• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    干湿循环作用下石窟砂岩的抗拉强度劣化机理及破坏模式

    陈钊 兰恒星 刘世杰 都奎建

    陈钊, 兰恒星, 刘世杰, 都奎建, 2024. 干湿循环作用下石窟砂岩的抗拉强度劣化机理及破坏模式. 地球科学, 49(2): 612-624. doi: 10.3799/dqkx.2022.149
    引用本文: 陈钊, 兰恒星, 刘世杰, 都奎建, 2024. 干湿循环作用下石窟砂岩的抗拉强度劣化机理及破坏模式. 地球科学, 49(2): 612-624. doi: 10.3799/dqkx.2022.149
    Chen Zhao, Lan Hengxing, Liu Shijie, Du Kuijian, 2024. Mechanism and Failure Mode of Tensile Strength Deterioration of Shikuosi Sandstone under Dry and Wet Cycling. Earth Science, 49(2): 612-624. doi: 10.3799/dqkx.2022.149
    Citation: Chen Zhao, Lan Hengxing, Liu Shijie, Du Kuijian, 2024. Mechanism and Failure Mode of Tensile Strength Deterioration of Shikuosi Sandstone under Dry and Wet Cycling. Earth Science, 49(2): 612-624. doi: 10.3799/dqkx.2022.149

    干湿循环作用下石窟砂岩的抗拉强度劣化机理及破坏模式

    doi: 10.3799/dqkx.2022.149
    基金项目: 

    国家重点研发计划 2019YFC1520601

    国家自然科学基金项目 42041006

    国家自然科学基金项目 41927806

    详细信息
      作者简介:

      陈钊(1997-),男,硕士研究生,主要从事岩石劣化机理方面的科研工作. ORCID:0000-0003-4119-9784. E-mail:2020126082@chd.edu.cn

      通讯作者:

      兰恒星,ORCID: 0000-0002-7146-932X. E-mail: lanhx@igsnrr.ac.cn

    • 中图分类号: P642

    Mechanism and Failure Mode of Tensile Strength Deterioration of Shikuosi Sandstone under Dry and Wet Cycling

    • 摘要: 干湿循环作用对石窟砂岩影响严重,造成了大量石窟砂岩的悬臂拉裂式破坏. 通过室内干湿循环试验、巴西劈裂试验以及应变场分析等方法,分析了不同干湿循环次数下试样的内摩擦角φ、粘聚力c、微观结构、以及应变场特征的变化规律. 研究发现随着干湿循环次数的增加,粘土矿物逐渐流失,结构变得松散,矿物颗粒间的胶结作用减弱,导致了砂岩粘聚力c的减小. 同时由于砂岩内部颗粒形状以及孔隙结构的变化改变了颗粒间的接触关系,导致了内摩擦角φ的减小,最终造成了其拉裂力学性质的劣化. 最后结合试样的破坏过程及裂纹展布总结出了不同干湿循环作用下石窟砂岩的两种破坏模式.

       

    • 图  1  砂岩石窟顶板塌落破坏现象

      Fig.  1.  The collapse and failure phenomenon of sandstone carved roof

      图  2  砂岩石窟顶板拉裂破坏过程示意图

      a. 石窟造像区地层分布;b. 降雨入渗;c. 层理面渗流;d. 裂隙产生;e. 悬臂拉裂式破坏

      Fig.  2.  Schematic diagram of the fracture process of sandstone carved roof

      图  3  试验设置

      Fig.  3.  Test setup

      图  4  劈裂试验试样受力情况

      Fig.  4.  The force of the split test sample

      图  5  不同条件砂岩试样抗拉强度

      Fig.  5.  Tensile strength of sandstone samples under different conditions

      图  6  不同循环次数试样裂纹扩展过程

      Fig.  6.  Crack growth process of samples with different cycles

      图  7  不同循环次数试样裂隙萌生及裂隙贯穿的发生时间

      Fig.  7.  The time of crack initiation and crack penetration of samples with different cycles

      图  8  不同循环次数试样的应变场变化(a)干燥试样(b)饱和试样

      Fig.  8.  Strain field changes of samples with different cycles (a) dry samples (b) saturated samples

      图  9  巴西劈裂试验及三轴压缩试验的莫尔应力圆

      Fig.  9.  Mohr stress circle of Brazil split test and triaxial compression test

      图  10  不同循环次数试样的内摩擦角及粘聚力

      Fig.  10.  Internal friction angle and cohesion of samples with different cycles

      图  11  试样显微薄片分析

      a. 5次循环;b. 15次循环;c. 25次循环;图中:Q. 石英;Kf. 钾长石;Pl. 斜长石;Cl. 粘土矿物;Cal. 方解石

      Fig.  11.  Analysis of sample microscopic slices

      图  12  应力应变曲线阶段划分

      Fig.  12.  Stage division of stress-strain curve

      图  13  试样的应力应变曲线及裂纹起始应力$ {\mathit{\sigma }}_{\text{c}\text{i}} $和裂纹损伤应力$ {\mathit{\sigma }}_{\text{c}\text{d}} $

      a. 干燥试样;b. 饱和试样

      Fig.  13.  The stress-strain curve of the sample and the initial crack stress $ {\mathit{\sigma }}_{\text{c}\text{i}} $ and the crack damage stress $ {\mathit{\sigma }}_{\text{c}\text{d}} $

      图  14  破坏模式划分

      Fig.  14.  Classification of failure modes

      表  1  试样矿物含量表(%)

      Table  1.   Sample mineral content table(%)

      矿物 石英 钾长石 斜长石 方解石 粘土矿物
      含量 36.0 6.0 28.3 12.0 11.4
      下载: 导出CSV

      表  2  试样参数

      Table  2.   Specimen parameters

      循环次数 0次循环 10次循环 20次循环 30次循环
      编号 0-1 0-2 10-1 10-2 20-1 20-2 30-1 30-2
      直径(mm) 49.14 49.32 49.34 49.42 49.24 49.43 49.24 49.26
      高(mm) 24.90 24.56 25.1 25.12 25.14 25.2 25.1 25.14
      质量(g) 101.23 101.00 104.41 104.76 104.10 104.44 102.97 103.37
      密度(g/cm3) 2.145 2.154 2.177 2.175 2.176 2.161 2.155 2.159
      下载: 导出CSV

      表  3  干燥试样的抗拉强度及三轴压缩强度

      Table  3.   Tensile strength and triaxial compressive strength of samples

      循环次数 0次 10次 20次 30次
      抗拉强度(MPa) 1.282 1.148 1.072 1.014
      三轴压缩强度(MPa) 62.8 55.1 53.1 47.9
      下载: 导出CSV
    • Deng, H. F., Li, J. L., Zhu, M., et al., 2012. Experimental Research on Strength Deterioration Rules of Sandstone under "Saturation-Air Dry" Circulation Function. Rock and Soil Mechanics, 33(11): 3306-3312(in Chinese with English abstract).
      Du, M. P., Pan, P. Z., Ji, W. W., et al., 2016. Time-Space Laws of Failure Process of Carbonaceous Shale in Brazilian Split Test. Rock and Soil Mechanics, 37(12): 3437-3446(in Chinese with English abstract).
      Feng, X. T., Lai, H. Z. H., 2000. Rock Fracturing Behaviors under Chemical Corrosion Part Ⅰ: Experimental Study. Chinese Journal of Rock Mechanics and Engineering, (4): 403-407(in Chinese with English abstract).
      Fu, Y., Wang, Z. J., Liu, X. R., et al., 2017. Meso Damage Evolution Characteristics and Macro Degradation of Sandstone under Wetting-Drying Cycles. Chinese Journal of Geotechnical Engineering, 39(9): 1653-1661(in Chinese with English abstract).
      Hale, P. A., Shakoor, A., 2003. A Laboratory Investigation of the Effects of Cyclic Heating and Cooling, Wetting and Drying, and Freezing and Thawing on the Compressive Strength of Selected Sandstones. Environmental and Engineering Geoscience, 9(2): 117-130. https://doi.org/10.2113/9.2.117
      He, J., Wang, H., Eduardo Garzanti., 2020. Petrographic Analysis and Classification of Sand and Sandstone. Earth Science, 45(6): 2186-2198(in Chinese with English abstract).
      Li, Z., Zhang, J. K., Liu, D., et al., 2019. Experimental Study on Indoor Simulated Deterioration of Sandstone of XiaofowanStatues at Dazu Rock Carvings. Chinese Journal of Geotechnical Engineering, 41(8): 1513-1521(in Chinese with English abstract).
      Liu, S. J., Lan, H. X., Bao, H., et al., 2022. Classification System of Typical Engineering Geological Deformation and Failure Modes in Grottoes. Earth Science, 1-14(in Chinese with English abstract).
      Liu, X. R., Li, D. L., Zhang, L., 2016. Influence of Wetting-Drying Cycles on Mechanical Properties and Microstructure of Shaly Sandstone. Chinese Journal of Geotechnical Engineering, 38(7): 1291-1300(in Chinese with English abstract).
      Martin, C. D., Chandler, N. A., 1994. The Progressive Fracture of Lac Du Bonnet Granite. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 31(6): 643-659. https://doi.org/10.1016/0148-9062(94)90005-1
      Song, Y. J., Zhang, L. T., Ren, J. X., et al., 2019. Study on Damage Characteristics of Weak Cementation Sandstone under Drying-Wetting Cycles Based on Nuclear Magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 38(4): 825-831(in Chinese with English abstract).
      Sumner, P. D., Loubser, M. J., 2008. Experimental Sandstone Weathering Using Different Wetting and Drying Moisture Amplitudes. Earth Surface Processes and Landforms, 33(6): 985-990. https://doi.org/10.1002/esp.1586
      Sun, J., Ling, J. M., Jia, G., et al., 2001. The Long-You Grottoes in the Western Land of Zhejiang Province from the View Point of Engineering Science. Chinese Journal of Rock Mechanics and Engineering, 20(1): 131-133 (in Chinese).
      Sun, Q., Zhang, Y. L., 2018. Combined Effects of Salt, Cyclic Wetting and Drying Cycles on the Physical and Mechanical Properties of Sandstone. Engineering Geology, 248(1): 70-79. https://doi.org/10.1016/j.enggeo.2018.11.009
      Sun, W. J., Jin, A. B., Wang, S. L., et al., 2021. Study on Sandstone Split Mechanical Properties under High Temperature Based on the DIC Technology. Rock and Soil Mechanics, 42(2): 511-518(in Chinese with English abstract).
      Tang, L. S., Wang, S. J., 1999. Progress in the Study on Mechanical Effect of the Chemical Action of Water-Rock on Deformation and Failure of Rocks. Advances in Earth Sciences, 14(5): 433-439(in Chinese with English abstract).
      Tang, L. S., Wang, S. J., 2002. Analysis on Mechanism and Quantitative Methods of Chemical Damage in Water-Rock Interaction. Chinese Journal of Rock Mechanics and Engineering, 21(3): 314-319(in Chinese with English abstract).
      Wang, D. Y., Zhang, Z. X., Fu, L. C., et al., 1994. Analyses of Factors Affecting Destruction of Rockmass by Weathering in Baodingshan Grotto. Journal of Engineering Geology, 39(5): 912-926(in Chinese with English abstract).
      Wang, G. L., Wu, F. Q., Qi, S. W., 2012. Research on Failure Mechanisms for Cantilever and Tension Crack-Type Collapse. Rock and Soil Mechanics, 33(S2): 269-274(in Chinese with English abstract).
      Wang, H., Li, Y., Cao, S. G., et al., 2020. Brazilian Splitting Test Study on Crack Propagation Process and Macroscopic Failure Mode of Pre-Cracked Black Shale. Chinese Journal of Rock Mechanics and Engineering, 39(5): 912-926(in Chinese with English abstract).
      Wen, T., Zang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396(in Chinese with English abstract).
      Xu, Y. C., Li, K. Q., Xie, X. F., et al., 2017. Grouting Reinforcement of Fractured Rock Mass Based on Damage Mechanics. Journal of Xi'an University of Science and Technology, 37(1): 26-31(in Chinese with English abstract).
      Yang, Z. F., Wang, S. J., Xu, B., et al., 2000. Analysis of the Engineering Geological Conditions of Longyou Stone Caves and Primary Study on the Protection Strategies. Journal of Engineering Geology, (3): 291-295(in Chinese with English abstract).
      Yuan, P., Ma, Q. Y., 2013. Split Hopkinson Pressure Bar Tests on Sandstone in Coalmine under Cyclic Wetting and Drying. Rock and Soil Mechanics, (9): 2557-2562(in Chinese with English abstract).
      Zhang, H. Q., Tannant, D. D., Jing, H. W., et al., 2015. Evolution of Cohesion and Friction Angle during Microfracture Accumulation in Rock. Natural Hazards, 77(1): 497-510. https://doi.org/10.1007/s11069-015-1592-2
      Zhang, Z. H., Chen, X. C., Yao, H. Y., et al., 2021. Experimental Investigation on Tensile Strength of Jurassic Red-Bed Sandstone under the Conditions of Water Pressures and Wet-Dry Cycles. KSCE Journal of Civil Engineering, 25(7): 2713-2724. https://doi.org/10.1007/s12205-021-1404-z
      Zhao, N., Wang, L. G., Xi, Y. H., 2015. Experiment Study of Crack Propagation and Strain Evolution of Brazil Disc Mudstone Specimen. Journal of Experimental Mechanics, 30(6): 791-796(in Chinese with English abstract).
      Zhou, P. G., 1996. Engineering Geomechanics Research on the Interaction Between Groundwater and Rock-Soil Medium. Earth Sciene Frontiers, (2): 176. (in Chinese).
      邓华锋, 李建林, 朱敏, 等, 2012. 饱水-风干循环作用下砂岩强度劣化规律试验研究. 岩土力学, 33(11): 3306-3312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211018.htm
      杜梦萍, 潘鹏志, 纪维伟, 等, 2016. 炭质页岩巴西劈裂载荷下破坏过程的时空特征研究. 岩土力学, 37(12): 3437-3446. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612012.htm
      冯夏庭, 赖户政宏, 2000. 化学环境侵蚀下的岩石破裂特性——第一部分: 试验研究. 岩石力学与工程学报, (4): 403-407. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202401014.htm
      傅晏, 王子娟, 刘新荣, 等, 2017. 干湿循环作用下砂岩细观损伤演化及宏观劣化研究. 岩土工程学报, 39(9): 1653-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709016.htm
      何杰, 王华, Eduardo Garzanti, 2020. 砂岩(砂)的岩相分析和分类标准. 地球科学, 45(6): 2186-2198. doi: 10.3799/dqkx.2019.217
      李震, 张景科, 刘盾, 等, 2019. 大足石刻小佛湾造像砂岩室内模拟劣化试验研究. 岩土工程学报, 41(8): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908019.htm
      刘世杰, 兰恒星, 包含, 等, 2022. 石窟寺典型工程地质变形破坏模式及分类体系. 地球科学, : 1-14. doi: 10.3799/dqkx.2022.024
      刘新荣, 李栋梁, 张梁, 等, 2016. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究. 岩土工程学报, 38(7): 1291-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607017.htm
      宋勇军, 张磊涛, 任建喜, 等, 2019. 基于核磁共振技术的弱胶结砂岩干湿循环损伤特性研究. 岩石力学与工程学报, 38(4): 825-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904018.htm
      孙钧, 凌建明, 贾岗, 等, 2001. 从工程科学角度看浙西大地的龙游石窟. 岩石力学与工程学报, 20(1): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200101033.htm
      孙文进, 金爱兵, 王树亮, 等, 2021. 基于DIC的高温砂岩劈裂力学特性研究. 岩土力学, 42(2): 511-518. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111017.htm
      汤连生, 王思敬, 1999. 水—岩化学作用对岩体变形破坏力学效应研究进展. 地球科学进展, 14(5): 433-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199905002.htm
      汤连生, 王思敬, 2002. 岩石水化学损伤的机理及量化方法探讨. 岩石力学与工程学报, 21(3): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200203003.htm
      汪东云, 张赞勋, 付林森, 等, 1994. 宝顶山石窟岩体风化破坏的作用因素分析. 工程地质学报, (2): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ402.006.htm
      王根龙, 伍法权, 祁生文, 2012. 悬臂-拉裂式崩塌破坏机制研究. 岩土力学, 33(S2): 269-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2043.htm
      王辉, 李勇, 曹树刚, 等, 2020. 含预制裂隙黑色页岩裂纹扩展过程及宏观破坏模式巴西劈裂试验研究. 岩石力学与工程学报, 39(5): 912-926. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202005006.htm
      温韬, 张馨, 孙金山, 等, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
      许延春, 李昆奇, 谢小锋, 等, 2017. 裂隙岩体损伤的注浆加固效果试验. 西安科技大学学报, 37(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201701005.htm
      杨志法, 王思敬, 许兵, 等, 2000. 龙游石窟群工程地质条件分析及保护对策初步研究. 工程地质学报, (3): 291-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200003006.htm
      袁璞, 马芹永, 2013. 干湿循环条件下煤矿砂岩分离式霍普金森压杆试验研究. 岩土力学, (9): 2557-2562. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309021.htm
      赵娜, 王来贵, 习彦会, 2015. 巴西圆盘泥岩试件裂纹扩展及应变演化实验研究. 实验力学, 30(6): 791-796. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201506014.htm
      周平根, 1996. 地下水与岩土介质相互作用的工程地质力学研究. 地学前缘, (2): 176. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY602.007.htm
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  194
    • HTML全文浏览量:  273
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-21
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回