• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义

    饶松 杨轶南 胡圣标 王强

    饶松, 杨轶南, 胡圣标, 王强, 2022. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义. 地球科学, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153
    引用本文: 饶松, 杨轶南, 胡圣标, 王强, 2022. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义. 地球科学, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153
    Rao Song, Yang Yinan, Hu Shengbiao, Wang Qiang, 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153
    Citation: Rao Song, Yang Yinan, Hu Shengbiao, Wang Qiang, 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153

    川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义

    doi: 10.3799/dqkx.2022.153
    基金项目: 

    国家自然科学基金项目 41877210

    国家自然科学基金项目 41502236

    油气资源与勘探技术教育部重点实验室青年创新团队项目 PI2018⁃04

    湖北省自然科学基金项目 2017CFB531

    详细信息
      作者简介:

      饶松(1985—),男,副教授,博士,主要从事地热地质学与油气地质学的教学和科研工作.ORCID:0000-0001-5991-9730.E-mail:raosong08@163.com

    • 中图分类号: P618

    Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin

    • 摘要: 页岩热演化史与页岩气的成烃、成藏过程关系极为密切.一方面,页岩热演化过程决定了页岩生烃过程、页岩气类型和生气量;另一方面,页岩有机孔隙的形成与页岩热演化过程密切相关.在前期热史恢复基础上,以锆石(U-Th)/He和沥青反射率Rb等古温标进行标定,模拟了川西南地区代表性钻孔下寒武统筇竹寺组页岩热演化史,探讨了页岩热演化过程与页岩气成烃、成藏的关系.研究结果表明,川西南地区下寒武统筇竹寺组页岩热演化过程和生烃史差异性明显,可以识别出两种模式:加里东期坳陷区,筇竹寺组页岩在加里东期成熟,中‒晚二叠世期间快速演化定型,两个生烃高峰期分别出现在志留纪(生油高峰‒湿气阶段)、中‒晚二叠世(干气阶段),此后再无明显的生烃活动;加里东期古隆起区,筇竹寺组页岩在加里东期未熟‒低熟,晚海西期‒燕山期持续增熟,亦存在两期生烃高峰,分别是中‒晚二叠世(生油高峰阶段)、晚侏罗世‒早白垩世(湿气‒干气阶段),筇竹寺组页岩生烃过程持续到晚白垩世末期.分析表明中‒晚二叠世期间筇竹寺组页岩的埋深差异造成了其受峨眉山地幔柱热效应的影响不同,进而决定了加里东期坳陷区与隆起区筇竹寺组页岩热演化过程和生烃史差异,并最终导致了威远‒犍为地区筇竹寺组页岩含气性优于盆地外围.综合川西南地区筇竹寺页岩生烃史和孔隙度演化模型,将川西南成藏条件相对优越的威远‒犍为地区筇竹寺组页岩气成藏过程分为4个阶段:早古生代时期源‒储‒盖形成和生物气成藏阶段、中‒晚二叠世期间初始成藏阶段、晚侏罗世‒早白垩世主成藏阶段和晚白垩世以后调整改造阶段.该成果以页岩热演化过程为切入点解释了川西南威远‒犍为地区与盆地外围下寒武统筇竹寺组页岩气成藏差异的原因.

       

    • 图  1  四川盆地下寒武统筇竹寺组页岩厚度、Ro等值线及研究区位置和钻孔井位(据赵文智等, 2016修改)

      Fig.  1.  The thickness, Ro isogram of the Lower Cambrian Qiongzhusi shale in the Sichuan basin, study area and borehole location

      图  2  四川盆地代表性钻孔晚志留世以来热流演化史(据Jiang et al., 2018)

      Fig.  2.  The heat flow evolution history since Late Silurian of representative boreholes in the Sichuan basin

      图  3  川西南地区龙马溪组(a)和筇竹寺组、灯影组(b)沥青反射率统计结果

      Fig.  3.  Bitumen reflectance of the Longmaxi Formation (a), the Qiongzhusi Formation and Dengying Formation (b) in SWSichuan basin

      图  4  川西南地区永福1(a)、民页1(b)、威28井(c)Ro模拟值与实测值的对比

      Fig.  4.  Comparison between Ro simulation and measured values of borehole Yf1 (a), My1 (b) and W28 (c) in SW Sichuan basin

      图  5  川西南长坪(上)、美姑(下)地区下寒武统沧浪铺组露头样品ZHe-Rb热史模拟结果

      图中绿色代表“可接受的”(0.4≤GOF < 0.6)热史路径,紫色代表“好的”(0.6≤GOF≤1.0)热史路径,蓝色表示最佳热史路径

      Fig.  5.  The thermal history simulation results based on ZHe-Rb of outcrop samples in Canglangpu Formation in Changping(upper) and Meigu (lower) areas in SW Sichuan basin

      图  6  川西南地区永福1井下寒武统埋藏史、地温史与成熟度演化史

      Fig.  6.  Thermal, maturity and hydrocarbon generation history of the Lower Cambrian in borehole Yf1, SW Sichuan basin

      图  7  川西南地区金石1井下寒武统地温史、成熟度演化史与生烃史模拟结果

      Fig.  7.  Thermal, maturity and hydrocarbon generation history of the Lower Cambrian in borehole Js1, SW Sichuan basin

      图  8  川西南地区代表性钻孔筇竹寺组页岩成熟度演化史

      Fig.  8.  Maturity evolution history of Qiongzhusi Formation shale of representative boreholes, SW Sichuan basin

      图  9  川西南地区代表性钻孔筇竹寺组页岩生烃强度史

      Fig.  9.  Hydrocarbon generation intensity history of Qiongzhusi Formation shale of representative boreholes, SW Sichuan basin

      图  10  川西南威远‒犍为与盆地外围筇竹寺组页岩埋藏史、温度史、成熟度演化史、孔隙度演化史与成藏过程对比

      Fig.  10.  Comparison of burial, geo-temperature, maturity, porosity evolution history and accumulation process of QiongzhusiFormation shale between Weiyun-Qianwei area and the periphery of SW Sichaun basin

      表  1  中国南方下寒武统筇竹寺组页岩气测试产量统计

      Table  1.   Shale gas test production statistics in the Lower Cambrian Qiongzhusi Formation in southern China

      地区 井号 初始测试产量(m3/d)
      盆地内
      (威远‒犍为)
      威201 1.08×104
      威201-H3 2.83×104
      金石1 2.50×104
      金页1 8.60×104
      盆地外围 天星1 2 000
      黄页1 420
      方深1 20
      岑页1 微气
      永福1 未测试,气测含气性差
      注:据赵文智等(2016).
      下载: 导出CSV

      表  2  川西南地区龙马溪组、筇竹寺组和灯影组实测沥青反射率

      Table  2.   Measured bitumen reflectance of the S1l, ∈1q and Z1d formations in SW Sichuan basin

      采样位置 深度(m) 层位 岩性 沥青反射率(Rb, %) 采样个数
      永福1井 2 694~2 795 龙马溪组 黑色碳质泥岩 2.23~2.79 3
      永福1井 4 777~4 863 筇竹寺组 灰黑色碳质页岩 3.97~4.33 3
      民页1井 3 039~3 124 龙马溪组 黑色碳质页岩 2.34~2.89 5
      金石1井 3 680~3 740 筇竹寺组 灰黑色碳质页岩 3.15~3.26 2
      永善长坪 露头 龙马溪组 黑色碳质页岩 2.19~3.20 3
      永善长坪 露头 筇竹寺组 灰黑色碳质泥岩 3.38~4.51 2
      永善长坪 露头 灯影组 黑色硅质页岩 4.30~4.51 2
      雷波抓抓岩 露头 龙马溪组 黑色碳质页岩 3.06 1
      雷波抓抓岩 露头 筇竹寺组 灰黑色碳质页岩 4.24 1
      甘洛新基站 露头 龙马溪组 灰黑色碳质页岩 2.62~2.86 3
      雷波芭蕉滩 露头 龙马溪组 灰黑色碳质泥岩 3.16 1
      下载: 导出CSV

      表  3  川西南地区锆石(U⁃Th)/He测试结果

      Table  3.   Zircon (U⁃Th) /He test results in SW Sichuan basin

      采样地区 采样位置 mol 238U Std. mol 238U mol 232Th Std. mol 232Th mol 4He Std. mol 4He 年龄(Ma) ± σ (Ma) FT Cor年龄(Ma) ± σ (Ma) Th/U 质量(μg) Rs(μm)
      长坪地区 28°14′24.8″N
      103°51′2.9″E
      1.04E-11 1.76E-13 4.14E-12 6.83E-14 2.04E-13 3.39E-15 13.91 0.32 0.776 17.93 0.99 0.4 4.11 50.8
      5.63E-12 8.31E-14 2.40E-12 3.84E-14 2.30E-13 4.05E-15 28.91 0.64 0.716 40.38 2.21 0.4 1.68 40.0
      2.94E-12 4.61E-14 2.03E-12 2.01E-14 8.44E-14 1.40E-15 19.30 0.41 0.797 24.22 1.32 0.7 5.31 57.0
      3.92E-12 6.15E-14 2.39E-12 3.14E-14 9.58E-14 1.48E-15 16.70 0.35 0.712 23.46 1.27 0.6 2.20 38.7
      美姑地区 28°9′46.6″N
      103°27′35.6″E
      9.15E-13 1.36E-14 4.52E-13 9.53E-15 8.83E-15 1.65E-16 6.75 0.16 0.651 10.37 0.57 0.5 1.01 30.9
      1.05E-12 1.67E-14 7.59E-13 8.72E-15 8.89E-15 1.74E-16 5.66 0.14 0.527 10.74 0.60 0.7 0.42 22.3
      3.90E-13 6.21E-15 4.33E-13 7.94E-15 4.47E-15 7.92E-17 7.11 0.16 0.513 13.86 0.76 1.1 0.36 21.8
      8.77E-13 1.37E-14 6.12E-13 8.96E-15 8.34E-15 1.32E-16 6.39 0.13 0.485 13.18 0.71 0.7 0.30 20.1
      下载: 导出CSV
    • Cander, H., 2012. Sweet Spots in Shale Gas and Liquids Plays: Prediction of Fluid Composition and Reservoir Pressure. Search & Discovery Article, 40936.
      Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract).
      Chen, S. B., Zhu, Y. M., Chen, S., et al., 2017. Hydrocarbon Generation and Shale Gas Accumulation in the Longmaxi Formation, Southern Sichuan Basin, China. Marine & Petroleum Geology, 86: 248-258.
      Cheng, K. M., Wang, S. Q., Dong, D. Z., et al., 2009. Accumulation Conditions of Shale Gas Reservoirs in the Lower Cambrian Qiongzhusi Formation, the Upper Yangtze Region. Natural Gas Industry, 29(5): 40-44, 136 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2009.05.008
      Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103(23): 26-31.
      He, L. J., 2014. Permian to Late Triassic Evolution of the Longmenshan Foreland Basin (Western Sichuan): Model Results from Both the Lithospheric Extension and Flexure. Journal of Asian Earth Sciences, 93(93): 49-59.
      He, L. J., Huang, F., Liu, Q. Y., et al., 2014. Tectono⁃Thermal Evolution of Sichuan Basin in Early Paleozoic. Journal of Earth Sciences and Environment, 36(2): 10-17 (in Chinese with English abstract).
      He, L. J., Xu, H. H., Wang, J. Y., 2011. Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian⁃Middle Triassic. Science China Earth Sciences, 54(12): 1948-1954. https://doi.org/10.1007/s11430⁃011⁃4240⁃z
      Huang, F., Liu, Q. Y., He, L. J., 2012. Tectono⁃Thermal Modeling of the Sichuan Basin since the Late Himalayan Period. Chinese Journal of Geophysics, 55(11): 3742-3753 (in Chinese with English abstract). doi: 10.6038/j.issn.0001-5733.2012.11.021
      Huang, J. L., Zou, C. N., Li, J. Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract).
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale Gas Systems: The Mississippian Barnett Shale of North⁃Central Texas as One Model for Thermogenic Shale⁃Gas Assessment. AAPG Bulletin, 91(4): 475-799. doi: 10.1306/12190606068
      Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
      Jiang, Q., Qiu, N. S., Zhu, C. Q., 2018. Heat Flow Study of the Emeishan Large Igneous Province Region: Implications for the Geodynamics of the Emeishan Mantle Plume. Tectonophysics, 724(31): 11-27.
      Jiang, Q., Zhu, C. Q., Qiu, N. S., et al., 2015. Paleo⁃Heat Flow and Thermal Evolution of the Lower Cambrian Qiongzhusi Shale in the Southern Sichuan Basin, SW China. Natural Gas Geoscience, 26(8): 1563-1570 (in Chinese with English abstract).
      Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB⁃SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158(15): 78-89.
      Li, Y. J., Zhao, S. X., Huang, Y. B., et al., 2013. The Sedimentary Micro⁃Facies Study of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin. Acta Geologica Sinica, 87(8): 1136-1148 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.08.008
      Liu, B., 2022. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, in Press (in Chinese with English abstract).
      Liu, S. G., Deng, B., Zhong, Y., et al., 2016. Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Science Frontiers, 23(1): 11-28 (in Chinese with English abstract).
      Liu, W. P., Zhang, C. L., Gao, G. D., et al., 2017. Controlling Factors and Evolution Laws of Shale Porosity in Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 38(2): 175-184 (in Chinese with English abstract).
      Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643.
      Nie, H. K., Zhang, J. C., Li, Y. X., 2011. Accumulation Conditions of the Lower Cambrian Shale Gas in the Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 32(6): 959-967 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2011.06.020
      Pommer, M., Milliken, K., 2015. Pore Types and Pore⁃Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. doi: 10.1306/03051514151
      Rao, S., Hu, D., Hu, S. B., et al., 2019. Tectono⁃ Thermal Reconstruction Methods for Deep Zone in Superimposed Basins: A Case Study from Sichuan Basin. Chinese Journal of Geology, 54(1): 159-175 (in Chinese with English abstract).
      Rao, S., Tang, X. Y., Zhu, C. Q., et al., 2011. The Application of Sensitivity Analysis in the Source Rock Maturity History Simulation: An Example from Palaeozoic Marine Source Rock of Puguang⁃5 Well in the Northeast of Sichuan Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 46(1): 213-225 (in Chinese with English abstract).
      Rao, S., Zhu, C. Q., Wang, Q., et al., 2013. Thermal Evolution Patterns of the Sinian⁃Lower Paleozoic Source Rocks in the Sichuan Basin, Southwest China. Chinese Journal of Geophysics, 56(5): 1549-1559 (in Chinese with English abstract).
      Valentine, B. J., Hackley, P. C., Enomoto, C. B., et al., 2014. Organic Petrology of the Aptian⁃Age Section in the Downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and Preliminary Implications for Thermal Maturation History. International Journal of Coal Geology, 136: 38-51. doi: 10.1016/j.coal.2014.10.008
      Wang, Y. M., Dong, D. Z., Cheng, X. Z., et al., 2014. Electric Property Evidences of the Carbonification of Organic Matters in Marine Shales and Its Geologic Significance: A Case of the Lower Cambrian Qiongzhusi Shale in Southern Sichuan Basin. Natural Gas Industry, 34(8): 1-7 (in Chinese with English abstract).
      Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over⁃Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract).
      Xiao, X. M., Wang, M. L., Wei, Q., et al., 2015. Evaluation of Lower Paleozoic Shale with Shale Gas Prospect in South China. Natural Gas Geoscience, 26(8): 1433-1445 (in Chinese with English abstract).
      Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4): 1052-1060 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.04.020
      Xu, X. M., Sun, W. L., Wang, S. Q., et al., 2019. Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China. Earth Science, 44(11): 3717-3724 (in Chinese with English abstract).
      Yan, J. F., Men, Y. P., Sun, Y. Y., et al., 2015. Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle⁃Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration. Marine & Petroleum Geology, 70: 1-13.
      Yan, J. H., Li, Q. G., Zhu, X., 2016. Main Factors Controlling Shale Gas Accumulation and Exploration Targets in the Lower Cambrian, Sichuan Basin and Its Periphery. Petroleum Geology & Experiment, 38(4): 445-452 (in Chinese with English abstract).
      Yang, W., He, S., Zhai, G. Y., et al. 2021. Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches. Journal of Earth Science, 32(5): 1262-1277. doi: 10.1007/s12583-020-1329-3
      Zhang, L., Xiong, Y. Q., Chen, Y., et al., 2017. Mechanisms of Shale Gas Generation from Typically Organic⁃Rich Marine Shales. Earth Science, 42(7): 1092-1106 (in Chinese with English abstract).
      Zhang, T. S., Yang, Y., Gong, Q. S., et al., 2014. Characteristics and Mechanisms of the Micro⁃Pores in the Early Palaeozoic Marine Shale, Southern Sichuan Basin. Acta Geologica Sinica, 88(9): 1728-1740 (in Chinese with English abstract).
      Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). doi: 10.11698/PED.2016.04.01
      Zhao, W. Z., Wang, Z. Y., Wang, H. J., et al., 2011. Further Discussion on the Connotation and Significance of the Natural Gas Relaying Generation Model from Organic Materials. Petroleum Exploration and Development, 38(2): 129-135 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60021-9
      Zhu, C. Q., Hu, S. B., Qiu, N. S., et al., 2018. Geothermal Constraints on Emeishan Mantle Plume Magmatism: Paleotemperature Reconstruction of the Sichuan Basin, SW China. International Journal of Earth Sciences, 107(1): 71-88. https://doi.org/10.1007/s00531⁃016⁃1404⁃2
      Zhu, C. Q., Tian, Y. T., Xu, M., et al., 2010. The Effect of Emeishan Supper Mantle Plume to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics, 53(1): 119-127 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.01.013
      Zhu, C. Q., Xu, M., Shan, J. N., et al., 2009. Quantifying the Denudations of Major Tectonic Events in Sichuan Basin: Constrained by the Paleothermal Records. Geology in China, 36(6): 1268-1277 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.06.008
      陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005021.htm
      程克明, 王世谦, 董大忠, 等, 2009. 上扬子区下寒武统筇竹寺组页岩气成藏条件. 天然气工业, 29(5): 40-44, 136. doi: 10.3787/j.issn.1000-0976.2009.05.008
      何丽娟, 黄方, 刘琼颖, 等, 2014. 四川盆地早古生代构造‒热演化特征. 地球科学与环境学报, 36(2): 10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004
      黄方, 刘琼颖, 何丽娟, 2012. 晚喜山期以来四川盆地构造‒热演化模拟. 地球物理学报, 55(11): 3742-3753. doi: 10.6038/j.issn.0001-5733.2012.11.021
      黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm
      姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
      江强, 朱传庆, 邱楠生, 等, 2015. 川南地区热史及下寒武统筇竹寺组页岩热演化特征. 天然气地球科学, 26(8): 1563-1570. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508018.htm
      李延钧, 赵圣贤, 黄勇斌, 等, 2013. 四川盆地南部下寒武统筇竹寺组页岩沉积微相研究. 地质学报, 87(8): 1136-1148. doi: 10.3969/j.issn.0001-5717.2013.08.008
      刘贝, 2022. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 待刊.
      刘树根, 邓宾, 钟勇, 等, 2016. 四川盆地及周缘下古生界页岩气深埋藏‒强改造独特地质作用. 地学前缘, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm
      刘文平, 张成林, 高贵冬, 等, 2017. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律. 石油学报, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm
      聂海宽, 张金川, 李玉喜, 2011. 四川盆地及其周缘下寒武统页岩气聚集条件. 石油学报, 32(6): 959-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106006.htm
      饶松, 胡迪, 胡圣标, 等, 2019. 叠合盆地深层构造‒热演化研究方法: 以四川盆地为例. 地质科学, 54(1): 159-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103013.htm
      饶松, 唐晓音, 朱传庆, 等, 2011. 敏感性分析在烃源岩成熟度史模拟中的应用: 以川东北地区普光5井古生界海相烃源岩为例. 地质科学, 46(1): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101018.htm
      饶松, 朱传庆, 王强, 等, 2013. 四川盆地震旦系‒下古生界烃源岩热演化模式及主控因素. 地球物理学报, 56(5): 1549-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305014.htm
      王玉满, 董大忠, 程相志, 等, 2014. 海相页岩有机质炭化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例. 天然气工业, 34(8): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201408002.htm
      肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006027.htm
      肖贤明, 王茂林, 魏强, 等, 2015. 中国南方下古生界页岩气远景区评价. 天然气地球科学, 26(8): 1433-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508002.htm
      徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm
      徐学敏, 孙玮琳, 汪双清, 等, 2019. 南方下古生界海相页岩有机质成熟度评价. 地球科学, 44(11): 3717-3724. doi: 10.3799/dqkx.2019.181
      燕继红, 李启桂, 朱祥, 2016. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向. 石油实验地质, 38(4): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604005.htm
      张莉, 熊永强, 陈媛, 等, 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088
      张廷山, 杨洋, 龚其森, 等, 2014. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素. 地质学报, 88(9): 1728-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409009.htm
      赵文智, 李建忠, 杨涛, 等, 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
      赵文智, 王兆云, 王红军, 等, 2011. 再论有机质"接力成气"的内涵与意义. 石油勘探与开发, 38(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201102003.htm
      朱传庆, 田云涛, 徐明, 等, 2010. 峨眉山超级地幔柱对四川盆地烃源岩热演化的影响. 地球物理学报, 53(1): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201001014.htm
      朱传庆, 徐明, 单竞男, 等, 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268-1277. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200906010.htm
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  999
    • HTML全文浏览量:  850
    • PDF下载量:  102
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-17
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回