• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑洪水河地区三叠纪花岗岩类的岩石成因及其对古特提斯造山作用的启示

    李福睿 熊富浩 马昌前 赵涵 龚婷婷

    李福睿, 熊富浩, 马昌前, 赵涵, 龚婷婷, 2024. 东昆仑洪水河地区三叠纪花岗岩类的岩石成因及其对古特提斯造山作用的启示. 地球科学, 49(2): 639-655. doi: 10.3799/dqkx.2022.165
    引用本文: 李福睿, 熊富浩, 马昌前, 赵涵, 龚婷婷, 2024. 东昆仑洪水河地区三叠纪花岗岩类的岩石成因及其对古特提斯造山作用的启示. 地球科学, 49(2): 639-655. doi: 10.3799/dqkx.2022.165
    Li Furui, Xiong Fuhao, Ma Changqian, Zhao Han, Gong Tingting, 2024. Petrogenesis of Triassic Hongshuihe Granitoids in East Kunlun: Implications for the Paleo-Tethyan Orogeny. Earth Science, 49(2): 639-655. doi: 10.3799/dqkx.2022.165
    Citation: Li Furui, Xiong Fuhao, Ma Changqian, Zhao Han, Gong Tingting, 2024. Petrogenesis of Triassic Hongshuihe Granitoids in East Kunlun: Implications for the Paleo-Tethyan Orogeny. Earth Science, 49(2): 639-655. doi: 10.3799/dqkx.2022.165

    东昆仑洪水河地区三叠纪花岗岩类的岩石成因及其对古特提斯造山作用的启示

    doi: 10.3799/dqkx.2022.165
    基金项目: 

    国家自然科学基金项目 41602049

    国家自然科学基金项目 41972066

    成都理工大学珠峰科学研究计划项目 2021ZF11412

    详细信息
      作者简介:

      李福睿(1996-),男,硕士研究生,研究方向为矿物学、岩石学、矿床学. ORCID:0009-0003-3371-1386. E-mail:lifurui8082@163.com

      通讯作者:

      熊富浩, ORCID: 0000-0003-1121-3370. E-mail: xiongfuhao2014@cdut.edu.cn

    • 中图分类号: P581

    Petrogenesis of Triassic Hongshuihe Granitoids in East Kunlun: Implications for the Paleo-Tethyan Orogeny

    • 摘要: 东昆仑三叠纪岩浆岩的是研究古特提斯造山作用过程的重要探针. 对东昆仑洪水河地区花岗岩类开展了详细的岩石学、年代学、地球化学和Sr-Nd同位素研究,探讨其成因机制及动力学背景. 锆石U-Pb年代学研究表明,洪水河花岗闪长岩和花岗岩的结晶年龄分别为243.0 Ma±3.3 Ma和244.0 Ma±3.1 Ma. 两类岩石均属于准铝质高钾钙碱性Ⅰ型花岗岩,但花岗闪长岩具有较低的Na2O/K2O比值(0.78~0.96)和较高的Mg#(42~45). 岩石均富集大离子亲石元素,亏损高场强元素,且具有富集的Sr-Nd同位素组成[εNdt=243)=-6.53~-4.99,Isr=0.706 871~0.709 126]. 综合分析表明,洪水河地区三叠纪花岗岩类形成于古特提斯洋壳俯冲的陆缘弧环境,岩浆起源于中元代变质杂砂岩的部分熔融,且经历了不同程度的壳幔混合作用和分离结晶作用.研究揭示,古老大陆地壳的重熔与一定量的壳幔混合作用是东昆仑中三叠世大陆地壳的主要演化方式.

       

    • 图  1  (a)东昆仑地体及邻区大地构造单元划分简图;(b)东昆仑东段岩浆岩分布简图;(c)东昆仑造山带东段早二叠世-晚三叠世岩浆岩年龄分布直方图;(d)洪水河花岗岩岩体地质简图

      a图据 Meng et al.(2013);b图据 Xiong et al.(2019);c图数据引自 Li et al.(2018)Guo et al.(2019)Xiong et al.(2019)Chen et al.(2019);d图据1∶25万香日德农场地质图修改

      Fig.  1.  (a) Simplifiedtectonic division map of the East Kunlun orogen and its adjacent regions; (b) Sketch map showing the distribution of magmatic rocks in the eastern part of East Kunlun; (c) Age histogram for the early Permian-Late Triassic magmatic rocks in the eastern part of East Kunlun orogen; (d)Simplified geologicalmap of the Hongshuihegranite pluton

      图  2  洪水河花岗岩与花岗闪长岩野外露头及镜下显微照片

      Qz. 石英;Kfs.钾长石;Pl. 斜长石;Hbl. 角闪石;Bt. 黑云母

      Fig.  2.  Field photograph and microphotographs of Hongshuihe granite and granodiorite

      图  3  洪水河地区花岗岩类的锆石阴极发光图像及U-Pb年龄谐和图

      Fig.  3.  Cathodoluminescence images and U-Pb concordia diagrams of zircons of Hongshuihe granitoids

      图  4  (a)TAS分类命名图;(b)SiO2 vs. K2O图;(c)SiO2 vs.(Na2O+K2O-CaO)图;(d)A/CNK vs. A/NK图

      a图据 Middlemost et al.(1994);b图据 Peccerillo and Taylor(1976);c图据 Frost et al.(2001);d图据 Chappell and White(1974)

      Fig.  4.  (a) TAS classification and nomenclature diagram; (b) SiO2 vs. K2O diagram; (c) SiO2 vs. (c; Na2O+K2O-CaO) diagram; (d) A/CNK vs. A/NK diagram

      图  5  洪水河花岗质岩石的全岩地球化学成分哈克图解

      Fig.  5.  Harker diagrams for the whole-rock geochemical composition of the Hongshuihe granitic rocks

      图  6  (a)球粒陨石标准化稀土元素图;(b)原始地幔标准化微量元素蛛网图(据Sun and McDonough, 1989

      Fig.  6.  (a) Chondrite-normalized REE patterns; (b) Primitive mantlenormalized trace element spider diagrams(after Sun and McDonough, 1989)

      图  7  洪水河花岗岩类的Sr-Nd同位素组成图

      洋岛玄武岩和基底资料据郭安林等(2007)和巴金等(2012)

      Fig.  7.  Whole-rock Sr-Nd isotopic diagram for the Hongshuihe granitic rocks

      图  8  花岗闪长岩与花岗岩岩石成因判别图(Whalen et al., 1987

      Fig.  8.  Petrogenesis discrimination diagrams of granodiorite and granite(Whalen et al., 1987)

      图  9  洪水河地区花岗岩类的源区判别图解

      a图据 Vielzeuf et al.(1988);b图据 Kaygusuz et al.(2008)

      Fig.  9.  Discrimination diagrams for magma sources of the Hongshuihe granitoids

      图  10  洪水河花岗岩类的岩浆演化过程判别图

      Pl. 斜长石;Kfs.钾长石;Bt. 黑云母;Hbl.角闪石;Ttn. 榍石;Ilm. 钛铁矿;Aln.褐帘石;Ap. 磷灰石;Zr. 锆石

      Fig.  10.  Discrimination iagrams of magmatic evolution process for the Hongshuihe granitoids

      图  11  洪水河地区花岗岩类的构造环境判别图

      a. Ta vs.Yb图(Pearce et al.,1984);b. La/Nb vs. Ba/Nb图(Jahn et al.,1999);c. Ta/Ybvs.Th/Yb图(after Pearce et al.,1984);d. Rb/30-Hf-3Ta图(Harris et al.,1986);AV. 弧火山岩,CA. 大陆弧,CCA. 大陆地壳平均值,DOIB. Dupal洋岛玄武岩,OIA. 洋岛弧,MORB. 洋中脊玄武岩,OIB. 洋岛玄武岩,ORG. 洋脊花岗岩,PM. 原始地幔,syn-COLG. 同碰撞花岗岩,VAG. 火山弧花岗岩,WPB. 板内玄武岩,WPG. 板内花岗岩

      Fig.  11.  Tectonic discrimination diagrams for the Hongshuihe granitoids

      图  12  东昆仑早-中三叠世岩浆-构造动力学模型

      Fig.  12.  Early-Middle Triassic tectono-magmatic dynamic model in East Kunlun

      表  1  洪水河地区花岗岩类的锆石LA-ICP-MS U-Pb测年分析结果

      Table  1.   LA-ICP-MS zircon U-Pb analysis results of the studied Hongshuihe granitoids

      样品编号 元素含量
      (×10-6
      Th/U 同位素比值 同位素年龄
      Th U Ratio 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U
      09NM36-1(花岗闪长岩)
      1 97 335 0.291 2 0.051 6 0.001 0 0.277 9 0.005 5 0.039 1 0.000 5 249 269 247 3
      2 97 246 0.396 1 0.052 5 0.001 0 0.278 6 0.005 7 0.038 5 0.000 5 250 307 243 3
      3 57 153 0.370 6 0.053 4 0.001 6 0.274 3 0.007 9 0.037 3 0.000 6 246 344 236 3
      4 158 478 0.330 9 0.053 4 0.001 3 0.276 1 0.006 8 0.037 5 0.000 6 248 346 237 4
      5 244 511 0.478 4 0.054 2 0.001 4 0.287 0 0.007 0 0.039 1 0.000 6 256 379 247 4
      6 206 502 0.410 6 0.053 6 0.001 2 0.283 9 0.006 3 0.038 4 0.000 5 254 355 243 3
      7 465 437 1.064 1 0.052 2 0.001 0 0.275 7 0.005 4 0.038 3 0.000 5 247 294 242 3
      8 163 509 0.320 2 0.051 9 0.000 8 0.267 0 0.004 6 0.037 3 0.000 5 240 281 236 3
      9 176 431 0.408 1 0.058 7 0.001 2 0.306 4 0.006 4 0.037 9 0.000 5 271 556 239 3
      10 148 457 0.322 8 0.053 8 0.001 3 0.288 4 0.007 5 0.038 9 0.000 6 257 363 246 4
      13NM02-3(花岗岩)
      1 212 431 0.493 1 0.050 4 0.002 8 0.271 8 0.014 8 0.038 8 0.000 5 244 213 245 3
      2 105 383 0.272 6 0.052 4 0.003 5 0.281 6 0.018 6 0.038 6 0.000 6 252 306 244 4
      3 103 371 0.276 6 0.050 9 0.003 4 0.274 6 0.017 2 0.038 6 0.000 6 246 235 244 4
      4 105 389 0.269 2 0.052 7 0.003 9 0.285 1 0.020 6 0.038 6 0.000 6 255 322 244 4
      5 162 432 0.375 0 0.056 3 0.006 0 0.300 8 0.032 8 0.038 8 0.000 9 267 465 245 5
      6 108 365 0.296 8 0.056 7 0.004 9 0.302 6 0.023 2 0.038 7 0.000 7 268 480 245 5
      7 51 194 0.263 2 0.056 4 0.004 9 0.306 7 0.024 1 0.039 3 0.000 7 272 465 249 4
      8 95 355 0.267 0 0.047 0 0.003 6 0.248 6 0.018 2 0.038 6 0.000 8 225 50 244 5
      9 587 861 0.682 0 0.055 2 0.005 1 0.292 6 0.027 1 0.038 3 0.000 7 261 420 242 5
      10 93 387 0.240 3 0.056 8 0.004 2 0.296 4 0.021 1 0.038 8 0.000 6 264 483 245 4
      11 133 497 0.268 5 0.053 2 0.003 3 0.279 3 0.016 1 0.038 6 0.000 6 250 345 244 4
      下载: 导出CSV

      表  2  洪水河岩体全岩Sr-Nd同位素组成

      Table  2.   Whole-rock Sr-Nd isotopic compositions for the Hongshui River pluton

      岩性 花岗闪长岩 花岗岩
      样品号 09NM11-1 09NM78-1 09NM79 09NM80-1 09NM82-2 09NM82-4
      87Rb/86Sr 1.462 10 1.000 98 1.027 49 1.102 70 6.421 82 1.915 49
      87Sr/86Sr 0.713 287 0.7128 28 0.7128 68 0.713 016 0.730 624 0.715 63
      121.000 02 59.000 02 60.000 02 61.000 02 67.000 02 68.000 02
      (87Sr/86Sr)0 0.707 88 0.709 13 0.709 07 0.708 94 0.706 87 0.708 54
      147Sm/144Nd 0.098 17 0.112 60 0.111 70 0.107 34 0.104 30 0.078 39
      143Nd/144Nd(t) 0.511 99 0.511 97 0.511 97 0.511 98 0.512 02 0.512 05
      fSm/Nd -0.500 93 -0.427 55 -0.432 15 -0.454 32 -0.469 75 -0.601 46
      εNd(0) -9.32 -9.25 -9.34 -9.32 -8.64 -8.91
      εNd(t) -6.06 -6.46 -6.53 -6.36 -5.58 -4.99
      TDM2 1 522 1 553 1 559 1 546 1 482 1 436
      下载: 导出CSV

      表  3  花岗岩和花岗闪长岩的常量元素(%)、稀土和微量元素数据(×10-6

      Table  3.   Major (%) and trace (×10-6) element compositions of granite and granodiorite

      岩性 花岗闪长岩 花岗岩
      样品号 09NM11-1 09NM36-1 09NM78-1 09NM79 09NM80-1 09NM42-2 09NM82-2 09NM82-4
      SiO2 67.97 67.54 66.72 66.28 66.81 72.19 76.21 73.77
      TiO2 0.51 0.49 0.60 0.61 0.60 0.36 0.06 0.12
      Al2O3 15.12 15.38 15.69 15.96 15.68 13.79 12.23 13.88
      Fe2O3 1.03 1.11 0.75 0.92 0.82 0.52 0.47 0.58
      FeO 2.60 2.68 2.85 2.80 2.80 1.67 0.38 0.68
      MnO 0.07 0.08 0.06 0.06 0.06 0.03 0.02 0.01
      MgO 1.43 1.56 1.61 1.68 1.59 0.44 0.28 0.27
      CaO 3.45 3.84 4.08 3.98 3.92 1.43 1.36 1.89
      Na2O 3.46 3.38 3.29 3.34 3.30 2.92 3.01 3.00
      K2O 3.29 2.64 3.16 3.09 3.01 5.59 4.63 5.10
      P2O5 0.13 0.14 0.15 0.15 0.14 0.10 0.01 0.03
      H2O+ 0.68 0.83 0.73 0.80 0.84 0.51 0.59 0.30
      CO2 0.06 0.10 0.08 0.10 0.21 0.25 0.63 0.13
      LOI 0.43 0.58 0.42 0.53 0.63 0.65 1.05 0.29
      Total 100.23 100.35 100.19 100.30 100.41 100.45 100.93 100.05
      Mg# 41.96 43.05 44.88 45.22 44.48 26.84 38.34 28.60
      Fe# 0.58 0.57 0.55 0.55 0.56 0.73 0.62 0.71
      ACNK 0.97 1.00 0.97 0.99 0.99 1.02 0.98 1.00
      ANK 1.63 1.83 1.78 1.81 1.81 1.27 1.23 1.33
      Li 47.15 31.46 47.57 52.83 49.44 16.69 7.77 9.91
      Be 2.42 1.85 2.63 3.54 3.39 1.47 2.94 1.96
      Sc 8.60 8.08 8.04 9.66 8.08 6.09 2.73 2.38
      V 64.96 60.12 57.16 67.38 60.08 10.23 7.03 10.43
      Cr 12.06 7.25 13.81 15.05 14.52 5.13 3.58 1.75
      Co 8.71 8.06 7.59 8.88 7.99 3.41 1.29 1.51
      Ni 6.14 4.50 5.50 5.98 5.39 2.43 1.96 1.68
      Cu 3.66 11.46 6.33 4.36 3.93 31.97 5.98 5.16
      Zn 57.77 67.97 66.94 70.43 64.84 35.07 11.42 14.21
      Ga 19.48 19.17 20.23 23.44 21.48 17.65 14.54 15.53
      Rb 174.27 99.92 137.87 163.10 149.55 203.61 226.04 176.81
      Sr 345.54 403.05 399.30 460.18 393.17 137.98 102.04 267.60
      Y 16.73 15.02 16.45 19.84 16.51 16.96 10.02 8.19
      Zr 164.21 135.88 175.00 192.19 184.12 215.30 55.61 115.32
      Nb 11.52 9.89 9.21 11.51 9.77 12.01 5.10 4.60
      Cs 7.99 1.96 5.52 11.36 8.24 4.22 12.92 5.64
      Ba 646.78 682.89 581.88 663.81 580.65 817.82 132.52 1218.32
      La 39.19 22.26 33.51 40.06 38.61 18.22 16.14 51.79
      Ce 78.02 47.91 60.21 73.26 67.53 40.99 25.14 79.79
      Pr 8.00 5.36 6.73 8.12 7.40 5.38 2.81 7.48
      Nd 27.79 20.26 25.54 30.21 26.96 22.44 8.74 23.34
      Sm 4.51 3.83 4.76 5.58 4.79 5.25 1.51 3.03
      Eu 1.00 0.97 1.10 1.27 1.06 1.10 0.37 0.87
      Gd 3.70 3.36 3.94 4.70 3.96 5.07 1.38 2.33
      Tb 0.53 0.50 0.57 0.66 0.55 0.70 0.24 0.28
      Dy 3.00 2.78 3.26 3.61 3.04 3.68 1.51 1.43
      Ho 0.55 0.53 0.57 0.68 0.55 0.65 0.33 0.27
      Er 1.65 1.48 1.64 1.96 1.60 1.66 1.02 0.81
      Tm 0.24 0.21 0.24 0.28 0.24 0.23 0.17 0.13
      Yb 1.58 1.48 1.42 1.73 1.51 1.48 1.30 0.88
      Lu 0.24 0.22 0.22 0.26 0.22 0.20 0.22 0.13
      Hf 4.64 3.63 4.69 5.19 5.04 5.51 2.50 3.32
      Ta 1.13 0.62 0.76 1.04 0.97 0.85 1.31 0.73
      Pb 25.40 31.25 24.99 23.72 22.25 34.03 50.67 30.26
      Th 27.05 7.40 10.26 12.23 10.00 5.52 27.27 31.44
      U 4.45 1.52 1.92 2.79 2.37 1.91 6.66 4.79
      ∑REE 170.01 111.16 143.72 172.39 158.02 107.07 60.89 172.56
      LREE 158.52 100.60 131.86 158.51 146.35 93.39 54.71 166.29
      HREE 11.50 10.56 11.86 13.88 11.67 13.68 6.18 6.26
      LREE/HREE 13.79 9.53 11.11 11.42 12.54 6.83 8.86 26.54
      (La/Yb)N 16.78 10.15 15.91 15.61 17.24 8.33 8.42 39.59
      Nb/Ta 10.19 15.90 12.16 11.11 10.05 14.18 3.89 6.33
      Zr/Hf 35.41 37.43 37.30 37.07 36.55 39.05 22.25 34.69
      Rb/Sr 0.50 0.25 0.35 0.35 0.38 1.48 2.22 0.66
      δEu 0.72 0.81 0.76 0.74 0.72 0.64 0.76 0.97
      δCe 1.02 1.04 0.93 0.94 0.92 1.00 0.84 0.88
      10 000Ga/Al 2.43 2.35 2.44 2.78 2.59 2.42 2.25 2.11
      Zr+Nb+Ce+Y 270.48 208.71 260.88 296.81 277.94 285.26 95.87 207.89
      下载: 导出CSV
    • Ba, J., Chen, N. S., Wang, Q. Y., 2012. Nd-Sr-Pb Isotopic Composition of Cordierite Granites in the Southern Margin of Qaidam Basin and Its Implications for Petrogenesis, Tectonic Attributes and Tectonic Evolution of the Source Area. Earth Science, 37(S1): 80-92(in Chinese with English abstract).
      Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174.
      Chappell, B. W., 1999. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chen, B., Xiong, F. H., Ma, C. Q., et al., 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: an Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072(in Chinese with English abstract).
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2018. Triassic Magmatic Mixing in the Eastern Part of the East Kunlun: an Example from the Granitic Base of XiangJia South Mountain. Acta PetrologicaSinica, 34(08): 2441-80. (in Chinese with English abstract).
      Chen, G. C., Pei, X. Z., Li, X. B., et al., 2019. Lithospheric Extensionof the Post-Collision Stage of the Paleo-Tethys Oceanic System in the East Kunlun Orogenic Belt: Insights from Late Triassic Plutons. Earth Science Frontiers, 26(4): 191-208 (in Chinese with English abstract).
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2020. Late Paleozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48(in Chinese with English abstract).
      Chen, N. S., Sun, M., Wang, Q. Y., et al., 2008. U-Pb Dating of Zircon from the Central Zone of the East Kunlun Orogen and its Implications for Tectonic Evolution. Science in China Series D: Earth Sciences, 51(7): 929-938. https://doi.org/10.1007/s11430-008-0072-x
      Chen, S. J., Li, R. S., Ji, W. H., et al., 2010. The Permian Lithofacies Paleogeographic Characteristics and Basin-Mountain Conversion in the Kunlun Orogenic Belt. Geology in China, 37: 374-393 (in Chinese with English abstract).
      Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7): 559. https://doi.org/10.1130/g24658a.1
      Ding, S., Huang, H., Niu, Y. L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27(12): 3603-3614 (in Chinese with English abstract).
      Dostal, J., Chatterjee, A. K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1/2/3/4): 207-218. https://doi.org/10.1016/s0009-2541(99)00113-8
      Feng, C. Y., Wang, S., Li, G. C., et al., 2012. Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China: Chronology, Geochemistry and Metallogenic Significances. Acta Petrologica Sinica, 28(2): 665-678 (in Chinese with English abstract).
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      Gao, P., Garcia-Arias, M., Chen, Y. X., et al., 2020. Origin of Peraluminous A-Type Granites from Appropriate Sources at Moderate to Low Pressures and High Temperatures. Lithos, 352-353: 105287. https://doi.org/10.1016/j.lithos.2019.105287
      Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x
      Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2019. Geochronology and Geochemical Characteristics of Syenogranite from the Zhamaxiuma Area in East Kunlun and Their Tectonic Significance. Acta Geologica Sinica, 93(4): 830-842 (in Chinese with English abstract).
      Harris, N. B. W., Marzouki, F. M. H., Ali, S., 1986. The Jabel Sayid Complex, Arabian Shield: Geochemical Constraints on the Origin of Peralkaline and Related Granites. Journal of the Geological Society, 143(2): 287-295. https://doi.org/10.1144/gsjgs.143.2.0287
      Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370(1594): 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Huang, X. K., Wei, J. H., Li, H., et al., 2021. Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037-2056 (in Chinese with English abstract).
      Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
      Kaygusuz, A., Siebel, W., Şen, C., et al., 2008. Petrochemistry and Petrology of Ⅰ-Type Granitoids in an Arc Setting: The Composite Torul Pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences, 97(4): 739-764. https://doi.org/10.1007/s00531-007-0188-9
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformitiesand their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254(in Chinese with English abstract).
      Li, R. B., Pei, X. Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62(6): 212-226. https://doi.org/10.1016/j.gr.2018.03.005
      Liu, C. D., Mo, X. X., Luo, Z. H., et al., 2003. Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt. Acta Geoscientica Sinica, 24(6): 584-588(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Meng, F. C., Zhang, J. X., Cui, M. H., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and its Tectonic Significance. Gondwana Research, 23(2): 825-836. https://doi.org/10.1016/j.gr.2012.06.007
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract).
      Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Shao, F. L., Niu, Y. L., Kong, J. J., et al., 2021. Petrogenesis and Tectonic Implications of the Triassic Rhyolites in the East Kunlun Orogenic Belt, Northern Tibetan Plateau. Geoscience Frontiers, 12(6): 101243. https://doi.org/10.1016/j.gsf.2021.101243
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Vielzeuf, D., Holloway, J. R., 1988. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 98(3): 257-276. https://doi.org/10.1007/bf00375178
      Wang, K., Wang, L. X., Ma, C. Q., et al., 2020. Genesis and Geological Significance of Middle Triassic Garnet-Bearing Mica Granites in Jialu River, East Kunlun. Earth Science, 45(2): 400-418(in Chinese with English abstract).
      Wang, W., Xiong, F. H., Ma, C. Q., et al., 2020. Petrogenesis of the Triassic Suolagousanukitoid-Like Diorite in the East Kunlun Orogen and Its Implications for the Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902 (in Chinese with English abstract).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
      Xia, R., Deng, J., Qing, M., et al., 2017. Petrogenesis of Ca. 240 Ma Intermediate and Felsic Intrusions in the Nan'getan: Implications for Crust-Mantle Interaction and Geodynamic Process of the East Kunlun Orogen. Ore Geology Reviews, 90(Part B): 1099-1117. https://doi.org/10.1016/j.oregeorev.2017.04.002
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
      Xiong, F. H., Ma, C. Q., Chen, B., et al., 2019. Intermediate-Mafic Dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A Window into Paleo-Arc Magma Feeding System. Lithos, 340-341: 152-165. https://doi.org/10.1016/j.lithos.2019.05.012
      Yang, J. S., Wang, X. B., Shi, R. D., et al., 2004. The Dur'ngio Ophiolite in East Kunlun, Northern Qinghai-TibetPlateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239(in Chinese withEnglish abstract).
      Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. https://doi.org/10.1007/s12583-009-0027-y
      Zhao, X., Fu, L. B., Wei, J. H., et al. 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East KunlunOrogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(02): 354-370 (in Chinesewith English abstract).
      巴金, 陈能松, 王勤燕, 等, 2012. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37(S1): 80-92. doi: 10.3799/dqkx.2012.S1.008
      陈兵, 熊富浩, 马昌前, 等, 2021. 岩浆混合作用与火成岩多样性的耦合关系: 以东昆仑造山带白日其利长英质岩体为例. 地球科学, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241
      陈国超, 裴先治, 李瑞保, 等, 2018. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例. 岩石学报, 34(8): 2441-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808016.htm
      陈国超, 裴先治, 李瑞保, 等, 2019. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据. 地学前缘, 26(4): 191-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904026.htm
      陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代-早中生代构造岩浆演化与成矿作用. 地学前缘, 27(4): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004004.htm
      陈守建, 李荣社, 计文化, 等, 2010. 昆仑造山带二叠纪岩相古地理特征及盆山转换探讨. 中国地质, 37(2) : 374-393. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002012.htm
      丁烁, 黄慧, 牛耀龄, 等, 2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因. 岩石学报, 27(12): 3603-3614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112009.htm
      丰成友, 王松, 李国臣, 等, 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义. 岩石学报, 28(2): 311-324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202302014.htm
      郭安林, 张国伟, 孙延贵, 等, 2007. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704007.htm
      黄啸坤, 魏俊浩, 李欢, 等, 2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因: U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约. 地球科学, 46(6): 2037-2056. doi: 10.3799/dqkx.2020.286
      李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205025.htm
      刘成东, 莫宣学, 罗照华, 等, 2003. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征. 地球学报, 24(6): 584-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200306020.htm
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403~414. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
      王珂, 王连训, 马昌前, 等, 2020. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义. 地球科学, 45(2): 400-418. doi: 10.3799/dqkx.2018.393
      王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270
      杨经绥, 王希斌, 史仁灯, 等. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200403000.htm
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  181
    • HTML全文浏览量:  336
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-17
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回