A Method for Assessing Probability of Tunnel Collapse Based on Artificial Intelligence Deformation Prediction
-
摘要: 当隧道坍塌事故发生时,决策者往往没有足够的反应时间去采取相应的加固措施.超前预测隧道坍塌失效概率已成为隧道工程建设的关键问题.为了超前评估隧道坍塌失效概率并及时预警,本研究提出了一种多数据融合方法.该方法将云模型(CM)、多输出高斯过程回归(MOGPR)和改进的D-S理论相结合.通过融合多项监测数据(拱顶位移、水平收敛位移),减少数据的不确定性,提高评估结果的准确性和鲁棒性.此外,利用人工智能预测的围岩变形作为信息源,得到超前的坍塌失效概率评估.并将该方法运用于金珠帕隧道,为决策者提供更多的响应时间.最终,围岩支护只产生少量的变形裂缝,避免了隧道坍塌的发生.Abstract: When a tunnel collapse occurs, decision makers often do not have enough reaction time to take appropriate reinforcement measures. Advance prediction of tunnel collapse failure probability has become a key issue in tunnel engineering construction. As for assessing the tunneling collapse failure probability and providing basic risk-controlling strategies, in this study it proposes a novel multi-source information fusion approach that combines the cloud model (CM), the multi-output gaussian process regression (MOGPR), and the improved D-S evidence theory. The fusion of multiple monitoring data (vault displacement, horizontal convergence displacement) reduces data uncertainty and improves the accuracy and robustness of assessment results. In addition, the surrounding rock deformation predicted by artificial intelligence is used as a source of information to obtain an advanced collapse failure probability assessment. As a result, decision makers have a longer response time before the collapse occurs. Applying the method to the Jinzhupa tunnel provides decision makers with more response time. In the end, only a small amount of deformation cracks were generated in the surrounding rock support, avoiding the tunnel collapse.
-
表 1 监控量测数据的分类
Table 1. Classification of monitoring measurement data
隧道坍塌等级 Ⅰ(安全) Ⅱ(变形) Ⅲ(小规模坍塌) Ⅳ(大规模坍塌) 每日变形速率(mm/d) 0≤x < 2 2≤x < 5 5≤x < 10 10≤x≤20 累计变形(mm) 0≤y < 50 50≤y < 100 100≤y < 200 200≤y≤300 注:累积变形量(y)应根据测点与掌子面距离(D)乘以系数(ζ),ζ根据规范《公路隧道监测测量技术规范》(DB 35/T 1067-2010)确定,如表 2所示. 表 2 累积变形量(y)的系数(ζ)
Table 2. Coefficient (ζ) of cumulative deformation (y)
测点到掌子面的距离(D) 1B 2B 3B 4B~6B ζ 0.5 0.75 0.85 1 注:B为开挖隧道的跨度. 表 3 K242+880监测段围岩位移预测结果
Table 3. Prediction results of surrounding rock displacement in K242+880 monitoring section
监测时间(d) 实测拱顶位移(mm) MOGPR预测值
(mm)SVR预测值(mm) MOGPR相对误差(%) SVR相对误差(%) 实测水平收敛值(mm) MOGPR预测值(mm) SVR预测值(mm) MOGPR相对误差(%) SVR相对误差 10 12.3 12.00 11.40 2.45 7.29 10.7 10.36 10.34 3.14 3.38 11 12.9 12.38 12.00 4.04 6.98 11.3 11.00 10.31 2.65 8.73 12 13.8 12.77 13.00 7.45 5.80 12.2 12.00 9.89 1.64 18.92 13 14.6 14.65 14.43 0.33 1.18 12.9 12.74 12.72 1.25 1.38 14 15.3 15.63 15.10 2.15 1.29 13.7 13.33 13.30 2.70 2.94 15 15.8 16.66 15.68 5.42 0.79 14.4 13.88 13.83 3.60 3.98 16 16.2 16.58 15.92 2.36 1.71 15.1 15.09 14.63 0.05 3.08 17 16.8 17.27 15.81 2.78 5.88 15.9 15.80 14.63 0.62 7.96 18 17.5 17.94 15.42 2.51 11.86 16.5 16.50 14.32 0.02 13.20 19 18.1 17.76 17.76 1.90 1.87 17.0 17.13 16.78 0.76 1.29 20 18.7 18.06 17.73 3.41 5.21 17.5 17.68 16.91 1.05 3.37 21 19.2 18.29 17.30 4.76 9.89 17.9 18.17 16.80 1.53 6.15 22 19.7 19.41 19.30 1.46 2.02 18.1 18.23 18.07 0.73 0.16 23 20.3 19.38 19.19 4.51 5.47 18.4 18.47 18.21 0.38 1.05 24 20.9 19.13 18.82 8.45 9.94 18.7 18.62 18.24 0.40 2.47 25 21.4 21.36 21.23 0.21 0.82 19.1 18.98 18.78 0.62 1.68 26 21.9 21.82 21.54 0.38 1.65 19.3 19.32 18.81 0.08 2.53 27 22.6 22.24 21.77 1.59 3.69 19.5 19.68 18.72 0.91 3.98 28 23.2 23.18 23.00 0.09 0.88 19.7 19.49 19.55 1.07 0.75 29 23.9 23.81 23.36 0.39 2.27 20.1 19.31 19.41 3.93 3.41 30 24.5 24.44 23.56 0.24 3.82 20.4 19.00 19.15 6.85 6.14 31 25.1 25.15 24.84 0.21 1.06 20.6 20.60 20.59 0.00 0.07 32 25.3 25.81 25.03 2.02 1.07 20.8 20.85 20.81 0.22 0.07 33 25.5 26.48 24.99 3.84 1.99 20.9 21.08 21.03 0.88 0.61 34 25.7 25.40 25.42 1.18 1.08 21.1 21.10 20.87 0.01 1.10 35 25.8 25.11 25.11 2.69 2.66 21.4 21.22 20.75 0.85 3.04 36 25.9 24.66 24.58 4.78 5.10 21.6 21.31 20.52 1.36 4.98 37 26.0 26.00 25.94 0.02 0.24 21.7 21.71 21.62 0.04 0.37 38 26.2 26.10 25.98 0.39 0.82 21.9 21.85 21.50 0.25 1.83 39 26.3 26.18 25.97 0.47 1.25 22.1 21.96 21.26 0.61 3.81 40 26.5 26.38 26.21 0.45 1.11 22.4 22.25 22.34 0.65 0.25 41 26.6 26.38 25.98 0.82 2.34 22.6 22.41 22.62 0.83 0.10 42 26.8 26.29 25.70 1.89 4.10 22.99 22.56 22.80 1.86 0.84 位移预测的平均相对误差(%) 2.29 3.43 1.26 2.29 表 4 两个监控指标的云模型参数值
Table 4. Cloud model parameter values of two monitoring indicators
指标 Ⅰ Ⅱ Ⅲ Ⅳ Ex En He Ex En He Ex En He Ex En He 每日速率 1 0.333 0.002 3.5 0.5 0.002 7.5 0.833 0.002 12.5 0.833 0.002 累计沉降 25 8.333 0.002 75 8.333 0.002 150 16.777 0.002 250 16.777 0.002 表 5 五个测试样本的融合结果
Table 5. Fusion results of five test samples
隧道断面 评估模型 等级Ⅰ的失效概率 等级Ⅱ的失效概率 等级Ⅲ的失效概率 等级Ⅳ的失效概率 评估值 实际值 No.1 拱顶位移 0.80 0.20 0.00 0.00 Ⅰ Ⅰ 水平收敛 0.45 0.55 0.00 0.00 Ⅱ Ⅰ Improve D-S 0.77 0.23 0.00 0.00 Ⅰ Ⅰ No.2 拱顶位移 0.50 0.50 0.00 0.02 -- Ⅰ 水平收敛 0.60 0.40 0.00 0.00 Ⅰ Ⅰ Improve D-S 0.70 0.30 0.00 0.00 Ⅰ Ⅰ No.3 拱顶位移 0.00 0.80 0.20 0.00 Ⅱ Ⅱ 水平收敛 0.19 0.81 0.00 0.00 Ⅱ Ⅱ Improve D-S 0.00 1.00 0.00 0.00 Ⅱ Ⅱ No.4 拱顶位移 0.00 0.30 0.70 0.00 Ⅲ Ⅲ 水平收敛 0.00 0.56 0.44 0.00 Ⅱ Ⅲ Improve D-S 0.00 0.35 0.65 0.00 Ⅲ Ⅲ No.5 拱顶位移 0.00 0.15 0.85 0.00 Ⅲ Ⅱ 水平收敛 0.86 0.14 0.00 0.00 Ⅰ Ⅰ Improve D-S 0.43 0.15 0.42 0.00 Ⅰ Ⅰ 表 6 隧道围岩位移预测
Table 6. The prediction of tunnel surrounding rock displacement
训练数据(mm) 预测数据(mm) 天数 1 2 3 4 5 6 7 8 9 10 11 12 拱顶位移 3.1 6.6 8.2 9.4 10.2 11.2 13.2 16.8 21.1 26.5 36.5 47.3 水平收敛 2.7 5.1 6.5 7.2 8.1 9.3 11.4 14.4 19.5 25.1 30.6 35.1 实际拱顶位移 3.1 6.6 8.2 9.4 10.2 11.2 13.2 16.8 21.1 25.8 34.4 38.1 实际水平位移 2.7 5.1 6.5 7.2 8.1 9.3 11.4 14.4 19.5 24.6 31.1 33.4 表 7 预测坍塌失效概率值
Table 7. The prediction of the collapse failure probability
监测数据(mm) 预测数据(mm) 天数 1 2 3 4 5 6 7 8 9 10 11 12 预测坍塌等级 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅱ Ⅱ Ⅲ Ⅲ Ⅲ 实际坍塌等级 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅱ Ⅱ Ⅲ Ⅲ Ⅱ -
Adoko, A. C., Jiao, Y. Y., Wu, L., et al., 2013. Predicting Tunnel Convergence Using Multivariate Adaptive Regression Spline and Artificial Neural Network. Tunnelling and Underground Space Technology, 38: 368-376. https://doi.org/10.1016/j.tust.2013.07.023 Cai, B., Liu, Y., Fan, Q., et al., 2014. Multi-Source Information Fusion Based Fault Diagnosis of Ground-Source Heat Pump Using Bayesian Network. Applied Energy, 114: 1-9. https://doi.org/10.1016/j.apenergy.2013.09.043 Chen, F., Zhang, W., 2021. Influence of Spatial Variability on the Uniaxial Compressive Responses of Rock Pillar Based on 3D Random Field. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(3): 04021035. https://doi.org/10.1061/AJRUA6.0001162 Chen, F. Y., Zhang, W. G., 2022. Reliability Analysis of Lijiaping Metro Tunnel Based on Conditional Random Field, Chongqing. Journal of Basic Science and Engineering, 30(1): 166-182 (in Chinese with English abstract). Chen, X., Li, L., Wang, L., et al., 2019. The Current Situation and Prevention and Control Countermeasures for Typical Dynamic Disasters in Kilometer-Deep Mines in China. Safety Science, 115: 229-236. doi: 10.1016/j.ssci.2019.02.010 Duong, P. L. T., Park, H., Raghavan, N., 2018. Application of Multi-Output Gaussian Process Regression for Remaining Useful Life Prediction of Light Emitting Diodes. Microelectronics Reliability, 88-90: 80-84. https://doi.org/10.1016/j.microrel.2018.07.106 Gravina, R., Alinia, P., Ghasemzadeh, H., et al., 2017. Multi-Sensor Fusion in Body Sensor Networks: State-of-the-Art and Research Challenges. Information Fusion, 35: 68-80. https://doi.org/10.1016/j.inffus.2016.09.005 Guo, K., Zhang, L., 2021. Multi-Source Information Fusion for Safety Risk Assessment in Underground Tunnels. Knowledge-Based Systems, 227: 107210. https://doi.org/10.1016/j.knosys.2021.107210 Huang, X., Liu, Q., Liu, H., et al., 2018. Development and In-Situ Application of a Real-Time Monitoring System for the Interaction between TBM and Surrounding Rock. Tunnelling and Underground Space Technology, 81: 187-208. https://doi.org/10.1016/j.tust.2018.07.018 Li, C., Xu, J., Pan, J., et al., 2012. Plastic Zone Distribution Laws and Its Types of Surrounding Rock in Large-Span Roadway. International Journal of Mining Science and Technology, 22: 23-28. https://doi.org/10.1016/j.ijmst.2011.06.002 Li, D., Liu, C., Gan, W., 2009. A New Cognitive Model: Cloud Model. International Journal of Intelligent Systems, 24: 357-375. https://doi.org/10.1002/int.20340 Li, T., De la Prieta Pintado, F., Corchado, et al., 2017. Multi-Source Homogeneous Data Clustering for Multi-Target Detection from Cluttered Background with Misdetection. Applied Soft Computing, 60: 436-446. https://doi.org/10.1016/j.asoc.2017.07.012 Lim, S. L. H., Duong, P. L. T., Park, H., et al., 2020. Assessing Multi-Output Gaussian Process Regression for Modeling of Non-Monotonic Degradation Trends of Light Emitting Diodes in Storage. Microelectronics Reliability, 114: 113794. https://doi.org/10.1016/j.microrel.2020.113794 Liu, K., Liu, B., 2019. Intelligent Information-Based Construction in Tunnel Engineering Based on the GA and CCGPR Coupled Algorithm. Tunnelling and Underground Space Technology, 88: 113-128. https://doi.org/10.1016/j.tust.2019.02.012 Saadi, I., Farooq, B., Mustafa, A., et al., 2018. An Efficient Hierarchical Model for Multi-Source Information Fusion. Expert Systems with Applications, 110: 352-362. doi: 10.1016/j.eswa.2018.06.018 Xue, X., Xiao, M., 2017. Deformation Evaluation on Surrounding Rocks of Underground Caverns Based on PSO-LSSVM. Tunnelling and Underground Space Technology, 69: 171-181. https://doi.org/10.1016/j.tust.2017.06.019 Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093(in Chinese with English abstract). Yang, Y., Jing, Z., Gao, T., et al., 2007. Multi-Sources Information Fusion Algorithm in Airborne Detection Systems. Journal of Systems Engineering and Electronics, 18: 171-176. https://doi.org/10.1016/S1004-4132(07)60070-X Zhang, G. H., Chen, W., Jiao, Y. Y., et al., 2020. A Failure Probability Evaluation Method for Collapse of Drill-and-Blast Tunnels Based on Multistate Fuzzy Bayesian Network. Engineering Geology, 276: 105752. https://doi.org/10.1016/j.enggeo.2020.105752 Zhang, L., Wu, X., Ding, L., et al., 2013a. A Novel Model for Risk Assessment of Adjacent Buildings in Tunneling Environments. Building and Environment, 65: 185-194. https://doi.org/10.1016/j.buildenv.2013.04.008 Zhang, Y., Zhang, H., Nasrabadi, N. M., et al., 2013b. Multi-Metric Learning for Multi-Sensor Fusion Based Classification. Information Fusion, 14: 431-440. https://doi.org/10.1016/j.inffus.2012.05.002 Zhang, L., Wu, X., Zhu, H., et al., 2017. Perceiving Safety Risk of Buildings Adjacent to Tunneling Excavation: An Information Fusion Approach. Automation in Construction, 73: 88-101. https://doi.org/10.1016/j.autcon.2016.09.003 陈福勇, 仉文岗, 2022. 基于条件随机场的重庆李家坪地铁隧道可靠度分析. 应用基础与工程科学学报, 30(1): 166-182. 严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153 -