• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地表水‒地下水相互作用对砷在浅层地下水系统中运移的影响

    余倩 张宇 董听 吴光伟 李平

    余倩, 张宇, 董听, 吴光伟, 李平, 2023. 地表水‒地下水相互作用对砷在浅层地下水系统中运移的影响. 地球科学, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
    引用本文: 余倩, 张宇, 董听, 吴光伟, 李平, 2023. 地表水‒地下水相互作用对砷在浅层地下水系统中运移的影响. 地球科学, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
    Yu Qian, Zhang Yu, Dong Ting, Wu Guangwei, Li Ping, 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
    Citation: Yu Qian, Zhang Yu, Dong Ting, Wu Guangwei, Li Ping, 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146

    地表水‒地下水相互作用对砷在浅层地下水系统中运移的影响

    doi: 10.3799/dqkx.2022.146
    基金项目: 

    国家自然科学基金青年基金项目 41702245

    中央高校基本科研业务费专项资金项目 CZQ21013

    详细信息
      作者简介:

      余倩(1986-),女,讲师,博士,主要从事地表水‒地下水相互作用、地下水污染修复、溶质运移与化学反应的数值模拟等领域的研究. ORCID: 0000-0002-6094-6354. E-mail: yuqian308@126.com

    • 中图分类号: P66

    Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain

    • 摘要: 地表水‒地下水(SW-GW)相互作用对砷在浅层地下水系统中的运移至关重要,但其模式和强度对地下水中砷运移的影响尚不清楚.本文针对江汉平原仙桃市沙湖原种场野外地下水三维监测试验场,开展野外监测和三维地下水数值模拟.结果发现雨季地表水补给地下水,SW-GW相互作用强度较大,地下水砷浓度升高;旱季地下水补给地表水,SW-GW相互作用强度减弱,地下水砷浓度降低.SW-GW相互作用模式与强度的季节转变导致地下水流速和流向产生季节响应.模型估算出雨季和旱季地面以下10~25 m最大垂向砷交换量分别为457.2 mg/d、191.3 mg/d,地面以下28 m处水平砷交换量分别为4 380.0 mg/d、1 385.6 mg/d.

       

    • 图  1  沙湖试验场监测井示意(据Duan et al.,2015修改)

      图b中A表示浅层(即10 m);B表示中层(即25 m)

      Fig.  1.  Map of monitoring wells of Shahu field site (modified from Duan et al., 2015)

      图  2  模拟区概化图

      a.为平面示意;b.为剖面A-A’示意

      Fig.  2.  Sketch of model domian

      图  3  地表水(a)与地下水(b)水位时间序列

      图a为河流水位,参考Schaefer et al.2016

      Fig.  3.  Time series of surface water (a) and groundwater levels (b)

      图  4  平均地表水水位与地下水水位之差(a);平均水力梯度(b),黑色为通顺河与监测井SY05、SY06、SY11在25m深度处的垂直水力梯度变化;红色为监测井SY03、SY06、SY09、SY11在10~25 m的垂直水力梯度变化

      正值表示地表水补给地下水,负值表示地下水补给地表水

      Fig.  4.  Difference between surface water and groundwater level (a); the vertical hydraulic gradient between the Tongshun River and three adjacent monitoring wells SY05, SY06, SY11 (red circle) and between 10 m and 25 m of wells SY03, SY06, SY09, SY11(black rectangle) (b)

      图  5  沙湖试验场地表水、地下水和大气降水在雨季(a)和旱季(b)的稳定氢氧同位素分布

      Fig.  5.  Stable hydrogen-oxygen isotope signatures of surface water, groundwater and precipitation in rainy season (a) dry season (b)

      图  6  地下水排泄量占河水流量百分比(f)的垂向分布

      Fig.  6.  Vertical distribution of groundwater discharge as a percentage of river flow (f)

      图  7  模型校正结果

      a. SY03;b. SY06;c. SY09;d. SY11;测点后面的字母:A表示浅层(即10m);B表示中层(即25m)

      Fig.  7.  Calibration results of groundwater flow model

      图  8  Z=18.5 m和Z=‒13.5 m深度处水平地下水流速特征((a)(c)为旱季,(b)(d)为雨季)以及X=1 255 m处含水层垂直流速分布特征((e)为旱季,(f)为雨季)

      Fig.  8.  Distribution of horizontal groundwater velocity at the depth of 18.5 and ‒13.5 m below the ground surface, respectively ((a) (c) and (b) (d) stand for the dry and rainy season, respectively) and vertical groundwater velocity at X=1 255 m ((e) and (f) stand for the dry and rainy season, respectively)

      图  9  地下水流净交换量

      a.各层之间的垂直水流净交换量,正值表示垂直向下,负值表示垂直向上;b. X=2 km处,A-A’剖面水平流交换量,正值表示方向指向通顺河,负值表示方向指向东荆河

      Fig.  9.  Net exchange of groundwater flow

      图  10  雨季(a)和旱季(b)时的地下水砷运移机理概化图

      Fig.  10.  Conceptual map of arsenic transport in aquifers during the rainy (a) and dry season (b)

      表  1  地下水流模型中的水力学参数表

      Table  1.   Hydraulic properties of aquifers used in model simulations

      渗透系数K(水平/垂向)
      (m/d)a(初始值)
      渗透系数K(水平/垂向)
      (m/d)(校正值)
      单位储水系数
      Ss(S‒1)b
      单位给水度Syc 有效孔隙d
      粉土 0.13/0.13 0.13/0.10 5×10‒4 0.21 0.51
      6.74/0.74 6.74/0.74 1×10‒4 0.07 0.40
      注:a引自Du et al.(2018); b引自郭欣欣(2014); c引自Healy and Cook(2002); d引自Schaefer et al.(2016).
      下载: 导出CSV
    • Chen, X. P., Deng, Y. H., Zhang, Y. Z., et al., 2007. The Epidemiological Survey and Analysis to Arsenism in Nanhong Village of Plain Hubei Province. Chinese Journal of Control of Endemic Diseases, 22(4): 281-282 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1889.2007.04.016
      Currell, M., Cartwright, I., Raveggi, M., et al., 2011. Controls on Elevated Fluoride and Arsenic Concentrations in Groundwater from the Yuncheng Basin, China. Applied Geochemistry, 26(4): 540-552. https://doi.org/10.1016/j.apgeochem.2011.01.012
      Deng, Y. M., Wang, Y. X., Li, H. J., et al., 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract).
      Du, Y., Ma, T., Deng, Y. M., et al., 2018. Characterizing Groundwater/Surface-Water Interactions in the Interior of Jianghan Plain, Central China. Hydrogeology Journal, 26(4): 1047-1059. https://doi.org/10.1007/s10040-017-1709-7
      Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2015. Temporal Variation of Groundwater Level and Arsenic Concentration at Jianghan Plain, Central China. Journal of Geochemical Exploration, 149: 106-119. https://doi.org/10.1016/j.gexplo.2014.12.001
      Duan, Y. H., Schaefer, M. V., Wang, Y. X., et al., 2019. Experimental Constraints on Redox-Induced Arsenic Release and Retention from Aquifer Sediments in the Central Yangtze River Basin. Science of the Total Environment, 649: 629-639. https://doi.org/10.1016/j.scitotenv.2018.08.205
      Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
      Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Gan, Y. Q., Zhao, K., Deng, Y. M., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
      Guo, H. M., Wen, D. G., Liu, Z. Y., et al., 2014. A Review of High Arsenic Groundwater in Mainland and Taiwan, China: Distribution, Characteristics and Geochemical Processes. Applied Geochemistry, 41: 196-217. https://doi.org/10.1016/j.apgeochem.2013.12.016
      Guo, X. X., 2014. Arsenic Mobilization and Transport in Shallow Aquifer Systems of Jianghan Plain, Central China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Healy, R. W., Cook, P. G., 2002. Using Groundwater Levels to Estimate Recharge. Hydrogeology Journal, 10(1): 91-109. https://doi.org/10.1007/s10040-001-0178-0
      Islam, F. S., Boothman, C., Gault, A. G., et al., 2005. Potential Role of the Fe(Ⅲ)-Reducing Bacteria Geobacter and Geothrix in Controlling Arsenic Solubility in Bengal Delta Sediments. Mineralogical Magazine, 69(5): 865-875. https://doi.org/10.1180/0026461056950294
      Jha, P. K., Tripathi, P., 2021. Arsenic and Fluoride Contamination in Groundwater: A Review of Global Scenarios with Special Reference to India. Groundwater for Sustainable Development, 13: 100576. https://doi.org/10.1016/j.gsd.2021.100576
      Khan, M. R., Koneshloo, M., Knappett, P. S. K., et al., 2016. Megacity Pumping and Preferential Flow Threaten Groundwater Quality. Nature Communications, 7: 12833. https://doi.org/10.1038/ncomms12833
      Larsen, F., Pham, N. Q., Dang, N. D., et al., 2008. Controlling Geological and Hydrogeological Processes in an Arsenic Contaminated Aquifer on the Red River Flood Plain, Vietnam. Applied Geochemistry, 23(11): 3099-3115. https://doi.org/10.1016/j.apgeochem.2008.06.014
      McDonald, M. G., Harbaugh, A. W., 1988. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model. U. S. Geological Survey, Reston.
      Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
      Radloff, K. A., Zheng, Y., Stute, M., et al., 2017. Reversible Adsorption and Flushing of Arsenic in a Shallow, Holocene Aquifer of Bangladesh. Applied Geochemistry, 77: 142-157. https://doi.org/10.1016/j.apgeochem.2015.11.003
      Sathe, S. S., Mahanta, C., 2019. Groundwater Flow and Arsenic Contamination Transport Modeling for a Multi Aquifer Terrain: Assessment and Mitigation Strategies. Journal of Environmental Management, 231: 166-181. https://doi.org/10.1016/j.jenvman.2018.08.057
      Schaefer, M. V., Ying, S. C., Benner, S. G., et al., 2016. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Environmental Science & Technology, 50(7): 3521-3529. https://doi.org/10.1021/acs.est.5b04986
      Simpson, S. C., Meixner, T., 2012. Modeling Effects of Floods on Streambed Hydraulic Conductivity and Groundwater-Surface Water Interactions. Water Resources Research, 48(2): W02515. https://doi.org/10.1029/2011wr011022
      Singh, R., Singh, S., Parihar, P., et al., 2015. Arsenic Contamination, Consequences and Remediation Techniques: A Review. Ecotoxicology and Environmental Safety, 112: 247-270. https://doi.org/10.1016/j.ecoenv.2014.10.009
      Song, X. F., Liu, X. C., Xia, J., et al., 2007. Study on the Transformation Relationship between Surface Water and Groundwater in Huaisha River Basin Based on Environmental Isotope Technology. Science in China (Series D), 37(1): 102-110 (in Chinese with English abstract).
      Swartz, C. H., Blute, N. K., Badruzzman, B., et al., 2004. Mobility of Arsenic in a Bangladesh Aquifer: Inferences from Geochemical Profiles, Leaching Data, and Mineralogical Characterization. Geochimica et Cosmochimica Acta, 68(22): 4539-4557. https://doi.org/10.1016/j.gca.2004.04.020
      van Geen, A., Zheng, Y., Goodbred, S. Jr., et al., 2008. Flushing History as a Hydrogeological Control on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin. Environmental Science & Technology, 42(7): 2283-2288. https://doi.org/10.1021/es702316k
      Wang, J., Xie, Z. M., Wang, J., et al., 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46(2): 642-651 (in Chinese with English abstract).
      Xie, Y. Q., Cook, P. G., Simmons, C. T., 2016. Solute Transport Processes in Flow-Event-Driven Stream-Aquifer Interaction. Journal of Hydrology, 538: 363-373. https://doi.org/10.1016/j.jhydrol.2016.04.031
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Yang, S. Z., Guo, H. M., Tang, X. H., et al., 2008. Distribution of Abnormal Groundwater Arsenic in Hetao Plain, Inner Mongolia. Earth Science Frontiers, 15(1): 242-249 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.01.030
      Yang, Y. J., Yuan, X. F., Deng, Y. M., et al., 2020. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120
      Ye, R. Y., 2015. Interaction of Surface Water and Groundwater in Yili-Gongnaisi River Valley (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Yu, K., Gan, Y. Q., Zhou, A. G., et al., 2018. Organic Carbon Sources and Controlling Processes on Aquifer Arsenic Cycling in the Jianghan Plain, Central China. Chemosphere, 208: 773-781. https://doi.org/10.1016/j.chemosphere.2018.05.188
      Zhao, J. C., Wei, B. H., Xiao, S. B., 2009. Stable Isotopic Characteristics of Atmospheric Precipitation from Yichang, Hubei. Tropical Geography, 29(6): 526-531 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5221.2009.06.004
      Zheng, T. L., Deng, Y. M., Wang, Y. X., et al., 2020. Microbial Sulfate Reduction Facilitates Seasonal Variation of Arsenic Concentration in Groundwater of Jianghan Plain, Central China. Science of the Total Environment, 735: 139327. https://doi.org/10.1016/j.scitotenv.2020.139327
      陈兴平, 邓云华, 张裕曾, 等, 2007. 湖北南洪村饮水砷含量及砷中毒调查. 中国地方病防治杂志, 22(4): 281-282. doi: 10.3969/j.issn.1001-1889.2007.04.016
      邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      郭欣欣, 2014. 江汉平原浅层含水层系统中砷释放与迁移过程研究(博士学位论文). 武汉: 中国地质大学.
      宋献方, 刘相超, 夏军, 等, 2007. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究. 中国科学(D辑), 37(1): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701011.htm
      王晶, 谢作明, 王佳, 等, 2021. 硫介导细菌还原载砷铁矿对砷迁移转化的影响. 地球科学, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      杨素珍, 郭华明, 唐小惠, 等, 2008. 内蒙古河套平原地下水砷异常分布规律研究. 地学前缘, 15(1): 242-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801032.htm
      叶人源, 2015. 新疆伊犁‒巩乃斯河谷地表水与地下水转化关系研究(硕士学位论文). 西安: 长安大学.
      赵家成, 魏宝华, 肖尚斌, 2009. 湖北宜昌地区大气降水中的稳定同位素特征. 热带地理, 29(6): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD200906006.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  504
    • HTML全文浏览量:  398
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-15
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回