• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于人工智能变形预测隧道坍塌失效概率评估方法

    吴波 丘伟兴 徐世祥 蔡俊华 李贻材 张耀

    吴波, 丘伟兴, 徐世祥, 蔡俊华, 李贻材, 张耀, 2024. 基于人工智能变形预测隧道坍塌失效概率评估方法. 地球科学, 49(11): 4204-4215. doi: 10.3799/dqkx.2022.147
    引用本文: 吴波, 丘伟兴, 徐世祥, 蔡俊华, 李贻材, 张耀, 2024. 基于人工智能变形预测隧道坍塌失效概率评估方法. 地球科学, 49(11): 4204-4215. doi: 10.3799/dqkx.2022.147
    Wu Bo, Qiu Weixing, Xu Shixiang, Cai Junhua, Li Yicai, Zhang Yao, 2024. A Method for Assessing Probability of Tunnel Collapse Based on Artificial Intelligence Deformation Prediction. Earth Science, 49(11): 4204-4215. doi: 10.3799/dqkx.2022.147
    Citation: Wu Bo, Qiu Weixing, Xu Shixiang, Cai Junhua, Li Yicai, Zhang Yao, 2024. A Method for Assessing Probability of Tunnel Collapse Based on Artificial Intelligence Deformation Prediction. Earth Science, 49(11): 4204-4215. doi: 10.3799/dqkx.2022.147

    基于人工智能变形预测隧道坍塌失效概率评估方法

    doi: 10.3799/dqkx.2022.147
    基金项目: 

    国家自然科学基金项目 52168055

    国家自然科学基金项目 51678164

    江西省自然科学基金项目 20212ACB204001

    广西自然科学基金项目 2018GXNSFDA138009

    详细信息
      作者简介:

      吴波(1971-),男,教授,主要从事隧道及地下工程安全风险智慧防控与管理研究.E-mail:wubo@gxu.edu.cn

      通讯作者:

      徐世祥,E-mail:603559081@qq.com

    • 中图分类号: P64

    A Method for Assessing Probability of Tunnel Collapse Based on Artificial Intelligence Deformation Prediction

    • 摘要: 当隧道坍塌事故发生时,决策者往往没有足够的反应时间去采取相应的加固措施.超前预测隧道坍塌失效概率已成为隧道工程建设的关键问题.为了超前评估隧道坍塌失效概率并及时预警,本研究提出了一种多数据融合方法.该方法将云模型(CM)、多输出高斯过程回归(MOGPR)和改进的D-S理论相结合.通过融合多项监测数据(拱顶位移、水平收敛位移),减少数据的不确定性,提高评估结果的准确性和鲁棒性.此外,利用人工智能预测的围岩变形作为信息源,得到超前的坍塌失效概率评估.并将该方法运用于金珠帕隧道,为决策者提供更多的响应时间.最终,围岩支护只产生少量的变形裂缝,避免了隧道坍塌的发生.

       

    • 图  1  多数据融合评估方法流程

      Fig.  1.  Flow chart of the proposed hybrid method for multi-source data fusion decision

      图  2  GA和MOGPR耦合算法流程

      Fig.  2.  Flow chart of GA and MOGPR coupling algorithm

      图  3  滚动预测方法原理

      Fig.  3.  Schematic diagram of the rolling prediction method

      图  4  金珠帕隧道右线纵截面

      Fig.  4.  Longitudinal section of the right line of Jinzhupa Tunnel

      图  5  监测点布置示意

      Fig.  5.  Monitoring point layout

      图  6  隧道坍塌

      Fig.  6.  Tunneling collapse

      图  7  隧道开挖周期的失效等级评估

      Fig.  7.  Failure level assessment of tunnel excavation cycle

      表  1  监控量测数据的分类

      Table  1.   Classification of monitoring measurement data

      隧道坍塌等级 Ⅰ(安全) Ⅱ(变形) Ⅲ(小规模坍塌) Ⅳ(大规模坍塌)
      每日变形速率(mm/d) 0≤x < 2 2≤x < 5 5≤x < 10 10≤x≤20
      累计变形(mm) 0≤y < 50 50≤y < 100 100≤y < 200 200≤y≤300
      注:累积变形量(y)应根据测点与掌子面距离(D)乘以系数(ζ),ζ根据规范《公路隧道监测测量技术规范》(DB 35/T 1067-2010)确定,如表 2所示.
      下载: 导出CSV

      表  2  累积变形量(y)的系数(ζ

      Table  2.   Coefficient (ζ) of cumulative deformation (y)

      测点到掌子面的距离(D 1B 2B 3B 4B~6B
      ζ 0.5 0.75 0.85 1
      注:B为开挖隧道的跨度.
      下载: 导出CSV

      表  3  K242+880监测段围岩位移预测结果

      Table  3.   Prediction results of surrounding rock displacement in K242+880 monitoring section

      监测时间(d) 实测拱顶位移(mm) MOGPR预测值
      (mm)
      SVR预测值(mm) MOGPR相对误差(%) SVR相对误差(%) 实测水平收敛值(mm) MOGPR预测值(mm) SVR预测值(mm) MOGPR相对误差(%) SVR相对误差
      10 12.3 12.00 11.40 2.45 7.29 10.7 10.36 10.34 3.14 3.38
      11 12.9 12.38 12.00 4.04 6.98 11.3 11.00 10.31 2.65 8.73
      12 13.8 12.77 13.00 7.45 5.80 12.2 12.00 9.89 1.64 18.92
      13 14.6 14.65 14.43 0.33 1.18 12.9 12.74 12.72 1.25 1.38
      14 15.3 15.63 15.10 2.15 1.29 13.7 13.33 13.30 2.70 2.94
      15 15.8 16.66 15.68 5.42 0.79 14.4 13.88 13.83 3.60 3.98
      16 16.2 16.58 15.92 2.36 1.71 15.1 15.09 14.63 0.05 3.08
      17 16.8 17.27 15.81 2.78 5.88 15.9 15.80 14.63 0.62 7.96
      18 17.5 17.94 15.42 2.51 11.86 16.5 16.50 14.32 0.02 13.20
      19 18.1 17.76 17.76 1.90 1.87 17.0 17.13 16.78 0.76 1.29
      20 18.7 18.06 17.73 3.41 5.21 17.5 17.68 16.91 1.05 3.37
      21 19.2 18.29 17.30 4.76 9.89 17.9 18.17 16.80 1.53 6.15
      22 19.7 19.41 19.30 1.46 2.02 18.1 18.23 18.07 0.73 0.16
      23 20.3 19.38 19.19 4.51 5.47 18.4 18.47 18.21 0.38 1.05
      24 20.9 19.13 18.82 8.45 9.94 18.7 18.62 18.24 0.40 2.47
      25 21.4 21.36 21.23 0.21 0.82 19.1 18.98 18.78 0.62 1.68
      26 21.9 21.82 21.54 0.38 1.65 19.3 19.32 18.81 0.08 2.53
      27 22.6 22.24 21.77 1.59 3.69 19.5 19.68 18.72 0.91 3.98
      28 23.2 23.18 23.00 0.09 0.88 19.7 19.49 19.55 1.07 0.75
      29 23.9 23.81 23.36 0.39 2.27 20.1 19.31 19.41 3.93 3.41
      30 24.5 24.44 23.56 0.24 3.82 20.4 19.00 19.15 6.85 6.14
      31 25.1 25.15 24.84 0.21 1.06 20.6 20.60 20.59 0.00 0.07
      32 25.3 25.81 25.03 2.02 1.07 20.8 20.85 20.81 0.22 0.07
      33 25.5 26.48 24.99 3.84 1.99 20.9 21.08 21.03 0.88 0.61
      34 25.7 25.40 25.42 1.18 1.08 21.1 21.10 20.87 0.01 1.10
      35 25.8 25.11 25.11 2.69 2.66 21.4 21.22 20.75 0.85 3.04
      36 25.9 24.66 24.58 4.78 5.10 21.6 21.31 20.52 1.36 4.98
      37 26.0 26.00 25.94 0.02 0.24 21.7 21.71 21.62 0.04 0.37
      38 26.2 26.10 25.98 0.39 0.82 21.9 21.85 21.50 0.25 1.83
      39 26.3 26.18 25.97 0.47 1.25 22.1 21.96 21.26 0.61 3.81
      40 26.5 26.38 26.21 0.45 1.11 22.4 22.25 22.34 0.65 0.25
      41 26.6 26.38 25.98 0.82 2.34 22.6 22.41 22.62 0.83 0.10
      42 26.8 26.29 25.70 1.89 4.10 22.99 22.56 22.80 1.86 0.84
      位移预测的平均相对误差(%) 2.29 3.43 1.26 2.29
      下载: 导出CSV

      表  4  两个监控指标的云模型参数值

      Table  4.   Cloud model parameter values of two monitoring indicators

      指标
      Ex En He Ex En He Ex En He Ex En He
      每日速率 1 0.333 0.002 3.5 0.5 0.002 7.5 0.833 0.002 12.5 0.833 0.002
      累计沉降 25 8.333 0.002 75 8.333 0.002 150 16.777 0.002 250 16.777 0.002
      下载: 导出CSV

      表  5  五个测试样本的融合结果

      Table  5.   Fusion results of five test samples

      隧道断面 评估模型 等级Ⅰ的失效概率 等级Ⅱ的失效概率 等级Ⅲ的失效概率 等级Ⅳ的失效概率 评估值 实际值
      No.1 拱顶位移 0.80 0.20 0.00 0.00
      水平收敛 0.45 0.55 0.00 0.00
      Improve D-S 0.77 0.23 0.00 0.00
      No.2 拱顶位移 0.50 0.50 0.00 0.02 --
      水平收敛 0.60 0.40 0.00 0.00
      Improve D-S 0.70 0.30 0.00 0.00
      No.3 拱顶位移 0.00 0.80 0.20 0.00
      水平收敛 0.19 0.81 0.00 0.00
      Improve D-S 0.00 1.00 0.00 0.00
      No.4 拱顶位移 0.00 0.30 0.70 0.00
      水平收敛 0.00 0.56 0.44 0.00
      Improve D-S 0.00 0.35 0.65 0.00
      No.5 拱顶位移 0.00 0.15 0.85 0.00
      水平收敛 0.86 0.14 0.00 0.00
      Improve D-S 0.43 0.15 0.42 0.00
      下载: 导出CSV

      表  6  隧道围岩位移预测

      Table  6.   The prediction of tunnel surrounding rock displacement

      训练数据(mm) 预测数据(mm)
      天数 1 2 3 4 5 6 7 8 9 10 11 12
      拱顶位移 3.1 6.6 8.2 9.4 10.2 11.2 13.2 16.8 21.1 26.5 36.5 47.3
      水平收敛 2.7 5.1 6.5 7.2 8.1 9.3 11.4 14.4 19.5 25.1 30.6 35.1
      实际拱顶位移 3.1 6.6 8.2 9.4 10.2 11.2 13.2 16.8 21.1 25.8 34.4 38.1
      实际水平位移 2.7 5.1 6.5 7.2 8.1 9.3 11.4 14.4 19.5 24.6 31.1 33.4
      下载: 导出CSV

      表  7  预测坍塌失效概率值

      Table  7.   The prediction of the collapse failure probability

      监测数据(mm) 预测数据(mm)
      天数 1 2 3 4 5 6 7 8 9 10 11 12
      预测坍塌等级
      实际坍塌等级
      下载: 导出CSV
    • Adoko, A. C., Jiao, Y. Y., Wu, L., et al., 2013. Predicting Tunnel Convergence Using Multivariate Adaptive Regression Spline and Artificial Neural Network. Tunnelling and Underground Space Technology, 38: 368-376. https://doi.org/10.1016/j.tust.2013.07.023
      Cai, B., Liu, Y., Fan, Q., et al., 2014. Multi-Source Information Fusion Based Fault Diagnosis of Ground-Source Heat Pump Using Bayesian Network. Applied Energy, 114: 1-9. https://doi.org/10.1016/j.apenergy.2013.09.043
      Chen, F., Zhang, W., 2021. Influence of Spatial Variability on the Uniaxial Compressive Responses of Rock Pillar Based on 3D Random Field. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(3): 04021035. https://doi.org/10.1061/AJRUA6.0001162
      Chen, F. Y., Zhang, W. G., 2022. Reliability Analysis of Lijiaping Metro Tunnel Based on Conditional Random Field, Chongqing. Journal of Basic Science and Engineering, 30(1): 166-182 (in Chinese with English abstract).
      Chen, X., Li, L., Wang, L., et al., 2019. The Current Situation and Prevention and Control Countermeasures for Typical Dynamic Disasters in Kilometer-Deep Mines in China. Safety Science, 115: 229-236. doi: 10.1016/j.ssci.2019.02.010
      Duong, P. L. T., Park, H., Raghavan, N., 2018. Application of Multi-Output Gaussian Process Regression for Remaining Useful Life Prediction of Light Emitting Diodes. Microelectronics Reliability, 88-90: 80-84. https://doi.org/10.1016/j.microrel.2018.07.106
      Gravina, R., Alinia, P., Ghasemzadeh, H., et al., 2017. Multi-Sensor Fusion in Body Sensor Networks: State-of-the-Art and Research Challenges. Information Fusion, 35: 68-80. https://doi.org/10.1016/j.inffus.2016.09.005
      Guo, K., Zhang, L., 2021. Multi-Source Information Fusion for Safety Risk Assessment in Underground Tunnels. Knowledge-Based Systems, 227: 107210. https://doi.org/10.1016/j.knosys.2021.107210
      Huang, X., Liu, Q., Liu, H., et al., 2018. Development and In-Situ Application of a Real-Time Monitoring System for the Interaction between TBM and Surrounding Rock. Tunnelling and Underground Space Technology, 81: 187-208. https://doi.org/10.1016/j.tust.2018.07.018
      Li, C., Xu, J., Pan, J., et al., 2012. Plastic Zone Distribution Laws and Its Types of Surrounding Rock in Large-Span Roadway. International Journal of Mining Science and Technology, 22: 23-28. https://doi.org/10.1016/j.ijmst.2011.06.002
      Li, D., Liu, C., Gan, W., 2009. A New Cognitive Model: Cloud Model. International Journal of Intelligent Systems, 24: 357-375. https://doi.org/10.1002/int.20340
      Li, T., De la Prieta Pintado, F., Corchado, et al., 2017. Multi-Source Homogeneous Data Clustering for Multi-Target Detection from Cluttered Background with Misdetection. Applied Soft Computing, 60: 436-446. https://doi.org/10.1016/j.asoc.2017.07.012
      Lim, S. L. H., Duong, P. L. T., Park, H., et al., 2020. Assessing Multi-Output Gaussian Process Regression for Modeling of Non-Monotonic Degradation Trends of Light Emitting Diodes in Storage. Microelectronics Reliability, 114: 113794. https://doi.org/10.1016/j.microrel.2020.113794
      Liu, K., Liu, B., 2019. Intelligent Information-Based Construction in Tunnel Engineering Based on the GA and CCGPR Coupled Algorithm. Tunnelling and Underground Space Technology, 88: 113-128. https://doi.org/10.1016/j.tust.2019.02.012
      Saadi, I., Farooq, B., Mustafa, A., et al., 2018. An Efficient Hierarchical Model for Multi-Source Information Fusion. Expert Systems with Applications, 110: 352-362. doi: 10.1016/j.eswa.2018.06.018
      Xue, X., Xiao, M., 2017. Deformation Evaluation on Surrounding Rocks of Underground Caverns Based on PSO-LSSVM. Tunnelling and Underground Space Technology, 69: 171-181. https://doi.org/10.1016/j.tust.2017.06.019
      Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093(in Chinese with English abstract).
      Yang, Y., Jing, Z., Gao, T., et al., 2007. Multi-Sources Information Fusion Algorithm in Airborne Detection Systems. Journal of Systems Engineering and Electronics, 18: 171-176. https://doi.org/10.1016/S1004-4132(07)60070-X
      Zhang, G. H., Chen, W., Jiao, Y. Y., et al., 2020. A Failure Probability Evaluation Method for Collapse of Drill-and-Blast Tunnels Based on Multistate Fuzzy Bayesian Network. Engineering Geology, 276: 105752. https://doi.org/10.1016/j.enggeo.2020.105752
      Zhang, L., Wu, X., Ding, L., et al., 2013a. A Novel Model for Risk Assessment of Adjacent Buildings in Tunneling Environments. Building and Environment, 65: 185-194. https://doi.org/10.1016/j.buildenv.2013.04.008
      Zhang, Y., Zhang, H., Nasrabadi, N. M., et al., 2013b. Multi-Metric Learning for Multi-Sensor Fusion Based Classification. Information Fusion, 14: 431-440. https://doi.org/10.1016/j.inffus.2012.05.002
      Zhang, L., Wu, X., Zhu, H., et al., 2017. Perceiving Safety Risk of Buildings Adjacent to Tunneling Excavation: An Information Fusion Approach. Automation in Construction, 73: 88-101. https://doi.org/10.1016/j.autcon.2016.09.003
      陈福勇, 仉文岗, 2022. 基于条件随机场的重庆李家坪地铁隧道可靠度分析. 应用基础与工程科学学报, 30(1): 166-182.
      严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
    • 加载中
    图(7) / 表(7)
    计量
    • 文章访问数:  340
    • HTML全文浏览量:  139
    • PDF下载量:  162
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-18
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回