• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东太平洋海隆海底热液蠕虫管道矿化特征及其成因

    罗礼涛 王叶剑 蔡翌旸 董传奇 韩喜球

    罗礼涛, 王叶剑, 蔡翌旸, 董传奇, 韩喜球, 2024. 东太平洋海隆海底热液蠕虫管道矿化特征及其成因. 地球科学, 49(1): 224-237. doi: 10.3799/dqkx.2022.161
    引用本文: 罗礼涛, 王叶剑, 蔡翌旸, 董传奇, 韩喜球, 2024. 东太平洋海隆海底热液蠕虫管道矿化特征及其成因. 地球科学, 49(1): 224-237. doi: 10.3799/dqkx.2022.161
    Luo Litao, Wang Yejian, Cai Yiyang, Dong Chuanqi, Han Xiqiu, 2024. Mineralization Characteristics and Genesis of Worm-Tubes from Seafloor Hydrothermal Fields at East Pacific Rise. Earth Science, 49(1): 224-237. doi: 10.3799/dqkx.2022.161
    Citation: Luo Litao, Wang Yejian, Cai Yiyang, Dong Chuanqi, Han Xiqiu, 2024. Mineralization Characteristics and Genesis of Worm-Tubes from Seafloor Hydrothermal Fields at East Pacific Rise. Earth Science, 49(1): 224-237. doi: 10.3799/dqkx.2022.161

    东太平洋海隆海底热液蠕虫管道矿化特征及其成因

    doi: 10.3799/dqkx.2022.161
    基金项目: 

    国家重点研发计划项目课题 2021YFF0501304

    国家自然科学基金面上项目 41976076

    详细信息
      作者简介:

      罗礼涛(1996-),男,硕士研究生,主要从事海底热液与生物矿化相关研究. ORCID:0000-0003-1399-9186. E-mail:luolitao@cdut.edu.cn

      通讯作者:

      王叶剑,ORCID: 0000-0002-8089-0706. E-mail: yjwang@sio.org.cn

    • 中图分类号: P736.3

    Mineralization Characteristics and Genesis of Worm-Tubes from Seafloor Hydrothermal Fields at East Pacific Rise

    • 摘要: 热液管状蠕虫生物矿化现象在海底热液喷口区发育广泛,但蠕虫管道矿化和风化氧化过程及其控制因素知之甚少.对采自东太平洋海隆热液蠕虫矿化管道样品开展了高分辨率矿物学和元素分布研究.结果表明,样品具有以胶状黄铁矿为主的多圈层矿化结构,分为快速(F型)和慢速矿化(S型)两种类型.相比“S型”样品,“F型”的管壁更厚,同心层的数量少、间隙小、厚度均一.这主要受矿物沉淀速率的影响,即矿物的快速沉淀加快了蠕虫管道生长和矿化.此外,“F型”样品外壁分布的草莓状黄铁矿,表明纳‒微米晶硫化物矿物的定向生长是形成胶状黄铁矿带的重要中间途径.而“S型”管壁从内到外具有氧化程度逐渐增加、胶状黄铁矿逐渐减薄的显著特征,指示样品同时受到了后期低温、富Fe-Si热液流体和低温海水风化氧化作用的影响.本项研究为理解现代海底热液系统的管状蠕虫矿化机制提供了新见解.

       

    • 图  1  东太平洋海隆13°N和5.3°S热液区位置

      地图用GMT 6制作(Wessel et al.,2019),地形数据自海洋地球科学数据系统(http://www.marine-geo.org/),热液区位置来源于InterRidge Vents Database Ver. 3.4(Beaulieu and Szafranski,2020

      Fig.  1.  Locations of the East Pacific Rise 13° N and 5.3° S hydrothermal fields

      图  2  含蠕虫矿化管道的硫化物烟囱体

      a.富Fe烟囱体碎块;b.富Zn烟囱体顶部.黄色实线表示蠕虫矿化管道,蓝色虚线表示切片位置

      Fig.  2.  Sulfide chimneys with mineralized worm-tubes

      图  3  EPR 13°N热液区烟囱体矿物组成和蠕虫矿化管道结构显微照片

      a.蠕虫矿化管道及硫化物烟囱体矿物;b.被白铁矿和闪锌矿充填的蠕虫矿化管道;c.从外到内胶状黄铁矿层逐渐减薄的矿化管壁;d.位于外壁的草莓状黄铁矿聚合体;e、g.外壁中胶状黄铁矿和白铁矿的韵律层;f.胶状黄铁矿层间的无定型硅;h.无定型硅中的红褐色铁氧化物.橙色箭头指向蠕虫管道中心;除图f和图h使用的是透射光条件,其他照片均在反射光条件下拍摄

      Fig.  3.  Mineral assemblages and structures from microphotograph of worm-tubes within hydrothermal chimney at EPR 13°N

      图  4  蠕虫矿化管道(图 3c)局部的TIMA分析结果

      Py.黄铁矿;Sp1.半自形‒自形闪锌矿;Sp2.胶状闪锌矿;Ams.无定型硅;Fe-ox.铁氧化物,下同. 橙色箭头指向蠕虫管道中心

      Fig.  4.  Images of mineralized worm-tubes from Fig.3c by TIMA analysis

      图  5  EPR 5.3°S热液区烟囱体矿物组成和蠕虫管道结构显微照片

      a.蠕虫矿化管道及硫化物烟囱体矿物;b.未被充填的蠕虫矿化管道;c.朝向烟囱体一侧的管壁分层明显;d.靠近海水一侧的管壁层间可见闪锌矿充填.橙色箭头指向蠕虫管道中心

      Fig.  5.  Mineral assemblages and structures from microphotograph of worm-tubes within hydrothermal chimney at EPR 5.3°S

      图  6  蠕虫矿化管道(图 5c)局部的TIMA分析结果

      a.分层明显的胶状黄铁矿管壁;b.无定型硅和胶状黄铁矿交错相接的管壁;c.管壁氧化程度从内到外增加;d.充填在管壁层间的胶状闪锌矿;e.管道外壁的铁氧化物及与之共生的针钠铁钒. Gda.针钠铁钒,橙色箭头指向蠕虫管道中心

      Fig.  6.  Images of mineralized worm-tubes from Fig.5c by TIMA analysis

      图  7  蠕虫矿化管道(图 5d)局部的TIMA分析结果

      a.具有明显矿物分带的蠕虫管壁;b.内壁的氧化程度低;c.管壁被无定型硅取代,并保留了胶状黄铁矿核心;d.充填在管壁层间的胶状闪锌矿;e.管道外壁的铁氧化物及与之共生的针钠铁钒. Ccp.黄铜矿,橙色箭头指向蠕虫管道中心

      Fig.  7.  Images of mineralized worm-tubes from Fig.5d by TIMA analysis

      图  8  EPR 13°N蠕虫矿化管道μ-XRF分析图

      Fig.  8.  Mineralized worm-tubes by μ-XRF analysis results at EPR 13°N

      图  9  EPR 5.3°S蠕虫矿化管道μ-XRF分析图

      Fig.  9.  Mineralized worm-tubes by μ-XRF analysis results at EPR 5.3°S

      表  1  硫化物烟囱体样品

      Table  1.   Information of sulfide chimney samples

      样品编号 热液区 纬度 经度 深度(m) 样品类型 矿物组合
      17A-TVG02-2 EPR 13°N 12.711°N 103.907°W 2 633 富Fe烟囱体 Py+Sp+Ccp
      22Ⅶ-TVG07-2 EPR 5.3°S 5.301°S 106.482°W 2 721 富Zn烟囱体 Sp+Mar+Ams
      注:Py.黄铁矿;Sp. 闪锌矿;Ccp.黄铜矿;Mar.白铁矿;Ams.无定型硅.
      下载: 导出CSV

      表  2  研究区蠕虫管道矿化特征对比

      Table  2.   Comparison of mineralization characteristics of worm-tubes in this study

      热液区 管壁分布特征 通道封闭程度 通道内充填的矿物 主要矿物分带 同心层(内→外) 矿物组合 矿化管壁特征
      黄铁矿带厚度(内→外)(μm) 厚度变化(内→外) 元素富集特征 元素变化(内→外)
      EPR 13°N 被硫化物烟囱体包围 75% 闪锌矿白铁矿 黄铁矿带 胶状黄铁矿 30.3~75.8 增厚 Fe、Mn 增加
      胶状黄铁矿 53.1~110.6 Fe、Mn
      胶状黄铁矿+草莓状黄铁矿 121.2~303.2 Fe、Mn
      EPR 5.3°S 朝向烟囱体中心一侧 5% 闪锌矿 黄铁矿带 胶状黄铁矿与无定型硅交错分布 52.6~144.1 减薄 Fe、Mn 增加
      15.6~28.5 Fe、Mn
      5.5~24.1 Fe、Mn
      12.1~34.5 Fe、Mn
      13.2~42.3 Fe、Mn
      18.9~41.8 Fe、Mn
      5.4~22.5 Fe、Mn
      9.8~17.5 Fe、Mn
      靠近海水一侧 8% 闪锌矿 B1:黄铁矿带 胶状黄铁矿 21.4~62.6 减薄 Fe、Mn 蠕虫管壁太薄,未分辨元素变化
      8.4~17.8 Fe、Mn
      19.7~47.1 Fe、Mn
      B2:无定型硅+ 黄铁矿带 胶状黄铁矿核心两侧分布无定型硅 2.9~10.4 Si
      5.3~15.3 Si
      3.1~8.7 Si
      2.5~7.9 Si
      3.8~6.3 Si
      2.4~7.5 Si
      B3:闪锌矿+ 黄铁矿带 胶状黄铁矿核心两侧分布闪锌矿 2.9~9.3 Zn、As
      B4:针钠铁钒+铁氧化物+黄铁矿带 胶状黄铁矿核心两侧分布针钠铁钒 5.2~9.8 Zn
      3.1~23.2 Zn
      3.9~19.3 Zn
      下载: 导出CSV
    • Auclair, G., Fouquet, Y., Bohn, M., 1987. Distribution of Selenium in High-Temperature Hydrothermal Sulfide Deposits at 13° North, East Pacific Rise. The Canadian Mineralogist, 25(4): 577-587.
      Barrie, C. D., Boyce, A. J., Boyle, A. P., et al., 2009. Growth Controls in Colloform Pyrite. American Mineralogist, 94(4): 415-429. https://doi.org/10.2138/am.2009.3053
      Beaulieu, S. E., Szafranski, K., 2020. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields, Version 3.4. https://vents-data.interridge.org/ (accessed December 24, 2020)
      Benning, L. G., Wilkin, R. T., Barnes, H. L., 2000. Reaction Pathways in the Fe-S System below 100 ℃. Chemical Geology, 167(1-2): 25-51. https://doi.org/10.1016/S0009-2541(99)00198-9
      Brett, R., Jr Evans, H. T., Jr Gibson, E. K., et al., 1987. Mineralogical Studies of Sulfide Samples and Volatile Concentrations of Basalt Glasses from the Southern Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 92(B11): 11373-11379. https://doi.org/10.1029/jb092ib11p11373
      Cook, T. L., Stakes, D. S., 1995. Biogeological Mineralization in Deep-Sea Hydrothermal Deposits. Science, 267(5206): 1975-1979. https://doi.org/10.1126/science.267.5206.1975
      Fallon, E. K., Petersen, S., Brooker, R. A., et al., 2017. Oxidative Dissolution of Hydrothermal Mixed-Sulphide Ore: An Assessment of Current Knowledge in Relation to Seafloor Massive Sulphide Mining. Ore Geology Reviews, 86: 309-337. https://doi.org/10.1016/j.oregeorev.2017.02.028
      Georgieva, M. N., Little, C. T. S., Ball, A. D., et al., 2015. Mineralization of Alvinella Polychaete Tubes at Hydrothermal Vents. Geobiology, 13(2): 152-169. https://doi.org/10.1111/gbi.12123
      Georgieva, M. N., Little, C. T. S., Maslennikov, V. V., et al., 2021. The History of Life at Hydrothermal Vents. Earth-Science Reviews, 217: 103602. https://doi.org/10.1016/j.earscirev.2021.103602
      Guo, Z. K., Chen, C., Tao, C. H., et al., 2021. Numerical Modeling of Mineral Precipitation in Seafloor Hydrothermal Circulation. Earth Science, 46(2): 729-742 (in Chinese with English abstract).
      Halbach, M., Halbach, P., Lüders, V., 2002. Sulfide-Impregnated and Pure Silica Precipitates of Hydrothermal Origin from the Central Indian Ocean. Chemical Geology, 182(2-4): 357-375. https://doi.org/10.1016/S0009-2541(01)00323-0
      Han, Y. R., Zhang, D. S., Wang, C. S., et al., 2021. Out of the Pacific: A New Alvinellid Worm (Annelida: Terebellida) from the Northern Indian Ocean Hydrothermal Vents. Frontiers in Marine Science, 8: 669918. https://doi.org/10.3389/fmars.2021.669918
      Hannington, M. D., De Ronde, C. E. J., Petersen, S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. Economic Geology, 100(2): 111-159. https://doi.org/10.5382/AV100.06
      Haymon, R. M., Kastner, M., 1981. Hot Spring Deposits on the East Pacific Rise at 21°N: Preliminary Description of Mineralogy and Genesis. Earth and Planetary Science Letters, 53(3): 363-381. https://doi.org/10.1016/0012-821X(81)90041-8
      Humphris, S. E., Klein, F., 2018. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. Annual Review of Marine Science, 10: 315-343. https://doi.org/10.1146/annurev-marine-121916-063233
      Jamieson, J. W., Gartman, A., 2020. Defining Active, Inactive, and Extinct Seafloor Massive Sulfide Deposits. Marine Policy, 117: 103926. https://doi.org/10.1016/j.marpol.2020.103926
      Juniper, S. K., Thompson, J. A. J., Calvert, S. E., et al., 1986. Accumulation of Minerals and Trace Elements in Biogenic Mucus at Hydrothermal Vents. Deep Sea Research Part A: Oceanographic Research Papers, 33(3): 339-347. https://doi.org/10.1016/0198-0149(86)90095-6
      Juniper, S. K., Sarrazin, J., 1995. Interaction of Vent Biota and Hydrothermal Deposits: Present Evidence and Future Experimentation. In: Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., et al., eds., Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Washington, D. C., 178-193. https://doi.org/10.1029/GM091p0178
      Le Bris, N., Gaill, F., 2007. How does the Annelid Alvinella Pompejana Deal with an Extreme Hydrothermal Environment? Reviews in Environmental Science and Bio/Technology, 6: 197-221. https://doi.org/10.1007/s11157-006-9112-1
      Le Bris, N., Zbinden, M., Gaill, F., 2005. Processes Controlling the Physico-Chemical Micro-Environments Associated with Pompeii Worms. Deep Sea Research Part I: Oceanographic Research Papers, 52(6): 1071-1083. https://doi.org/10.1016/j.dsr.2005.01.003
      Li, J. T., Cui, J. M., Yang, Q. H., et al., 2017. Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney. Frontiers in Microbiology, 8: 1378. https://doi.org/10.3389/fmicb.2017.01378
      Lonsdale, P., 1983. Overlapping Rift Zones at the 5.5°S Offset of the East Pacific Rise. Journal of Geophysical Research: Solid Earth, 88(B11): 9393-9406. https://doi.org/10.1029/jb088ib11p09393
      Luo, H. M., Han, X. Q., Wang, Y. J., et al., 2021. Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits. Earth Science, 46(9): 3123-3138 (in Chinese with English abstract).
      MacDonald, K. C., Fox, P. J., Miller, S., et al., 1992. The East Pacific Rise and Its Flanks 8-18° N: History of Segmentation, Propagation and Spreading Direction Based on SeaMARC Ⅱ and Sea Beam Studies. Marine Geophysical Researches, 14(4): 299-344. https://doi.org/10.1007/BF01203621
      Maginn, E. J., Little, C. T. S., Herrington, R. J., et al., 2002. Sulphide Mineralisation in the Deep Sea Hydrothermal Vent Polychaete, Alvinella Pompejana: Implications for Fossil Preservation. Marine Geology, 181(4): 337-356. https://doi.org/10.1016/S0025-3227(01)00196-7
      Martin, W., Baross, J., Kelley, D., et al., 2008. Hydrothermal Vents and the Origin of Life. Nature Reviews Microbiology, 6(11): 805-814. https://doi.org/10.1038/nrmicro1991
      Nasdala, L., Witzke, T., Ullrich, B., et al., 1998. Gordaite [Zn4Na(OH)6(SO4)Cl·6H2O]: Second Occurrence in the Juan de Fuca Ridge, and New Data. American Mineralogist, 83(9-10): 1111-1116. https://doi.org/10.2138/am-1998-9-1020
      Nozaki, T., Ishibashi, J., Shimada, K., et al., 2016. Rapid Growth of Mineral Deposits at Artificial Seafloor Hydrothermal Vents. Scientific Reports, 6: 22163. https://doi.org/10.1038/srep22163
      Ohfuji, H., Rickard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth-Science Reviews, 71(3-4): 147-170. https://doi.org/10.1016/j.earscirev.2005.02.001
      Peng, X. T., Zhou, H. Y., Tang, S., et al., 2008. Early-Stage Mineralization of Hydrothermal Tubeworms: New Insights into the Role of Microorganisms in the Process of Mineralization. Chinese Science Bulletin, 53(2): 251-261. https://doi.org/10.1007/s11434-007-0517-1
      Pester, N. J., Rough, M., Ding, K., et al., 2011. A New Fe/Mn Geothermometer for Hydrothermal Systems: Implications for High-Salinity Fluids at 13°N on the East Pacific Rise. Geochimica et Cosmochimica Acta, 75(24): 7881-7892. https://doi.org/10.1016/j.gca.2011.08.043
      Rickard, D., Luther, G. W., 1997. Kinetics of Pyrite Formation by the H2S Oxidation of Iron (Ⅱ) Monosulfide in Aqueous Solutions between 25 and 125 ℃: The Mechanism. Geochimica et Cosmochimica Acta, 61(1): 135-147. https://doi.org/10.1016/S0016-7037(96)00322-5
      Taylor, K. G., MacQuaker, J. H. S., 2000. Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession: The Lower Jurassic Cleveland Ironstone Formation, Eastern England. Sedimentary Geology, 131(1-2): 77-86. https://doi.org/10.1016/S0037-0738(00)00002-6
      Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data. Journal of Geophysical Research: Solid Earth, 100(B7): 12527-12555. https://doi.org/10.1029/95jb00610
      Toner, B. M., Rouxel, O., Santelli, C. M., et al., 2008. Sea-Floor Weathering of Hydrothermal Chimney Sulfides at the East Pacific Rise 9°N: Chemical Speciation and Isotopic Signature of Iron Using X-Ray Absorption Spectroscopy and Laser Ablation MCICP-MS. Geochimica et Cosmochimica Acta, 72: A951.
      Wang, Y. J., Han, X. Q., Petersen, S., et al., 2017. Mineralogy and Trace Element Geochemistry of Sulfide Minerals from the Wocan Hydrothermal Field on the Slow-Spreading Carlsberg Ridge, Indian Ocean. Ore Geology Reviews, 84: 1-19. https://doi.org/10.1016/j.oregeorev.2016.12.020
      Wessel, P., Luis, J. F., Uieda, L., et al., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. https://doi.org/10.1029/2019GC008515
      Workman, R. K., Hart, S. R., Jackson, M., et al., 2004. Recycled Metasomatized Lithosphere as the Origin of the Enriched Mantle Ⅱ (EM2) End-Member: Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4): Q04008. https://doi.org/10.1029/2003GC000623
      Zbinden, M., Le Bris, N., Compère, P., et al., 2003. Mineralogical Gradients Associated with Alvinellids at Deep-Sea Hydrothermal Vents. Deep Sea Research Part I: Oceanographic Research Papers, 50(2): 269-280. https://doi.org/10.1016/S0967-0637(02)00161-9
      郭志馗, 陈超, 陶春辉, 等, 2021. 海底热液循环中矿物沉淀过程数值模拟. 地球科学, 46(2): 729-742. doi: 10.3799/dqkx.2019.959
      罗洪明, 韩喜球, 王叶剑, 等, 2021. 全球现代海底块状硫化物战略性金属富集机理及资源前景初探. 地球科学, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  176
    • HTML全文浏览量:  408
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-15
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回