• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广西东平锰矿床地质地球化学特征及矿床成因

    周皓宇 皮道会 黄钦 丁大庆 凌泽

    周皓宇, 皮道会, 黄钦, 丁大庆, 凌泽, 2024. 广西东平锰矿床地质地球化学特征及矿床成因. 地球科学, 49(2): 656-668. doi: 10.3799/dqkx.2022.159
    引用本文: 周皓宇, 皮道会, 黄钦, 丁大庆, 凌泽, 2024. 广西东平锰矿床地质地球化学特征及矿床成因. 地球科学, 49(2): 656-668. doi: 10.3799/dqkx.2022.159
    Zhou Haoyu, Pi Daohui, Huang Qin, Ding Daqing, Ling Ze, 2024. Geology, Geochemistry and Genesis of the Dongping Manganese Deposit, Guangxi Province, China. Earth Science, 49(2): 656-668. doi: 10.3799/dqkx.2022.159
    Citation: Zhou Haoyu, Pi Daohui, Huang Qin, Ding Daqing, Ling Ze, 2024. Geology, Geochemistry and Genesis of the Dongping Manganese Deposit, Guangxi Province, China. Earth Science, 49(2): 656-668. doi: 10.3799/dqkx.2022.159

    广西东平锰矿床地质地球化学特征及矿床成因

    doi: 10.3799/dqkx.2022.159
    基金项目: 

    国家自然科学基金项目 41972091

    详细信息
      作者简介:

      周皓宇(1994-),男,地质调查与矿产勘查工程师,硕士研究生,从事矿床地球化学研究、矿产普查与勘探工作. ORCID:0000-0002-2690-1240.E-mail:1905744607@qq.com

      通讯作者:

      皮道会,ORCID:0000-0002-7017-9136.E-mail:pdaohui@163.com

    • 中图分类号: P611

    Geology, Geochemistry and Genesis of the Dongping Manganese Deposit, Guangxi Province, China

    • 摘要: 三叠纪是中国南方一个最重要的成锰时代,在华南板块和周围赋存许多大中型的锰矿床. 东平锰矿位于中国广西桂西南成矿带. 以东平锰矿为研究对象,通过显微薄片观察、电子探针分析及全岩地球化学分析等方法,探讨了锰矿的物质来源和矿床成因. 通过矿相学的研究工作,我们发现东平锰矿里广泛赋存有黄铁矿、黄铜矿、闪锌矿、方铅矿、辉砷钴矿、硫镍钴矿等一些硫或砷化物. 锰矿石样品中Al/(Al+Fe+Mn)、Y/Ho比值和Fe-Mn-(Ni+Cu+Co)×10、lgU-lgTh投图等表明锰矿的成矿物质来源与热水活动有关;正Ce异常及V/(V+Ni)等指示锰最初是在氧化环境中富集. 综合以上研究,我们认为东平锰矿的锰质来源主要与热液活动有关;热液来源的锰最初以氧化物或者氢氧化物的方式沉淀,在成岩过程中转变为锰碳酸盐.

       

    • 图  1  东平锰矿地质简图(据赵立群等,2021修改)

      1第四系; 2.三叠系百逢组; 3.三叠系石炮组;4.三叠系马脚岭组; 5.二叠系河口组;6.二叠系栖霞组;7.断层;8.矿体

      Fig.  1.  Geological sketch of Dongping manganese ore deposit(modified from Zhao et al., 2021)

      图  2  含锰岩系柱状图(据龙涛等,2020修改)

      Fig.  2.  Stratigraphic column of manganese-bearing rock series(modified from Long et al., 2020)

      图  3  东平锰矿床矿石结构构造特征

      a.纹层状构造;b.鲕粒状构造;c.显微粒状结构(反射光,单偏光);d.生物碎屑结构(反射光,单偏光);e.纹层状构造(BSE);f.鲕粒状构造(BSE)

      Fig.  3.  Photographs showing typical feature and microstructure of Dongping manganese deposit

      图  4  东平锰矿床样品中矿物成分特征

      a. 锰矿石中常见矿物钙菱锰矿、锰方解石、白云石、长石、石英和磷灰石等(BSE);b.黄铁矿颗粒(BSE);c.辉砷钴矿、硫镍钴矿和闪锌矿共生(BSE);d.闪锌矿、辉砷钴矿和方铅矿共生(BSE);e.长条状锐钛矿颗粒(BSE);f.独居石颗粒(BSE)

      Fig.  4.  Characteristics of mineral compositions in samples from Dongping Manganese deposit

      图  5  锰矿石Al2O3-TiO2、Al2O3-SiO2、Al2O3-Mn3O4、Al2O3-TREE图解

      Fig.  5.  Mnore samples Al2O3-TiO2、Al2O3-SiO2、Al2O3-Mn3O4、Al2O3-TREE diagram

      图  6  稀土元素标准化配分模式图

      Fig.  6.  Normalized distribution pattern of rare earth elements

      图  7  东平锰矿床的Fe/Ti-Al/(Al+Fe+Mn)图解

      图中曲线代表东太平洋隆(EPR)和红海(RS)热水沉积物与陆源碎屑(TS)和深海粘土(PS)沉积物的混合曲线,其中数据代表喷流-沉积物所占的大致比例(单位:%);据路远发等(1999)修改

      Fig.  7.  Fe/Ti-Al/(Al+Fe+Mn) diagram of Dongping manganese deposit

      图  8  东平锰矿床Fe-Mn-(Ni+Cu+Co)×10和lgU-lgTh图解

      施春华等(2006); Bau(2014)修改

      Fig.  8.  Trigonometric diagram of Fe-Mn-(Ni+Cu+Co) ×10 and lgU-lgTh Right Angle diagram of Dongping Manganese deposit

      图  9  东平锰矿床成矿模式图

      Fig.  9.  Metallogenic model map of Dongping Manganese deposit

      表  1  东平锰矿碳酸盐电子探针测试成分表(%)

      Table  1.   Composition list of carbonate of Dongping manganese ore tested by electron probe(%)

      Na2O K2O P2O5 MgO CaO FeO Al2O3 TiO2 MnO SiO2 CO2 Total
      0.03 0.05 - 2.832 3.222 19.07 0.005 - 34.425 0.022 39.609 99.265
      0.085 0.029 0.457 1.955 12.659 2.034 0.084 - 42.203 0.702 40.522 100.730
      0.016 - - 1.959 16.525 9.847 0.038 - 30.404 1.274 40.829 100.892
      0.082 0.527 0.55 1.765 14.167 1.386 0.892 0.028 38.716 2.037 41.360 101.510
      - 0.006 - 1.709 4.555 26.349 0.053 0.064 29.453 0.133 38.835 101.157
      - 0.034 - 0.369 5.481 7.751 0.204 0.003 46.542 0.287 39.189 99.860
      - 0.032 - 0.321 4.733 7.787 0.141 0.017 47.323 0.195 39.101 99.650
      - 0.061 0.009 2.531 16.916 2.263 0.218 0.051 35.766 0.146 41.218 99.179
      - 0.082 - 3.331 26.368 5.99 0.024 - 20.721 0.153 42.367 99.036
      0.012 0.024 0.009 17.316 35.256 0.277 0.052 - 0.674 0.019 46.745 100.384
      下载: 导出CSV

      表  2  东平锰矿硫化物电子探针分析结果(%)

      Table  2.   Results of electron probe analysis of sulfide in Dongping manganese ore(%)

      Se S Fe Pb Cu Co Zn Ni Cr As 总计 分子式 定名
      - 21.541 3.615 - - 30.022 - 1.537 - 41.320 98.035 (Fe0.01Co0.76Ni0.040.81As0.82S 辉砷钴矿
      - 23.486 6.584 - - 29.669 - 0.277 - 39.094 99.110 (Fe0.16Co0.69Ni0.010.86As0.71S 辉砷钴矿
      0.003 43.133 18.741 0.003 - 10.369 - 28.886 - 0.026 101.161 (Fe1.00Co0.52Ni1.483S4 硫镍钴矿
      - 41.457 14.818 - - 16.137 - 24.862 0.019 - 97.293 (Fe0.84Co0.84Ni1.323S4 硫镍钴矿
      0.015 33.711 2.430 0.003 - 0.074 64.901 0.003 0.019 0.005 101.161 Fe0.04Zn0.94S 闪锌矿
      0.016 32.923 0.942 - - 2.433 62.075 0.318 0.006 0.246 98.959 Fe0.02Co0.04Ni0.01Zn0.92S 闪锌矿
      0.043 34.221 29.144 0.026 33.772 0.059 0.008 - 0.012 - 97.285 Fe0.98Cu1.00S2 黄铜矿
      0.015 52.281 45.272 - - 0.17 0.009 0.254 0.005 - 98.006 Fe0.99S2 黄铁矿
      - 52.721 45.922 - 0.017 0.014 - 0.025 0.005 0.046 98.750 FeS2 黄铁矿
      下载: 导出CSV
    • Bau, M., Schmidt, K., Koschinsky, A., et al., 2014. Discriminating Between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chemical Geology, 381: 1-9. https://doi.org/10.1016/j.chemgeo.2014.05.004
      Coleman, M. L., Fleet, A., Donson, P., 1982. Preliminary Studies of Manganese-Rich Carbonate Nodules from Leg 68, Site 503, Eastern Equatorial Pacific. Initial Reports of the Deep Sea Drilling Program, 68: 481-489.
      Cong, Y., Dong, Q. J., Xiao, K. Y., et al., 2018. Characteristics and Predicted Potential of Mn Resources in China. Earth Science Frontiers, 25(3): 118-137(in Chinese with English abstract).
      Crerar, D. A., Namson, J., Chyi, M. S., et al., 1982. Manganiferous Cherts of the Franciscan Assemblage; I, General Geology, Ancient and Modern Analogues, and Implications for Hydrothermal Convection at Oceanic Spreading Centers. Economic Geology, 77(3): 519-540. https://doi.org/10.2113/gsecongeo.77.3.519
      Deng, X. D., 2012. Late Cenozoic Supergene Enrichment of Mn-Oxide Deposits Throughout the Yunnan-Guizhou Plateau and Adjacent Areas: Implications for the Plateau Uplift and Paleoclimatic Conditions(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Ding, Z. J., Liu, C. Q., Yao, S. Z., et al., 2000. Rare Earth Elements Compositions of High-Temperature Hydrothermal Fluids in Sea Floor and Control Factors. Advance in Earth Sciences, 15(3): 307-312(in Chinese with English abstract).
      Douville, E., Bienvenu, P., Charlou, J. L., et al., 1999. Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica Et Cosmochimica Acta, 63(5): 627-643. https://doi.org/10.1016/S0016-7037(99)00024-1
      Fu, Y., Xu, Z. G., Pei, H. X., et al., 2014. Study on Metallogenic Regularity of Manganese Ore Deposits in China. Acta Geologica Sinica, 88(12): 2192-2207(in Chinese with English abstract).
      Glasby, G. P., 2006. Manganese: Predominant Role of Nodules and Crusts. Marine Geochemistry. Springer, Berlin, Heidelberg, 371-427. https://doi.org/10.1007/3-540-32144-6_11
      Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y
      Hein, J. R., Hsueh-Wen, Y., Gunn, S. H., et al., 1994. Composition and Origin of Hydrothermal Ironstones from Central Pacific Seamounts. Geochimica Et Cosmochimica Acta, 58(1): 179-189. https://doi.org/10.1016/0016-7037(94)90455-3
      Huang, X. L., Lu, G., Gao, Y., et al., 2017. The Age and Nature of the Strata Hosting the Dongping Manganese Ore Deposit in Guangxi. Journal of Stratigraphy, 41(3): 284-295(in Chinese with English abstract).
      Jewell, P. W., Stallard, R. F., 1991. Geochemistry and Paleoceanographic Setting of Central Nevada Bedded Barites. Journal of Geology, 99(2): 151-170. https://doi.org/10.1086/629482
      Jin, S., Ma P. F., Guo, H., et al., 2022. Manganese Deposits in Qinjiayu, East Hebei: Constraints from Mineralogy and Geochemistry. Earth Science, 47(1): 277-289(in Chinese with English abstract).
      Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-X
      Lei, B. J., Que, H. P., Hu, N., et al., 2002. Geochemistry and Sedimentary Environments of the Palaeozoic Siliceous Rocks in Western Hubei. Sedimentary Geology and Tethyan Geology, 22(2): 70-79(in Chinese with English abstract).
      Liang, X., Xu, Y. D., Zi, J. W., et al., 2022. Genetic Mineralogy of Monazite and Constraints on the Interpretation of U-Th-Pb Ages. Earth Science, 47(4): 1383-1398 (in Chinese with English abstract).
      Li, J. W., Vasconcelos, P., Duzgoren-Aydin, N., et al., 2007. Neogene Weathering and Supergene Manganese Enrichment in Subtropical South China: An 40Ar/39Ar Approach and Paleoclimatic Significance. Earth & Planetary Science Letters, 256(3-4): 389-402. https://doi.org/10.1016/j.epsl.2007.01.021
      Li, Q. L., Y, H. S., Wu, C. H., et al., 2017a. Discovery of Ga with Unusually High Content in Manganese Carbonate Deposits of Beisi Formation in Dongping Area, Guangxi, and Its Genetic Study. Mineral Deposits, 36(3): 544-556 (in Chinese with English abstract).
      Li, Q. L., Yi, H. S., Xia, G. Q., et al., 2017b. Characteristics and Implication of Carbon and Oxygen Isotopes in Ga-Rich Manganese-Bearing Rock Series in Dongping, Guangxi. Earth Science, 42(9): 1508-1518(in Chinese with English abstract).
      Long, T., Peng, L., Ding, D. Q., et al., 2020. A Study on the Geological Characteristics and Genesis of the Peripheral Manganese Deposits in Dongping Mine, Tiandeng County, Guangxi. China's Manganese Industry, (38): 11-17(in Chinese with English abstract).
      Lu, B., 2016. Deposit Characteristics and Prospecting Analysis of Dongping Manganese Ore Area in Guangxi. Scientist, 4(7): 20-21(in Chinese).
      Lu, Y. F., Chen, K. X., Zhan, M. G., 1999. Geochemical Evidence of Exhalative Sedimentary Ore Bearing Skarns in Yangla Copper Mineralization Concentrated Area, Deqin County, Northwestern Yunnan Province. Earth Science, 24(3): 298-303(in Chinese with English abstract).
      Márta, P., Tibor, N., Elemér, P., 2016. Correlated Chemostratigraphy of Mn-Carbonate Microbialites (Úrkút, Hungary). Gondwana Research, 29(1): 278-289. https://doi.org/10.1016/j.gr.2014.12.002
      Morgan, J. J., 2005. Kinetics of Reaction Between O2, and Mn(Ⅱ) Species in Aqueous Solutions. Geochimica Et Cosmochimica Acta, 69(1): 35-48. https://doi.org/10.1016/j.gca.2004.06.013
      Nozaki, Y., Zhang, J., Amakawa, H., 1997. The Fractionation Between Y and Ho in the Marine Environment. Earth & Planetary Science Letters, 148(1-2): 329-340. https://doi.org/10.1016/S0012-821X(97)00034-4
      Okita, P. M., Maynard, J. B., Spiker, E. C., et al., 1988. Isotopic Evidence for Organic Matter Oxidation by Manganese Reduction in the Formation of Stratiform Manganese Carbonate Ore. Geochimica et Cosmochimica Acta, 52(11): 2679-2685. https://doi.org/10.1016/0016-7037(88)90036-1
      Okita, P. M., Shanks III, W. C., 1992. Origin of Stratiform Sediment-Hosted Manganese Carbonate Ore Deposits: Examples from Molango, Mexico, and TaoJiang, China. Chemical Geology, 99(1-3): 139-163. https://doi.org/10.1016/0009-2541(92)90036-5
      Pattan, J. N., Parthiban, G., 2011. Geochemistry of Ferromanganese Nodule–Sediment Pairs from Central Indian Ocean Basin. Journal of Asian Earth Sciences, 40(2): 569-580. https://doi.org/10.1016/j.jseaes.2010.10.010
      Qin, Y. K., Zhang, H. C., Yao, J. Q., 2010. Geochemical Characteristics and Geological Implication of the Xialei Manganese Deposit, Daxin County, Guangxi. Geological Review, 56(5): 664-672 (in Chinese with English abstract).
      Shi, C. H., Hu, R. Z., Wang, G. Z., 2006. Element Geochemistry of Zhijin Phosphorites, Guizhou Province. Acta Mineralogical Sinica, 26(2): 169-174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200602008.htm
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: an Update. Chemical geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Xiao, J., He, J., Yang, H., et al., 2019. Geochemical Characteristics and Genetic Significance of Datangpo‐Type Manganese Ore Deposits during the Cryogenian Period. Resource Geology, 69(3): 227-248. https://doi.org/10.1111/rge.12199
      Xie, H., 2015. Sedimentary Characteristics of Manganese-bearing Rock Series in the Low-Triassic, Southwestern Guangxi(Dissertation). Chengdu University of Technology, Chnegdu (in Chinese with English abstract).
      Yan, H., Pi, D. H., Jiang, S. Y., et al., 2020. Hydrothermally Induced 34S Enrichment in Pyrite as an Alternative Explanation of the Late-Devonian Sulfur Isotope Excursion in South China. Geochimica et Cosmochimica Acta, 283: 1-21. https://doi.org/10.1016/j.gca.2020.05.017
      Yi, F., Y, H. S., 2017. Geochemical Characteristics of the Beisi Formation Manganese-Bearing Rocks of the Lower Triassic Series in the Tiandeng Area, Southwest Guangxi and their Implications. Geochimica, 46(1): 46-65(in Chinese with English abstract).
      Yi, H. S., Lin, J. H., Zhao, X. X., et al., 2008. Geochemistry of Rare Earth Elements and Origin of Positive Europium Anomaly in Miocene-Oligocene Lacustrine Carbonates from Tuotuohe Basin of Tibetan Plateau. Acta Sedmentological Sinica, 26(1): 1-10(in Chinese with English abstract).
      Yi, Q., 2015. Research on Depositional Feature and Mineralization Mechanism of Manganese Deposit of the Lower Triassic in Southweatern Guangxi Area(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Zeng, Y. Y., Liu, T., 1999. Characteristics of the Devonian Xialei Manganese Deposit, Guangxi Zhuang Autonomous Region, China. Ore Geology Reviews, 15(1-3): 153-163. https://doi.org/10.1016/S0169-1368(99)00019-0
      Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy & Microanalysis, 22(6): 1374-1380. https://doi.org/10.1017/S143192761601182X
      Zhao, L. Q., Zhao, P. Z., Yu, X. F., et al., 2021. Geochronology, Geochemistry and Gensis of the Early-Middle Triassic Dongping-Zurong Large Manganese Ore Deposit, Southern Guangxi. Acta Petrologica Sinica, 37(6): 1901-1920(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.06.16
      Zhu, S. Q., 1998. Geological Features of Lateritic Type Manganese Deposit in Dongping. China′s Manganese Industry 16: 9-13(in Chinese with English abstract).
      丛源, 董庆吉, 肖克炎, 等, 2018. 中国锰矿资源特征及潜力预测. 地学前缘, 25(3): 118-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803013.htm
      邓晓东, 2012. 云贵高原及邻区次生氧化锰矿晚新生代大规模成矿作用及其构造和古气候意义(博士学位论文). 武汉: 中国地质大学.
      丁振举, 刘丛强, 姚书振, 等, 2000. 海底热液系统高温流体的稀土元素组成及其控制因素. 地球科学进展, 15(3): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003012.htm
      付勇, 徐志刚, 裴浩翔, 等, 2014. 中国锰矿成矿规律初探. 地质学报, 88(12): 2192-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412004.htm
      靳松, 马鹏飞, 郭华, 等, 2022. 冀东秦家峪中元古界高于庄组锰矿成因: 来自矿物学和地球化学的制约. 地球科学, 47(1): 277-289. doi: 10.3799/dqkx.2021.055
      黄祥林, 陆刚, 高杨, 等, 2017. 广西东平锰矿赋矿地层归属及其时代探讨. 地层学杂志, 41(3): 284-295. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201703007.htm
      雷卞军, 阙洪培, 胡宁, 等, 2002. 鄂西古生代硅质岩的地球化学特征及沉积环境. 沉积与特提斯地质, 22(2): 70-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200202009.htm
      梁晓, 徐亚军, 訾建威, 等, 2022. 独居石成因矿物学特征及其对U-Th-Pb年龄解释的制约. 地球科学47(4): 1383-1398. doi: 10.3799/dqkx.2021.157
      李启来, 伊海生, 吴驰华, 等, 2017a. 广西东平地区碳酸锰矿床Ga含量高异常的发现及成因初探. 矿床地质, 36(3): 544-556. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201703002.htm
      李启来, 伊海生, 夏国清, 等, 2017b. 广西东平富Ga含锰岩系碳、氧同位素特征及意义. 地球科学, 42(9): 1508-1518. doi: 10.3799/dqkx.2017.530
      龙涛, 彭磊, 丁大庆, 等, 2020. 广西天等县东平矿区外围锰矿地质特征与成因研究. 中国锰业, (38): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM202006003.htm
      卢斌, 2016. 广西东平锰矿区矿床特征及找矿分析. 科学家, 4(7): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KEXJ201607024.htm
      路远发, 陈开旭, 战明国, 1999. 羊拉地区含矿矽卡岩成因的地球化学证据. 地球科学, 24(3): 298-303. http://www.earth-science.net/article/id/789
      秦元奎, 张华成, 姚敬劬, 2010. 广西大新县下雷锰矿床的地球化学特征及其意义. 地质论评, 56(5): 664-672. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201005009.htm
      施春华, 胡瑞忠, 王国芝, 2006. 贵州织金磷矿岩元素地球化学特征. 矿物学报, 26(2): 169-174. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200602008.htm
      谢华, 2015. 桂西南地区下三叠统含锰岩系沉积特征研究(硕士学位论文). 成都理工大学.
      伊帆, 伊海生, 2017. 桂西南地区下三叠统北泗组含锰岩系地球化学特征及意义. 地球化学, 46(1): 46-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201701005.htm
      伊海生, 林金辉, 赵西西, 等, 2008. 西藏高原沱沱河盆地渐新世-中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探. 沉积学报, 26(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200801000.htm
      尹青, 2015. 桂西南地区下三叠统锰矿沉积特征与成因机理研究(博士学位论文). 成都理工大学.
      赵立群, 赵品忠, 于晓飞, 等, 2021. 桂西南早-中三叠世东平-足荣大型锰矿床地球化学, 年代学及成因研究. 岩石学报, 37(6): 1901-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202308011.htm
      祝寿泉, 1998. 东平红土型锰矿的地质特征. 中国锰业, 16(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM801.002.htm
    • dqkxzx-49-2-656-附表.docx
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  160
    • HTML全文浏览量:  319
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-28
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回