• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏中拉萨地块门巴花岗闪长岩成因及深部动力学过程

    王旭辉 郎兴海 梁海辉 杜良艺 邓煜霖 何青 董咪

    王旭辉, 郎兴海, 梁海辉, 杜良艺, 邓煜霖, 何青, 董咪, 2024. 西藏中拉萨地块门巴花岗闪长岩成因及深部动力学过程. 地球科学, 49(2): 577-593. doi: 10.3799/dqkx.2022.167
    引用本文: 王旭辉, 郎兴海, 梁海辉, 杜良艺, 邓煜霖, 何青, 董咪, 2024. 西藏中拉萨地块门巴花岗闪长岩成因及深部动力学过程. 地球科学, 49(2): 577-593. doi: 10.3799/dqkx.2022.167
    Wang Xuhui, Lang Xinghai, Liang Haihui, Du Liangyi, Deng Yulin, He Qing, Dong Mi, 2024. Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang. Earth Science, 49(2): 577-593. doi: 10.3799/dqkx.2022.167
    Citation: Wang Xuhui, Lang Xinghai, Liang Haihui, Du Liangyi, Deng Yulin, He Qing, Dong Mi, 2024. Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang. Earth Science, 49(2): 577-593. doi: 10.3799/dqkx.2022.167

    西藏中拉萨地块门巴花岗闪长岩成因及深部动力学过程

    doi: 10.3799/dqkx.2022.167
    基金项目: 

    四川省科技计划项目 2020JDJQ0042

    国家自然科学基金项目 41972084

    成都理工大学珠峰科学研究计划 2020ZF11407

    西北大学大陆动力学国家重点实验室开放基金 18LCD04

    自然资源部深地资源成矿作用与矿产预测重点实验室开放基金 ZS1911

    中国地质调查局项目 DD20190167

    中国地质调查局项目 DD20160346

    详细信息
      作者简介:

      王旭辉(1993-),男,博士,矿物学、岩石学、矿床学专业,主要从事青藏高原岩浆-成矿作用研究. ORCID:0000-0002-3216-3299. E-mail:wangxuhui618@126.com

      通讯作者:

      郎兴海,ORCID:0000-0002-3309-3667. E-mail: langxinghai@126.com

    • 中图分类号: P581

    Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang

    • 摘要: 为了探讨拉萨地块晚白垩世岩浆作用的深部动力学机制,对中拉萨地块南缘门巴花岗闪长岩开展了岩相学、年代学、岩石地球化学及矿物化学研究. LA-ICP-MS锆石U-Pb定年表明门巴花岗闪长岩侵位于晚白垩世(83.2 Ma±0.9 Ma). 岩石地球化学特征显示门巴花岗闪长岩为埃达克质岩石,电子探针数据揭示斜长石属于中-奥长石(An:16.2~34.7). 综合分析本文认为门巴花岗闪长岩的母岩浆为幔源镁铁质岩浆底侵诱发加厚下地壳熔融并与之发生混合作用的结果. 结合晚白垩世岩浆岩成岩环境及时空分布特征,认为拉萨地块南部晚白垩世岩浆作用主要受新特提斯洋脊俯冲控制,软流圈地幔沿洋中脊裂隙板片窗上涌诱引了南拉萨地块南缘晚白垩世大规模岩浆作用,而软流圈物质沿切割洋中脊的转换断层撕裂板片窗上涌诱发了近似垂直前者分布的小规模板内岩浆作用.

       

    • 图  1  (a)青藏高原构造单元划分示意图;(b)拉萨地块南部冈底斯岩浆带展布图,文献年龄数据来源见表 1;(c)门巴研究区地质图

      BNS. 班公湖-怒江缝合带;SNM. 狮泉河-纳木错蛇绿岩带;LMF. 洛巴堆-米拉山断裂带;IYS. 雅鲁藏布江缝合带

      Fig.  1.  (a) Tectonic framework of Xizang an Plateau; (b) distribution of Gangdese magmatic belt in the southern Lhasa block, andthe age data from literature are shown in the Table 1; (c) geological map of Menba area

      图  2  门巴花岗闪长岩野外及显微照片

      a. 花岗闪长岩包含巨晶斜长石;b. 花岗闪长岩包含巨晶钾长石;c. 花岗闪长岩包含镁铁质暗色包体;d和e. 花岗闪长岩显微照片;f. 镁铁质暗色包体显微照片;Kfs. 钾长石;Pl. 斜长石;Hbl. 角闪石;Qtz. 石英;Bi. 黑云母;Ap. 磷灰石

      Fig.  2.  Field observations and microscope photos of the Menba granodiorites

      图  3  门巴花岗闪长岩LA-ICP-MS锆石U-Pb年龄谐和图及加权平均年龄图解

      Fig.  3.  LA-ICP-MS zircon U-Pb concordia and weighted average age diagrams for the Menba granodiorites

      图  4  门巴花岗闪长岩(Na2O+K2O)-SiO2(a)、(K2O+Na2O-CaO)-SiO2(b)、Sr/Y-Y(c)图解

      文献数据来源 Meng et al.(2014)Liu et al.(2019)

      Fig.  4.  (Na2O+K2O)-SiO2 (a), (K2O+Na2O-CaO)-SiO2(b), and Sr/Y-Y (c) diagrams for the Menba granodiorites

      图  5  门巴花岗闪长岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石标准化值和原始地幔标准化值据 Sun and McDonough(1989);文献数据来源 Meng et al.(2014)Liu et al.(2019)

      Fig.  5.  Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spidergrams (b) for the Menba granodiorites

      图  6  门巴花岗闪长岩斜长石晶体核幔边An值变化

      Fig.  6.  Variation of An value at the core and mantle of plagioclases from the Menba granodiorites

      图  7  门巴花岗闪长岩斜长石Or-Ab-An三角图

      Fig.  7.  Triangular Or-Ab-An plot of plagioclases from the Menba granodiorites

      图  8  门巴花岗闪长岩Th/Nd-Th(a)、1/V-Rb/V(b)、Dy/Yb-SiO2(c)、Zr/Sm-SiO2(d)图解

      文献数据来源 Meng et al.(2014)Liu et al.(2019)

      Fig.  8.  Th/Nd-Th (a), 1/V-Rb/V(b), Dy/Yb-SiO2 (c), and Zr/Sm-SiO2 (d) diagrams for the Menba granodiorites

      图  9  拉萨地块南部晚白垩世岩浆作用的深部动力学机制示意图

      Fig.  9.  Schematic diagram of deep dynamic mechanism of Late Cretaceous magmatism in the southern Lhasa block

      表  1  拉萨地块南部晚白垩世岩浆岩年龄统计表

      Table  1.   Age compilation of Late Cretaceous magmatic rocks in southern Lhasa block

      样品编号 岩性 位置 定年方法 年龄(Ma) 误差 参考文献
      7-1 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 89.5 / Zhang et al. (2010)
      8-1 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 86.6 / Zhang et al. (2010)
      8-2 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 87.8 / Zhang et al. (2010)
      8-4 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 86.0 / Zhang et al. (2010)
      43-1 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 87.1 / Zhang et al. (2010)
      43-8 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 88.3 / Zhang et al. (2010)
      T024 花岗闪长岩 里龙-朗县 锆石SHRIMP U-Pb 80.4 1.1 Wen et al. (2008)
      T027 花岗闪长岩 里龙-朗县 锆石SHRIMP U-Pb 82.7 1.6 Wen et al. (2008)
      T368 花岗闪长岩 尼木 锆石LA-ICP-MS U-Pb 87.7 1.4 Xu et al. (2015)
      T372 闪长岩 尼木 锆石LA-ICP-MS U-Pb 88.4 1.1 Xu et al. (2015)
      T321 辉长闪长岩 尼木 锆石LA-ICP-MS U-Pb 90.8 1.0 Xu et al. (2015)
      T433 辉长岩 日喀则 锆石LA-ICP-MS U-Pb 94.0 0.5 Xu et al. (2015)
      09TB21-2 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 91.6 1.0 Ma et al. (2013a)
      09TB42-1 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 93.6 1.2 Ma et al. (2013a)
      09TB47-1 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 88.7 1.5 Ma et al. (2013a)
      09TB46-2 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 92.0 1.1 Ma et al. (2013a)
      09TB51-2 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 91.2 1.4 Ma et al. (2013a)
      09TB36 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 99.5 1.1 Ma et al. (2013a)
      09TB45-1 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 94.7 1.0 Ma et al. (2013a)
      07TB33a-1 石英二长岩 克鲁 锆石LA-ICP-MS U-Pb 91.3 1.6 Jiang et al. (2012)
      07TB33b-2 石英二长岩 克鲁 锆石LA-ICP-MS U-Pb 93.3 2.0 Jiang et al. (2012)
      07TB33d 闪长岩 克鲁 锆石LA-ICP-MS U-Pb 90.3 2.1 Jiang et al. (2012)
      BB–45 镁铁质包体 朗县 锆石LA-ICP-MS U-Pb 106.4 2.6 Zheng et al. (2014)
      BB–112 花岗闪长岩 朗县 锆石LA-ICP-MS U-Pb 103.1 1.8 Zheng et al. (2014)
      BB–112 煌斑岩 朗县 锆石LA-ICP-MS U-Pb 96.8 0.7 Zheng et al. (2014)
      BB–55 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 78.1 0.9 Zheng et al. (2014)
      BB–113 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 76.3 1.9 Zheng et al. (2014)
      BB–114 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 79.7 1.8 Zheng et al. (2014)
      BB–116 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 76.1 2.1 Zheng et al. (2014)
      NR–14 石英闪长岩 努日 锆石LA-ICP-MS U-Pb 95.9 0.9 Zheng et al. (2014)
      T10-95-4 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 93.2 0.8 Zhang et al. (2014)
      T10-95-1 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 90.9 0.9 Zhang et al. (2014)
      T10-94-4 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 82.2 0.8 Zhang et al. (2014)
      T10-94-10 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 77.3 2.5 Zhang et al. (2014)
      T10-94-2 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 74.5 4.7 Zhang et al. (2014)
      09TB21-1 苏长岩 米林 锆石LA-ICP-MS U-Pb 92.8 1.1 Ma et al. (2013b)
      09TB30-1 苏长岩 米林 锆石LA-ICP-MS U-Pb 91.8 2.1 Ma et al. (2013b)
      09TB44-5 苏长岩 米林 锆石LA-ICP-MS U-Pb 93.6 1.2 Ma et al. (2013b)
      SY04 英安岩 桑日 锆石SIMS U-Pb 95.0 1.0 Zhang et al. (2019)
      SR02 英安岩 桑日 锆石LA-ICP-MS U-Pb 95.0 1.0 Zhang et al. (2019)
      SK1303 花岗岩 措杰林 锆石LA-ICP-MS U-Pb 95.0 0.5 Wang et al. (2021)
      SK1308 花岗岩 措杰林 锆石LA-ICP-MS U-Pb 96.2 0.6 Wang et al. (2021)
      SK1310 花岗岩 措杰林 锆石LA-ICP-MS U-Pb 98.7 1.0 Wang et al. (2021)
      SK1314 石英正长岩 措杰林 锆石LA-ICP-MS U-Pb 92.1 1.1 Wang et al. (2021)
      09TB160-1 辉绿岩 达孜 锆石LA-ICP-MS U-Pb 92.3 2.4 Ma et al. (2015)
      S16T89 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 87.9 0.5 Liu et al. (2019)
      S16T90 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 88.5 0.5 Liu et al. (2019)
      MB14-4 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 83.7 0.5 Meng et al. (2014)
      MB14-2 闪长质包体 门巴 锆石LA-ICP-MS U-Pb 85.2 0.4 Meng et al. (2014)
      SD05 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 83.2 0.9 本文研究
      下载: 导出CSV

      表  2  门巴花岗闪长岩锆石LA-ICP-MS U-Pb同位素分析结果

      Table  2.   LA-ICP-MS zircon U-Pb analysis data for the Menba granodiorites

      测试点 含量(10-6) Th/U 同位素比值 年龄(Ma)
      Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
              样品:SD05(花岗闪长岩)
      SD05-1 597 2 804 1 518 1.85 0.049 7 0.001 9 0.085 3 0.002 6 0.012 5 0.000 3 83.1 2.4 80.3 1.7
      SD05-2 881 3 965 1 801 2.20 0.049 5 0.001 6 0.089 4 0.002 7 0.013 3 0.000 4 87.0 2.5 84.9 2.4
      SD05-3 410 1 891 1 162 1.63 0.047 9 0.001 2 0.085 1 0.002 6 0.012 8 0.000 3 83.0 2.4 82.3 1.6
      SD05-4 715 3 302 1 582 2.09 0.049 4 0.001 2 0.088 7 0.002 4 0.013 0 0.000 3 86.3 2.3 83.6 1.8
      SD05-5 486 2 208 1 420 1.56 0.047 6 0.002 2 0.087 9 0.002 8 0.013 4 0.000 3 85.5 2.6 86.1 1.9
      SD05-7 721 3 420 1 680 2.04 0.049 2 0.001 4 0.086 9 0.003 0 0.012 8 0.000 4 84.6 2.8 81.8 2.2
      SD05-8 559 2 629 1 695 1.55 0.048 8 0.001 0 0.090 6 0.003 2 0.013 4 0.000 4 88.1 2.9 85.8 2.3
      SD05-9 746 3 517 1 527 2.30 0.047 4 0.001 6 0.087 0 0.002 8 0.013 2 0.000 3 84.7 2.6 84.8 2.0
      SD05-10 487 2 178 1 563 1.39 0.048 2 0.001 0 0.088 2 0.002 4 0.013 2 0.000 3 85.8 2.3 84.7 1.9
      SD05-12 538 2 524 1 389 1.82 0.048 6 0.001 0 0.088 1 0.002 4 0.013 1 0.000 3 85.8 2.2 84.1 1.9
      SD05-13 531 2 377 1 388 1.71 0.048 5 0.001 0 0.087 0 0.002 7 0.013 0 0.000 4 84.7 2.5 83.2 2.3
      SD05-15 584 2 777 1 448 1.92 0.048 6 0.001 1 0.084 1 0.002 6 0.012 5 0.000 3 82.0 2.4 80.3 1.9
      SD05-16 622 2 714 1 425 1.90 0.048 9 0.003 3 0.088 7 0.005 8 0.013 1 0.000 4 86.2 5.4 84.1 2.7
      SD05-17 700 3 146 1 581 1.99 0.049 3 0.001 9 0.086 5 0.002 8 0.012 7 0.000 3 84.3 2.6 81.2 2.0
      SD05-18 902 4 176 1 904 2.19 0.049 4 0.001 1 0.086 0 0.003 0 0.012 6 0.000 3 83.8 2.8 80.7 2.1
      SD05-19 696 3 206 1 564 2.05 0.048 8 0.002 4 0.089 5 0.004 1 0.013 2 0.000 4 87.0 3.8 84.7 2.3
      SD05-20 522 2 341 1 387 1.69 0.049 7 0.001 4 0.092 5 0.003 1 0.013 5 0.000 3 89.9 2.9 86.6 2.0
      SD05-21 402 1 873 1 236 1.52 0.046 7 0.001 3 0.083 4 0.002 6 0.013 1 0.000 4 81.3 2.4 83.9 2.4
      SD05-22 636 2 897 1 541 1.88 0.049 3 0.002 3 0.087 1 0.003 2 0.013 0 0.000 3 84.8 3.0 83.0 2.2
      SD05-23 506 2 248 1 265 1.78 0.048 2 0.001 9 0.083 9 0.003 0 0.012 6 0.000 3 81.8 2.8 80.9 2.1
      SD05-24 673 3 044 1 529 1.99 0.048 5 0.001 9 0.086 8 0.003 0 0.012 9 0.000 3 84.5 2.8 82.8 2.0
      下载: 导出CSV

      表  3  门巴花岗闪长岩主量元素(%)和微量元素(×10-6)分析结果

      Table  3.   Major (%) and trace (×10-6) element concentrations of the Menba granodiorites

      样品号 SD05-1 SD05-2 SD05-3 SD05-4 SD05-5 SD05-6 SD05-7 SD05-8
      SiO2 65.83 61.71 65.86 66.46 66.04 67.02 65.76 66.03
      TiO2 0.58 0.96 0.63 0.51 0.49 0.40 0.57 0.54
      Al2O3 15.46 15.05 14.90 15.00 15.69 15.77 15.34 15.30
      TFe2O3 4.52 6.14 4.21 4.12 3.49 3.24 4.32 4.25
      MnO 0.08 0.11 0.08 0.07 0.06 0.06 0.08 0.07
      MgO 1.68 2.87 1.88 1.53 1.51 1.24 1.75 1.65
      CaO 3.33 3.88 3.12 2.97 3.12 2.83 3.49 2.72
      Na2O 3.76 3.18 3.56 3.66 3.87 3.57 3.76 3.89
      K2O 3.64 4.29 4.07 4.10 4.00 5.13 3.54 3.81
      P2O5 0.25 0.37 0.29 0.23 0.22 0.19 0.26 0.26
      LOI 0.50 1.04 0.88 0.84 0.94 0.35 0.52 0.98
      Total 99.62 99.60 99.48 99.49 99.43 99.79 99.41 99.50
      Mg# 43 48 47 43 46 43 45 44
      A/CNK 0.95 0.89 0.93 0.94 0.96 0.95 0.94 0.99
      Be 2.14 2.04 2.03 1.90 2.15 1.90 2.30 2.17
      Sc 6.76 10.77 7.68 5.98 5.52 5.00 7.08 6.48
      V 65.03 106.12 71.13 59.92 54.97 47.02 64.82 60.61
      Cr 34.99 47.94 31.34 29.90 23.35 20.87 33.13 28.28
      Co 8.71 14.27 9.43 8.03 7.15 6.61 8.99 8.74
      Ni 13.03 19.92 13.41 10.85 9.78 9.17 12.56 12.41
      Cu 6.26 4.15 4.60 5.94 3.78 4.66 4.72 4.48
      Zn 50.51 82.46 58.72 52.88 44.29 41.93 52.28 52.08
      Ga 21.31 24.46 20.76 19.63 20.03 18.84 20.98 20.61
      Rb 128.11 161.73 154.58 129.64 129.42 160.39 125.57 147.65
      Sr 789.14 766.95 819.83 734.77 798.26 849.91 788.66 715.89
      Y 12.32 18.47 13.01 10.10 9.98 8.82 11.08 10.63
      Zr 171.98 264.87 174.80 153.77 139.44 130.51 159.32 148.94
      Nb 13.30 21.33 14.18 11.26 11.13 9.68 12.35 11.93
      Cs 2.42 2.38 2.92 2.27 2.54 3.30 2.41 2.49
      Ba 827.23 965.60 922.65 969.42 999.14 1520.99 585.44 638.95
      La 63.05 66.74 50.21 39.62 40.41 34.66 44.29 49.12
      Ce 105.17 129.47 93.71 73.80 74.26 63.93 81.24 83.92
      Pr 10.66 14.22 10.21 7.89 7.93 6.86 8.66 8.60
      Nd 36.66 51.06 36.39 28.19 28.21 23.94 30.60 30.30
      Sm 5.46 7.79 5.57 4.33 4.36 3.83 4.71 4.54
      Eu 1.29 1.75 1.31 1.09 1.10 1.03 1.16 1.13
      Gd 3.74 5.50 3.90 3.00 2.96 2.65 3.32 3.18
      Tb 0.51 0.73 0.52 0.40 0.40 0.35 0.44 0.43
      Dy 2.49 3.64 2.56 1.99 2.02 1.77 2.19 2.09
      Ho 0.45 0.66 0.46 0.36 0.36 0.32 0.40 0.38
      Er 1.25 1.84 1.31 1.02 1.02 0.91 1.12 1.07
      Tm 0.17 0.25 0.18 0.14 0.14 0.12 0.15 0.14
      Yb 1.14 1.68 1.19 0.96 0.93 0.81 1.04 0.99
      Lu 0.16 0.24 0.17 0.14 0.13 0.12 0.15 0.14
      Hf 4.44 6.61 4.46 3.93 3.58 3.34 4.05 3.87
      Ta 0.97 1.46 1.00 0.80 0.79 0.69 0.85 0.84
      Pb 20.61 21.11 22.31 35.42 22.69 27.14 20.68 37.13
      Th 31.27 33.23 26.84 27.47 23.86 16.76 17.54 24.55
      U 3.68 4.69 2.91 4.10 4.13 2.69 2.84 3.56
      Sr/Y 64.06 41.53 63.02 72.77 80.02 96.37 71.16 67.35
      下载: 导出CSV

      表  4  门巴花岗闪长岩斜长石电子探针数据(%)

      Table  4.   Electron microprobe data (%) of plagioclases from the Menba granodiorites

      测试点 K2O CaO TiO2 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeO P2O5 Total An Ab Or
      SD05a-1 0.28 4.29 0.00 9.38 0.00 23.54 62.82 0.00 0.00 0.11 0.00 100.43 19.9 78.6 1.6
      SD05a-2 0.36 6.32 0.00 7.97 0.00 25.47 59.13 0.00 0.00 0.17 0.04 99.46 29.9 68.1 2.0
      SD05a-3 0.50 5.83 0.02 8.23 0.00 24.82 60.18 0.01 0.00 0.21 0.00 99.80 27.4 69.9 2.8
      SD05a-4 0.47 6.88 0.02 7.49 0.00 25.81 58.65 0.02 0.00 0.22 0.00 99.56 32.8 64.6 2.7
      SD05a-5 0.57 5.79 0.00 8.19 0.03 25.00 60.02 0.02 0.02 0.19 0.00 99.82 27.2 69.6 3.2
      SD05a-6 0.59 5.97 0.00 7.93 0.00 25.05 60.24 0.00 0.00 0.21 0.00 100.01 28.4 68.3 3.4
      SD05a-7 0.65 5.64 0.02 8.17 0.01 24.82 60.39 0.00 0.00 0.21 0.00 99.91 26.6 69.8 3.6
      SD05a-8 0.65 6.21 0.02 7.84 0.01 25.07 59.56 0.00 0.01 0.19 0.00 99.58 29.3 67.0 3.7
      SD05a-9 0.56 6.17 0.00 7.88 0.01 25.29 59.20 0.00 0.00 0.21 0.00 99.33 29.3 67.6 3.2
      SD05a-10 0.49 6.18 0.00 7.87 0.00 25.46 59.56 0.00 0.00 0.23 0.01 99.79 29.4 67.8 2.8
      SD05a-11 0.55 5.88 0.03 8.15 0.00 24.83 60.03 0.01 0.01 0.20 0.00 99.68 27.6 69.3 3.1
      SD05a-12 0.61 5.80 0.02 8.18 0.00 24.81 59.96 0.00 0.03 0.22 0.01 99.63 27.2 69.4 3.4
      SD05b-1 0.38 3.42 0.00 9.56 0.00 23.07 64.70 0.00 0.00 0.15 0.01 101.28 16.2 81.7 2.1
      SD05b-2 0.33 3.61 0.05 9.56 0.00 23.43 64.21 0.00 0.00 0.09 0.00 101.29 17.0 81.2 1.8
      SD05b-3 0.48 7.24 0.03 7.21 0.02 26.15 57.71 0.01 0.01 0.16 0.01 99.03 34.7 62.6 2.8
      SD05b-4 0.60 6.45 0.02 7.62 0.01 25.39 59.32 0.01 0.01 0.23 0.00 99.67 30.8 65.8 3.4
      SD05b-5 0.51 5.87 0.03 8.00 0.02 25.13 60.51 0.01 0.00 0.18 0.00 100.26 28.0 69.1 2.9
      SD05b-6 0.39 5.89 0.00 8.06 0.00 25.07 60.91 0.00 0.00 0.16 0.00 100.48 28.1 69.7 2.2
      SD05b-7 0.34 6.40 0.00 7.94 0.01 25.49 60.08 0.02 0.01 0.17 0.01 100.46 30.2 67.9 1.9
      SD05b-8 0.46 6.17 0.00 7.98 0.00 25.17 60.23 0.00 0.00 0.20 0.00 100.22 29.1 68.3 2.6
      SD05b-9 0.46 5.79 0.00 8.22 0.00 25.33 61.22 0.01 0.00 0.20 0.00 101.25 27.3 70.1 2.6
      SD05b-10 0.40 6.18 0.01 7.93 0.01 25.22 59.57 0.00 0.00 0.21 0.00 99.51 29.4 68.3 2.2
      SD05b-11 0.34 6.16 0.00 8.13 0.00 25.24 60.15 0.00 0.01 0.20 0.00 100.23 29.0 69.1 1.9
      SD05b-12 0.29 6.01 0.05 8.08 0.00 25.57 61.10 0.01 0.01 0.24 0.00 101.37 28.7 69.7 1.7
      SD05b-13 0.33 6.08 0.01 8.00 0.01 25.41 59.85 0.00 0.00 0.16 0.00 99.84 29.0 69.1 1.9
      SD05b-14 0.38 5.87 0.00 8.26 0.00 24.94 60.00 0.01 0.00 0.22 0.01 99.69 27.6 70.3 2.1
      SD05b-15 0.35 5.06 0.00 8.91 0.01 24.21 61.99 0.00 0.01 0.18 0.00 100.71 23.4 74.6 1.9
      SD05c-1 0.41 3.71 0.00 9.47 0.00 23.55 64.37 0.00 0.00 0.16 0.00 101.66 17.4 80.4 2.3
      SD05c-2 0.42 5.85 0.01 8.09 0.00 25.01 60.31 0.02 0.00 0.20 0.00 99.91 27.9 69.8 2.4
      SD05c-3 0.32 6.43 0.01 7.62 0.01 25.43 58.46 0.00 0.01 0.17 0.02 98.48 31.2 66.9 1.8
      SD05c-4 0.61 5.55 0.03 8.07 0.01 24.65 60.22 0.00 0.00 0.22 0.00 99.35 26.6 70.0 3.5
      SD05c-5 0.62 5.84 0.01 7.96 0.00 24.83 59.99 0.00 0.01 0.21 0.00 99.47 27.9 68.6 3.5
      SD05c-6 0.64 5.99 0.00 7.91 0.01 25.04 59.54 0.00 0.00 0.21 0.01 99.34 28.4 68.0 3.6
      SD05c-7 0.63 6.07 0.00 7.94 0.01 25.00 60.42 0.00 0.00 0.19 0.02 100.27 28.7 67.8 3.5
      SD05c-8 0.37 6.01 0.00 7.94 0.02 24.96 59.92 0.00 0.00 0.22 0.01 99.45 28.9 69.0 2.1
      SD05c-9 0.32 6.46 0.02 7.86 0.01 25.39 58.86 0.00 0.00 0.26 0.01 99.18 30.7 67.5 1.8
      SD05c-10 0.44 5.88 0.00 8.11 0.00 24.75 59.80 0.00 0.00 0.23 0.00 99.21 27.9 69.6 2.5
      SD05c-11 0.35 5.57 0.03 8.26 0.00 24.72 60.53 0.00 0.00 0.19 0.01 99.66 26.6 71.4 2.0
      SD05c-12 0.32 5.73 0.04 8.42 0.02 24.78 61.38 0.00 0.01 0.17 0.00 100.86 26.8 71.4 1.8
      SD05c-13 0.35 5.28 0.00 8.16 0.00 25.03 61.84 0.00 0.00 0.11 0.00 100.78 25.8 72.2 2.0
      SD05c-14 0.56 5.47 0.00 8.46 0.00 24.61 60.70 0.01 0.02 0.19 0.01 100.00 25.5 71.4 3.1
      SD05c-15 0.38 5.24 0.00 8.29 0.02 24.51 61.55 0.01 0.00 0.20 0.00 100.20 25.3 72.5 2.2
      下载: 导出CSV
    • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Xizang. Geology, 34(9): 745. https://doi.org/10.1130/g22725.1
      Dai, J. G., Wang, C. S., Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma: Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Xizang. Lithos, 172-173: 1-16. https://doi.org/10.1016/j.lithos.2013.03.011
      Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2006. Magma Mixing in Middle Part of Gangdise Magma Belt: Evidences from Granitoid Complex. Acta Petrologica Sinica, 22(4): 835-844 (in Chinese with English abstract)
      Dong, M., Lang, X. H., Deng, Y. L., et al., 2021. Geochronology and Geochemistry Implications for the Early Eocene Rongma Gabbros in the Southern Margin of the Lhasa Terrane, Xizang. Earth Science, 47: 1349-1370 (in Chinese with English abstract).
      Dong, X., Zhang, Z. M., Santosh, M., 2010. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Xizangan Plateau: Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism. The Journal of Geology, 118(6): 677-690. https://doi.org/10.1086/656355
      Gianni, G. M., Navarrete, C., Spagnotto, S., 2019. Surface and Mantle Records Reveal an Ancient Slab Tear Beneath Gondwana. Scientific Reports, 9(1): 1-10. https://doi.org/10.1038/s41598-019-56335-9
      Gorring, M. L., Kay, S. M., 2001. Mantle Processes and Sources of Neogene Slab Window Magmas from Southern Patagonia, Argentina. Journal of Petrology, 42(6): 1067-1094. https://doi.org/10.1093/petrology/42.6.1067
      Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314. 2000.00266.x doi: 10.1046/j.1525-1314.2000.00266.x
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposit, 28(4): 481-492 (in Chinese with English abstract)
      Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Xizang. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Xizang. Chemical Geology, 262(3/4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      Jiang, Z. Q., Wang, Q., Li, Z. X., et al., 2012. Late Cretaceous (ca. 90Ma) Adakitic Intrusive Rocks in the Kelu Area, Gangdese Belt (southern Xizang): Slab Melting and Implications for Cu-Au Mineralization. Journal of Asian Earth Sciences, 53(3-4): 67-81. https://doi.org/10.1016/j.jseaes.2012.02.010
      Lang, X. H., Deng, Y. L., Wang, X. H., et al., 2020. Geochronology and Geochemistry of Volcanic Rocks of the Bima Formation, Southern Lhasa Subterrane, Xizang: Implications for Early Neo-Tethyan Subduction. Gondwana Research, 80(B5): 335-349. https://doi.org/10.1016/j.gr.2019.11.005
      Lang, X. H., Wang, X. H., Deng, Y. L., et al., 2019. Early Jurassic Volcanic Rocks in the Xiongcun District, Southern Lhasa Subterrane, Xizang: Implications for the Tectono-Magmatic Events Associated with the Early Evolution of the Neo-Tethys Ocean. Lithos, 340-341(1): 166-180. https://doi.org/10.1016/j.lithos.2019.05.014
      Leier, A. L., DeCelles, P. G., Kapp, P., et al., 2007. The Takena Formation of the Lhasa Terrane, Southern Xizang: The Record of a Late Cretaceous Retroarc Foreland Basin. Geological Society of America Bulletin, 119(1/2): 31-48. https://doi.org/10.1130/b25974.1
      Liu, J. H., Xie, C. M., Li, C., et al., 2019. Origins and Tectonic Implications of Late Cretaceous Adakite and Primitive High-Mg Andesite in the Songdo Area, Southern Lhasa Subterrane, Xizang. Gondwana Research, 76(10): 185-203. https://doi.org/10.1016/j.gr.2019.06.014
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, L., Xu, X. S., Xia, Y., 2016. Asynchronizing Paleo-Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37(1): 397-407. https://doi.org/10.1016/j.gr.2015.09.009
      Ludwig, K. R., 2003. Users Manualf or Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-71.
      Ma, B. J., Wu, S. G., Fan, J. K., 2015. An Overview of Slab Window. Marine Geology Frontiers, 31(12): 1-10 (in Chinese with English abstract)
      Ma, C., Xiao, W. J., Windley, B. F., et al., 2012. Tracing a Subducted Ridge-Transform System in a Late Carboniferous Accretionary Prism of the Southern Altaids: Orthogonal Sanukitoid Dyke Swarms in Western Junggar, NW China. Lithos, 140-141: 152-165. https://doi.org/10.1016/j.lithos.2012.02.005
      Ma, L., Wang, Q., Wyman, D. A., et al., 2013a. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Xizang. Lithos, 175-176(5): 315-332. https://doi.org/10.1016/j.lithos.2013.04.006
      Ma, L., Wang, Q., Li, Z. X., et al., 2013b. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-Back and an Insight into Early Late Cretaceous (ca. 100-80 Ma) Magmatic "Flare-Up" in Southern Lhasa (Xizang). Lithos, 172-173(8): 17-30. https://doi.org/10.1016/j.lithos.2013.03.007
      Ma, L., Wang, Q., Wyman, D. A., et al., 2015. Late Cretaceous Back-Arc Extension and Arc System Evolution in the Gangdese Area, Southern Xizang: Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases. Journal of Geophysical Research: Solid Earth, 120(9): 6159-6181. https://doi.org/10.1002/2015jb011966
      Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243 (3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      McLeod, O. E., Brenna, M., Briggs, R. M., et al., 2022. Slab Tear as a Cause of Coeval Arc-Intraplate Volcanism in the Alexandra Volcanic Group, New Zealand. Lithos, 408-409(1-4): 106564. https://doi.org/10.1016/j.lithos.2021.106564
      Meng, F. Y., Zhao, Z. D., Zhu, D. C., et al., 2014. Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane: Products of Back-Arc Extension of Neo-Tethyan Ocean? Gondwana Research, 26(2): 505-520. https://doi.org/10.1016/j.gr.2013.07.017
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Rosenbaum, G., Gasparon, M., Lucente, F. P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2): 119-134. https://doi.org/10.1029/2007TC002143
      Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contribution to Mineralogy and Petrology, 160: 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351. https://doi.org/10.1130/g23286a.1
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Xizang: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites. Earth and Planetary Science Letters, 272(1/2): 158-171. https://doi.org/10.1016/j.epsl.2008.04.034
      Wang, X. H., Lang, X. H., Deng, Y. L., et al., 2022a. Early Mesozoic Magmatism Records the Tectonic Evolution from Syn- To Post-Collisional Setting in the Central Lhasa Subterrane, Xizang. Lithos, 416-417(6): 106642. https://doi.org/10.1016/j.lithos.2022.106642
      Wang, X. H., Lang, X. H., Klemd, R., et al., 2022b. Subduction Initiation of the Neo-Tethys Oceanic Lithosphere by Collision-Induced Subduction Transference. Gondwana Research, 104(1): 54-69. https://doi.org/10.1016/j.gr.2021.08.012
      Wang, X. H., Lang, X. H., Tang, J. X., et al., 2019. Early-Middle Jurassic (182-170 Ma) Ruocuo Adakitic Porphyries, Southern Margin of the Lhasa Terrane, Xizang: Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization. Journal of Asian Earth Sciences, 173: 336-351. https://doi.org/10.1016/j.jseaes.2019.01.042
      Wang, X. H., Lang, X. H., Tang, J. X., et al., 2020. Early Carboniferous Back-Arc Rifting-Related Magmatism in Southern Xizang: Implications for the History of the Lhasa Terrane Separation from Gondwana. Tectonics, 39(10): e2020TC006237. https://doi.org/10.1029/2020tc006237
      Wang, Z. Z., Zhao, Z. D., Li, X. P., et al., 2021. Late Cretaceous Adakitic and A-Type Granitoids in Chanang, Southern Xizang: Implications for Neo-Tethyan Slab Rollback. Gondwana Research, 96: 89-104. https://doi.org/10.1016/j.gr.2021.04.007
      Wen, D. R., Chung, S. L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Xizang: Petrogenesis and Tectonic Implications. Lithos, 105(1/2): 1-11. https://doi.org/10.1016/j.lithos.2008.02.005
      Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2
      Xu, W. C., Zhang, H. F., Luo, B. J., et al., 2015. Adakite-Like Geochemical Signature Produced by Amphibole-Dominated Fractionation of Arc Magmas: An Example from the Late Cretaceous Magmatism in Gangdese Belt, South Xizang. Lithos, 232: 197-210. https://doi.org/10.1016/j.lithos.2015.07.001
      Zhang, L. L., Zhu, D. C., Wang, Q., et al., 2019. Late Cretaceous Volcanic Rocks in the Sangri Area, Southern Lhasa Terrane, Xizang: Evidence for Oceanic Ridge Subduction. Lithos, 326-327(271): 144-157. https://doi.org/10.1016/j.lithos.2018.12.023
      Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Xizang: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction? Gondwana Research, 17(4): 615-631. https://doi.org/10.1016/j.gr.2009.10.007
      Zhang, Z. M., Dong, X., Xiang, H., et al., 2014. Metagabbros of the Gangdese Arc Root, South Xizang: Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143(B11): 268-284. https://doi.org/10.1016/j.gca.2014.01.045
      Zhang, S., Li, Y., Li, F., et al., 2020. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of Miocene Syenite in Chazi Area, Xizang. Earth Science, 45(8): 2882-2893. https://doi.org/10.3799/dqkx.2020.163
      Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Xizang: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Xizang. Lithos, 113(1/2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zheng, Y. C., Hou, Z. Q., Gong, Y. L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Xizang: Implications for Mid-Ocean Ridge Subduction and Crustal Growth. Lithos, 190-191(3-4): 240-263. https://doi.org/10.1016/j.lithos.2013.12.013
      Zhu, D. C., Wang, Q., Chung, S. L., et al., 2019. Gangdese Magmatism in Southern Xizang and India-Asia Convergence since 120 Ma. Geological Society Special Publication, 483(1): 583-604. https://doi.org/10.1144/SP483.14
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Xizangan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      董国臣, 莫宣学, 赵志丹, 等, 2006. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据. 岩石学报, 2006(04): 835-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604007.htm
      董咪, 郎兴海, 邓煜霖, 等, 2022. 拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义. 地球科学, 47: 1349-1370. doi: 10.3799/dqkx.2021.137
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
      马本俊, 吴时国, 范建柯, 2015. 板片窗构造研究综述. 海洋地质前沿, 31(12): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201512001.htm
      张士贞, 李勇, 李奋其, 等, 2020. 西藏查孜地区中新世正长岩的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 45(8): 2882-2893. doi: 10.3799/dqkx.2020.163
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  161
    • HTML全文浏览量:  309
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-27
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回