• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    琼东南盆地天然气水合物地震识别与饱和度预测

    邓勇

    邓勇, 2024. 琼东南盆地天然气水合物地震识别与饱和度预测. 地球科学, 49(5): 1865-1875. doi: 10.3799/dqkx.2022.133
    引用本文: 邓勇, 2024. 琼东南盆地天然气水合物地震识别与饱和度预测. 地球科学, 49(5): 1865-1875. doi: 10.3799/dqkx.2022.133
    Deng Yong, 2024. Seismic Identification and Saturation Prediction of Natural Gas Hydrate in the Qiongdongnan Basin. Earth Science, 49(5): 1865-1875. doi: 10.3799/dqkx.2022.133
    Citation: Deng Yong, 2024. Seismic Identification and Saturation Prediction of Natural Gas Hydrate in the Qiongdongnan Basin. Earth Science, 49(5): 1865-1875. doi: 10.3799/dqkx.2022.133

    琼东南盆地天然气水合物地震识别与饱和度预测

    doi: 10.3799/dqkx.2022.133
    详细信息
      作者简介:

      邓勇(1975-),男,硕士,髙级工程师,主要从事与地震勘探有关的管理与研究工作. E-mail:dengy@cnooc.com.cn

    • 中图分类号: P618

    Seismic Identification and Saturation Prediction of Natural Gas Hydrate in the Qiongdongnan Basin

    • 摘要: 琼东南盆地是我国新发现的天然气水合物勘探靶区,主要发育孔隙型水合物和烟囱型水合物,两者在地震上表现出不同的反射特征,仅利用地震似海底反射(BSR)识别琼东南盆地深水区天然气水合物存在局限性.为成功实现琼东南盆地天然气水合物识别与饱和度预测,利用三维地震数据和钻井资料,开展了AVO正演和宽频地震反演分析,明确了天然气水合物弹性参数特征,建立了天然气水合物地球物理识别方法.在此基础上,针对孔隙型和烟囱型两种不同类型的水合物,分别建立各向同性和各向异性饱和度评价方法,利用有效介质理论实现水合物饱和度定量评价.基于高品质地震资料开展的宽频地震反演和饱和度预测研究,实现了琼东南盆地孔隙型水合物和烟囱型水合物识别,并圈定了天然气水合物富集区,优选出了3个最大饱和度在50%以上水合物矿藏,预测结果得到实际钻探的验证.本次研究成果对琼东南盆地水合物钻探站位选取以及降低水合物钻探风险具有指导意义,其研究方法对于其他类似盆地水合物勘探具有借鉴价值.

       

    • 图  1  琼东南盆地及研究区位置

      Fig.  1.  Location of the Qiongdongnan basin and study area

      图  2  琼东南盆地水合物和游离气地层岩石物理分析

      Fig.  2.  Petrophysical analysis diagram of hydrate and free gas deposits in the Qiongdongnan basin

      图  3  琼东南盆地孔隙型天然气水合物AVO正演特征分析

      Fig.  3.  AVO numerical modeling results of porous-type natural gas hydrate deposits in the Qiongdongnan basin

      图  4  琼东南盆地目标区地震剖面与反演阻抗剖面

      Fig.  4.  The representative seismic section and inversion impedance profile in the study area of the Qiongdongnan basin

      图  5  琼东南盆地宽频反演得到的均方根纵波阻抗属性平面图

      Fig.  5.  RMS p-wave impedance attribute plan obtained by broadband inversion in the Qiongdongnan basin

      图  6  琼东南盆地水合物阻抗和孔隙度关系

      Fig.  6.  The correlation analysis between porosity and hydrate impedance in the Qiongdongnan basin

      图  7  琼东南盆地水合物发育区异常体C1最大振幅异常和最大阻抗异常分布

      Fig.  7.  Maximum amplitude and impedance anomaly distribution diagram of the development area of gas hydrate in the Qiongdongnan basin

      图  8  琼东南盆地天然气水合物异常体C1饱和度分布

      Fig.  8.  Gas hydrate saturation distribution map of the Qiongdongnan basin

      图  9  琼东南盆地天然气水合物L-A5井实际钻探结果

      Fig.  9.  Actual drilling results of well L-A5 of gas hydrate in Qiongdongnan basin

      图  10  琼东南盆地任意线反演声波阻抗及饱和度剖面

      Fig.  10.  Profile maps of acoustic wave impedance and degree of saturation in the Qiongdongnan basin

    • Andreassen, K., Hogstad, K., Berteussen, K. A., 1990. Gas Hydrate in the Southern Barents Sea, Indicated by a Shallow Seismic Anomaly. First Break, 8(6): 235-245. https://doi.org/10.3997/1365-2397.1990012
      Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
      Bünz, S., Mienert, J., Berndt, C., 2003. Geological Controls on the Storegga Gas-Hydrate System of the Mid-Norwegian Continental Margin. Earth and Planetary Science Letters, 209(3/4): 291-307. https://doi.org/10.1016/s0012-821x(03)00097-9
      Chen, D. F., Li, X. X., Xia, B., 2004. Distribution of Gas Hydrate Stable Zones and Resource Prediction in the Qiongdongnan Basin of the South China Sea. Chinese Journal of Geophysics, 47(3): 483-489 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2004.03.018
      Dai, J. C., Snyder, F., Gillespie, D., et al., 2008. Exploration for Gas Hydrates in the Deepwater, Northern Gulf of Mexico: Part Ⅰ. A Seismic Approach Based on Geologic Model, Inversion, and Rock Physics Principles. Marine and Petroleum Geology, 25(9): 830-844. https://doi.org/10.1016/j.marpetgeo.2008.02.006
      Fan, S. S., Yu, C., Lang, X. M., et al., 2018. Micro-Nano-Scale Studies on Occurrence and Gas Production and Storage Technology of Marine Gas Hydrates. Earth Science, 43(5): 1542-1548 (in Chinese with English abstract).
      Fang, Y. X., Wei, J. G., Lu, H. L., et al., 2019. Chemical and Structural Characteristics of Gas Hydrates from the Haima Cold Seeps in the Qiongdongnan Basin of the South China Sea. Journal of Asian Earth Sciences, 182: 103924. https://doi.org/10.1016/j.jseaes.2019.103924
      He, J. X., Lu, Z. Q., Su, P. B., et al., 2016. Source Supply System and Reservoir Forming Model Prediction of Natural Gas Hydrate in the Deep Water Area of the Northern South China Sea. Journal of Southwest Petroleum University (Science & Technology Edition), 38(6): 8-24 (in Chinese with English abstract).
      Holbrook, W. S., Hoskins, H., Wood, W. T., et al., 1996. Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling. Science, 273(5283): 1840-1843. https://doi.org/10.1126/science.273.5283.1840
      Huang, P., Pan, G. T., Wang, L. Q., et al., 2002. Prospect Evaluation of Natural Gas Hydrate Resources on the Qinghai-Tibet Plateau. Regional Geology of China, 21(11): 794-798.
      Jakobsen, M., Hudson, J. A., Minshull, T. A., et al., 2000. Elastic Properties of Hydrate-Bearing Sediments Using Effective Medium Theory. Journal of Geophysical Research: Solid Earth, 105(B1): 561-577. https://doi.org/10.1029/1999jb900190
      Johnson, A. H., 2011. Global Resource Potential of Gas Hydrate: A New Calculation. Natural Gas & Oil, 304: 285-4541.
      Kumar, D., Da Sh, R., Dewangan, P., 2009. Methods of Gas Hydrate Concentration Estimation with Field Examples. Geohorizons, 12: 76-86.
      Lee, M. W., 2002. Biot-Gassmann Theory for Velocities of Gas Hydrate-Bearing Sediments. Geophysics, 67(6): 1711-1719. https://doi.org/10.1190/1.1527072
      Lee, M. W., Collet, T. S., 2011. In-Situ Gas Hydrate Hydrate Saturation Estimated from Various Well Logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine and Petroleum Geology, 28(2): 439-449. https://doi.org/10.1016/j.marpetgeo.2009.06.007
      Lei, Y. H., Song, Y. R., Zhang, L. K., et al., 2021. Research Progress and Development Direction of Reservoir-Forming System of Marine Hydrates. Acta Petrolei Sinica, 42(6): 801-820 (in Chinese with English abstract).
      Ning, F. L., Liu, L., Li, S., et al., 2013. Well Logging Assessment of Natural Gas Hydrate Reservoirs and Relevant Influential Factors. Acta Petrolei Sinica, 34(3): 591-606 (in Chinese with English abstract).
      Qian, J., Wang, X. J., Dong, D. D., et al., 2019. New Estimation of Anisotropic Saturation and Fracture Quantitative Evaluation for Fracture-Filling Gas Hydrate Reservoir. Progress in Geophysics, 34(1): 354-364 (in Chinese with English abstract).
      Sava, D., Hardage, B. A., 2006. Rock Physics Characterization of Hydrate-Bearing Deepwater Sediments. The Leading Edge, 25(5): 616-619. https://doi.org/10.1190/1.2202666
      Sloan, E. D., Brewer, P. G., Paull, C. K., et al., 1999. Future of Gas Hydrate Research. Eos, Transactions American Geophysical Union, 80(22): 247. https://doi.org/10.1029/99eo00184
      Su, Z., Cao, Y. C., Yang, R., et al., 2012. Analytical Research on Evolution of Methane Hydrate Deposits at Shenhu Area, Northern South China Sea. Chinese Journal of Geophysics, 55(5): 1764-1774 (in Chinese with English abstract).
      Tréhu, A., 2004. Three-Dimensional Distribution of Gas Hydrate beneath Southern Hydrate Ridge: Constraints from ODP Leg 204. Earth and Planetary Science Letters, 222(3-4): 845-862. https://doi.org/10.1016/s0012-821x(04)00219-5
      Wang, H. B., Zhang, G. X., Liang, J., et al., 2008. Gas Hydrates in the SSBZ in the North Slope of the South China Sea. Acta Sedimentologica Sinica, 26(2): 283-293 (in Chinese with English abstract).
      Wang, J. L., 2015. Study on Geophysical Characterization of Concentrated Gas Hydrate Reservoirs. Graduate University of Chinese Academy of Sciences (The Institute of Oceanology) (in Chinese with English abstract).
      Wang, J. L., Wang, X. J., Qian, J., et al., 2013. Anisotropic Analysis and Saturation Estimation of Gas Hydrate Filled in Fractures: A Case of Site NGHP01-10D, Offshore Eastern India. Chinese Journal of Geophysics, 56(4): 1312-1320 (in Chinese with English abstract).
      Wang, X. J., Hutchinson, D. R., Wu, S. G., et al., 2011. Elevated Gas Hydrate Saturation within Silt and Silty Clay Sediments in the Shenhu Area, South China Sea. Journal of Geophysical Research Atmospheres, 116: B05102. https://doi.org/10.1029/2010JB007944
      Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract).
      Wang, X. J., Lee, M., Wu, S. G., et al., 2012. Identification of Gas Hydrate Dissociation from Wireline-Log Data in the Shenhu Area, South China Sea. Geophysics, 77(3): B125-B134. https://doi.org/10.1190/geo2011-0324.1
      Wang, X. J., Sain, K., Satyavani, N., et al., 2013. Gas Hydrates Saturation Using Geostatistical Inversion in a Fractured Reservoir in the Krishna-Godavari Basin, Offshore Eastern India. Marine and Petroleum Geology, 45: 224-235. https://doi.org/10.1016/j.marpetgeo.2013.04.024
      Wei, J. G., Liang, J. Q., Lu, J. A., et al., 2019. Characteristics and Dynamics of Gas Hydrate Systems in the Northwestern South China Sea-Results of the Fifth Gas Hydrate Drilling Expedition. Marine and Petroleum Geology, 110: 287-298. https://doi.org/10.1016/j.marpetgeo.2019.07.028
      Wei, J. G., Wu, T., Zhu, L., et al., 2021. Mixed Gas Sources Induced Co-Existence of sI and sII Gas Hydrates in the Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 128: 105024. https://doi.org/10.1016/j.marpetgeo.2021.105024
      Xu, L. T., He, Y. L., Shi, W. Z., et al., 2021. Main Controlling Factors and Patterns of Gas Hydrate Accumulation in the Deep Water Area of Qiongdongnan Basin. Acta Petrolei Sinica, 42(5): 598-610 (in Chinese with English abstract).
      Yang, S. X., 2019. Research on Gas Hydrate Accumulation in South China Sea. Science Press, Beijing (in Chinese with English abstract).
      Zhang, B. K., 2014. The Gashydrate-Related Active Techonics in the Deep-Water of the Northern South China Sea and Its Genetic Mechanisms. Ocean University of China, Qingdao (in Chinese with English abstract).
      Zhang, W., He, J. X., Lu, Z. Q., et al., 2015. Preliminary Study of the Relationship between the Suspected Mud Diapir and Natural Gas Hydrate in the Qiongdongnan Basin, Northern South China Sea. Natural Gas Geoscience, 26(11): 2185-2197 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2015.11.2185
      Zhang, W., Liang, J. Q., Wei, J. G., et al., 2019. Origin of Natural Gases and Associated Gas Hydrates in the Shenhu Area, Northern South China Sea: Results from the China Gas Hydrate Drilling Expeditions. Journal of Asian Earth Sciences, 183: 103953. https://doi.org/10.1016/j.jseaes.2019.103953
      Zhou, J., Yang, X. B., Yang, J. H., et al., 2019. Structure-Sedimentary Evolution and Gas Accumulation of Paleogene in Songnan Low Uplift of the Qiongdongnan Basin. Earth Science, 44(8): 2704-2716 (in Chinese with English abstract).
      Zhu, J. T., Pei, J. X., Sun, Z. P., et al., 2011. Feature of Neotectonism and Its Control on Late Hydrocarbon Accumulation in Qiongdongnan Basin. Natural Gas Geoscience, 22(4): 649-656 (in Chinese with English abstract).
      陈多福, 李绪宣, 夏斌, 2004. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测. 地球物理学报, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
      樊栓狮, 于驰, 郎雪梅, 等, 2018. 与海洋天然气水合物微纳米尺度赋存和开采储存技术有关的研究进展. 地球科学, 43(5): 1542-1548. doi: 10.3799/dqkx.2018.412
      何家雄, 卢振权, 苏丕波, 等, 2016. 南海北部天然气水合物气源系统与成藏模式. 西南石油大学学报(自然科学版), 38(6): 8-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201606002.htm
      雷裕红, 宋颖睿, 张立宽, 等, 2021. 海洋天然气水合物成藏系统研究进展及发展方向. 石油学报, 42(6): 801-820. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202106009.htm
      宁伏龙, 刘力, 李实, 等, 2013. 天然气水合物储层测井评价及其影响因素. 石油学报, 34(3): 591-606. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303029.htm
      钱进, 王秀娟, 董冬冬, 等, 2019. 裂隙充填型天然气水合物储层的各向异性饱和度新估算及其裂隙定量评价. 地球物理学进展, 34(1): 354-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201901048.htm
      苏正, 曹运诚, 杨睿, 等, 2012. 南海北部神狐海域天然气水合物成藏演化分析研究. 地球物理学报, 55(5): 1764-1774. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201205035.htm
      王宏斌, 张光学, 梁劲, 等, 2008. 南海北部陆坡构造坡折带中的天然气水合物. 沉积学报, 26(2): 283-293. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200802015.htm
      王吉亮, 2015. 高富集度天然气水合物储层地球物理特征研究. 青岛: 中国科学院研究生院(海洋研究所).
      王吉亮, 王秀娟, 钱进, 等, 2013. 裂隙充填型天然气水合物的各向异性分析及饱和度估算: 以印度东海岸NGHP01-10D井为例. 地球物理学报, 56(4): 1312-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304027.htm
      王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
      徐立涛, 何玉林, 石万忠, 等, 2021. 琼东南盆地深水区天然气水合物成藏主控因素及模式. 石油学报, 42(5): 598-610. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105004.htm
      杨胜雄, 2019. 南海天然气水合物成藏理论. 北京: 科学出版社.
      张丙坤, 2014. 南海北部深水区天然气水合物相关活动构造类型及成因机制. 青岛: 中国海洋大学.
      张伟, 何家雄, 卢振权, 等, 2015. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探. 天然气地球科学, 26(11): 2185-2197. doi: 10.11764/j.issn.1672-1926.2015.11.2185
      周杰, 杨希冰, 杨金梅, 等, 2019. 琼东南盆地松南低凸起古近系构造-沉积演化特征与天然气成藏. 地球科学, 44(8): 2704-2715. doi: 10.3799/dqkx.2020.321
      朱继田, 裴健翔, 孙志鹏, 等, 2011. 琼东南盆地新构造运动及其对晚期油气成藏的控制. 天然气地球科学, 22(4): 649-656. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201104013.htm
    • 加载中
    图(10)
    计量
    • 文章访问数:  594
    • HTML全文浏览量:  152
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-08
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回