, 2021c. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅲ: 类脂体. 煤炭学报, 46(9): 2965-2983.
      丰国秀, 陈盛吉, 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(3): 20-25.
      郭彤楼, 张汉荣, 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36.
      韩德馨, 1996. 中国煤岩学. 北京: 中国矿业大学出版社.
      刘大锰, 金奎励, 艾天杰, 1995. 塔里木盆地海相烃源岩显微组分的分类及其岩石学特征. 沉积学报, 13(增刊1): 124-133.
      刘洪林, 王红岩, 方朝合, 等, 2016. 中国南方海相页岩气超压机制及选区指标研究. 地学前缘, 23(2): 48-54.
      卢双舫, 张敏, 2008. 油气地球化学. 北京: 石油工业出版社.
      邱振, 邹才能, 李熙喆, 等, 2018. 论笔石对页岩气源储的贡献: 以华南地区五峰组-龙马溪组笔石页岩为例. 天然气地球科学, 29(5): 606-615.
      邱振, 邹才能, 王红岩, 等, 2020. 中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163-175.
      宋董军, 妥进才, 王晔桐, 等, 2019. 富有机质泥页岩纳米级孔隙结构特征研究进展. 沉积学报, 37(6): 1309-1324.
      腾格尔, 卢龙飞, 俞凌杰, 等, 2021. 页岩有机质孔隙形成、保持及其连通性的控制作用. 石油勘探与开发, 48(4): 687-699.
      涂建琪, 王淑芝, 费轩冬, 1998. 干酪根有机质类型划分的若干问题的探讨. 石油实验地质, 20(2): 187-191, 186.
      涂建琪, 陈建平, 张大江, 等, 2012. 湖相碳酸盐岩烃源岩有机显微组分分类及其岩石学特征: 以酒西盆地为例. 岩石学报, 28(3): 917-926.
      王保忠, 王传尚, 汪啸风, 等, 2019. 海相高过成熟页岩芳烃特征及页岩气意义. 地球科学, 44(11): 3705-3716. doi: 10.3799/dqkx.2019.143
      王飞宇, 傅家谟, 刘德汉, 1993. 煤和陆源有机质烃源岩特点和有机组分分类术. 科学通报, 38(23): 2164-2168.
      王濡岳, 聂海宽, 胡宗全, 等, 2020. 压力演化对页岩气储层的控制作用: 以四川盆地五峰组—龙马溪组为例. 天然气工业, 40(10): 1-11.
      王晔, 邱楠生, 马中良, 等, 2020. 固体沥青反射率与镜质体反射率的等效关系评价. 中国矿业大学学报, 49(3): 563-575.
      王晔, 邱楠生, 仰云峰, 等, 2019. 四川盆地五峰-龙马溪组页岩成熟度研究. 地球科学, 44(3): 953-971. doi: 10.3799/dqkx.2018.125
      王玉满, 董大忠, 程相志, 等, 2014. 海相页岩有机质碳化的电性证据及其地质意义: 以四川盆地南部地区下寒武统筇竹寺组页岩为例. 天然气工业, 34(8): 1-7.
      肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. doi: 10.3799/dqkx.2019.248
      肖贤明, 金奎励, 1990. 中国陆相源岩显微组分的分类及其岩石学特征. 沉积学报, 8(3): 22-34.
      肖贤明, 金奎励, 1991. 显微组分的成烃作用模式. 科学通报, 36(3): 208-211.
      徐学敏, 孙玮琳, 汪双清, 等, 2019. 南方下古生界海相页岩有机质成熟度评价. 地球科学, 44(11): 3717-3724. doi: 10.3799/dqkx.2019.181
      仰云峰, 2016. 川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用. 石油实验地质, 38(4): 466-472.
      赵文智, 贾爱林, 位云生, 等, 2020. 中国页岩气勘探开发进展及发展展望. 中国石油勘探, 25(1): 31-44.
      邹才能, 潘松圻, 荆振华, 等, 2020. 页岩油气革命及影响. 石油学报, 41(1): 1-12.
      邹才能, 邱振, 2021. 中国非常规油气沉积学新进展: "非常规油气沉积学"专辑前言. 沉积学报, 39(1): 1-9.
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  598
    • HTML全文浏览量:  1937
    • PDF下载量:  142
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-19
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回