• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为

    王琳 张贵宾

    王琳, 张贵宾, 2024. 俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为. 地球科学, 49(2): 685-699. doi: 10.3799/dqkx.2022.176
    引用本文: 王琳, 张贵宾, 2024. 俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为. 地球科学, 49(2): 685-699. doi: 10.3799/dqkx.2022.176
    Wang Lin, Zhang Guibin, 2024. Fractionation Behavior of Stable Isotopes (Fe-K-Li-B-Ba) in Subducted Plates. Earth Science, 49(2): 685-699. doi: 10.3799/dqkx.2022.176
    Citation: Wang Lin, Zhang Guibin, 2024. Fractionation Behavior of Stable Isotopes (Fe-K-Li-B-Ba) in Subducted Plates. Earth Science, 49(2): 685-699. doi: 10.3799/dqkx.2022.176

    俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为

    doi: 10.3799/dqkx.2022.176
    基金项目: 

    国家自然科学基金项目 41972056

    国家自然科学基金项目 91755206

    国家自然科学基金项目 41622202

    详细信息
      作者简介:

      王琳(1998-),女,硕士研究生,主要从事稳定同位素地球化学研究. ORCID:0000-0002-6191-8013. E-mail:xlbb@pku.edu.cn

      通讯作者:

      张贵宾,ORCID:0000-0003-4535-6150.E-mail: gbzhang@pku.edu.cn

    • 中图分类号: P597+.2

    Fractionation Behavior of Stable Isotopes (Fe-K-Li-B-Ba) in Subducted Plates

    • 摘要: 俯冲带是壳幔循环的重要场所,K、Ba、B和Li作为流体活动性元素,富集在俯冲带流体中;同时各个储库的同位素差异使得其成为研究各种俯冲带流体的良好示踪剂. 总结了近年来有关俯冲带Fe同位素与俯冲带变质流体氧化还原状态的研究进展,以及K、Ba、Li和B同位素在俯冲各个阶段的地球化学行为,包括俯冲物质的同位素组成,俯冲板片变质流体的稳定同位素分馏,及俯冲板片物质再循环沉积物、蚀变洋壳及俯冲带蛇纹岩与上覆地幔楔的相互作用再循环过程中伴随的元素分配和稳定同位素分馏. 随着稳定同位素测试精度的提升和以上同位素在不同地质储库和地质过程的数据完善,可以更有助于理解俯冲带中的相关物理化学变化过程.

       

    • 图  1  俯冲带中的K, Ba, B和Li同位素体系

      K同位素数据来自Hu et al.(2020, 2021); Wang et al.(2020); Ba同位素数据来自Bridgestock et al.(2018); Li et al.(2019a); Nielsen et al.(2018, 2020);B同位素数据来自Ryan and Chauvel(2014); Palmer(2017); Marschall and Foster(2018);Li同位素数据来自Millot et al., (2004); Ottolini et al., (2004); Magna et al.(2006); Jeffcoate et al.(2007); Tang et al.(2007)

      Fig.  1.  Schematic illustration of K, Ba, B, Li isotope systematics in a subduction-zone setting

      图  2  岛弧岩浆岩δ138Ba值与87Sr/86Sr (a)和206Pb/204Pb (b)的关系图

      Ba,Sr,Pb同位素数据来源Nielsen et al.(20182020);Wu et al.(2020);地幔值来自Nielsen et al.,(2018)Li et al.(2019a);蚀变洋壳值来自Wu et al.(2020);沉积物值来自Plank and Langmuir.,(1998)Bridgestock et al.(2018)Nielsen et al.(20182020)

      Fig.  2.  δ138/134Ba data versus 87Sr/86Sr(a) and 206Pb/204Pb (b) of arc volcanic lavas

      图  3  岛弧熔岩δ11B值与放射性同位素143Nd/144Nd (a), 87Sr/86Sr (b)的关系图

      岛弧岩浆岩δ11B,143Nd/144Nd,87Sr/86Sr数据来源Ewart and Hawkesworth,(1987)Woodhead(1989)Ishikawa and Nakamura(1994)Shibata and Nakamura(1997)Ishikawa and Tera(19971999)Taylor and Nesbitt(1998)Ishikawa et al.(2001)Straub and Layne(2002)Rosner et al.(2003)Leeman et al.(20042017)Moriguti et al.(2004)Barry et al.(2006)Tonarini et al.(20072011),平均俯冲沉积物(GLOSS Ⅱ)值来自Plank(2014),弧前蛇纹石化地幔橄榄岩值来自Benton et al.(2004)Savov et al.(200420052007)

      Fig.  3.  δ11B data versus143Nd/144Nd (a) and 87Sr/86Sr (b) of arc volcanic lavas

      图  4  岛弧熔岩δ7Li值与1/[Li]关系图

      数据来源Moriguti and Nakamura(1998)Tomascak et al.(2002)Tomascak(2004)Magna et al.(2006)Tang et al.(2013)Hanna et al.(2020)Liu et al.(2020b)

      Fig.  4.  Correlations between δ7Li and 1/[Li] of arc volcanic lavas

    • Aulbach, S., Rudnick, R. L., 2009. Origins of Non-Equilibrium Lithium Isotopic Fractionation in Xenolithic Peridotite Minerals: Examples from Tanzania. Chemical Geology, 258(1-2): 17-27. https://doi.org/10.1016/j.chemgeo. 2008. 07.015 doi: 10.1016/j.chemgeo.2008.07.015
      Barry, T. L., Pearce, J. A., Leat, P. T., et al., 2006. Hf Isotope Evidence for Selective Mobility of High-Field-Strength Elements in a Subduction Setting: South Sandwich Islands. Earth and Planetary Science Letters, 252(3-4): 223-244. https://doi.org/10.1016/j.epsl.2006.09.034
      Bebout, G. E. 2014. Chemical and Isotopic Cycling in Subduction Zones. Treatise on Geochemistry, 703-747. https://doi.org/10.1016/B978-0-08-095975-7.00322-3
      Bebout, G. E., Bebout, A. E., Graham, C. M., 2007. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into Subduction Zones: SIMS Evidence from Micas in High-P/T Metasedimentary Rocks. Chemical Geology, 239(3-4): 284-304. https://doi.org/10.1016/j.chemgeo.2006.10.016
      Bebout, G. E., Nakamura, E., 2003. Record in Metamorphic Tourmalines of Subduction-Zone Devolatilization and Boron Cycling. Geology, 31(5): 407-410. https://doi.org/10.1130/0091-7613(2003)0312.0.CO;2
      Becker, H., Jochum, K. P., Carlson, R. W. 2000. Trace Element Fractionation during Dehydration of Eclogites from High-Pressure Terranes and the Implications for Element Fluxes in Subduction Zones. Chemical Geology, 163(1-4): 65-99. https://doi.org/10.1016/S0009-2541(99)00071-6
      Benton, L. D., Ryan, J. G., Savov, I. P., 2004. Lithium Abundance and Isotope Systematics of Forearc Serpentinites, Conical Seamount, Mariana Forearc: Insights into the Mechanics of Slab-Mantle Exchange during Subduction. Geochemistry Geophysics Geosystems, 5(8): Q08J12. https://doi.org/10.1029/2004GC000708
      Berryman, E. J., Kutzschbach, M., Trumbull, R. B., et al., 2017. Tourmaline as a Petrogenetic Indicator in the Pfitsch Formation, Western Tauern Window, Eastern Alps. Lithos, 284: 138-155. https://doi.org/10.1016/j.lithos.2017.04.008
      Berryman, E. J., Wunder, B., Wirth, R., et al., 2015. An Experimental Study on K and Na Incorporation in Dravitic Tourmaline and Insight into the Origin of Diamondiferous Tourmaline from the Kokchetav Massif, Kazakhstan. Contributions to Mineralogy and Petrology, 169(3): 1-16. https://doi.org/10.1007/s00410-015-1116-9
      Brenan, J. M., Ryerson, F. J., Shaw, H. F., 1998. The Role of Aqueous Fluids in the Slab-to-Mantle Transfer of Boron, Beryllium, and Lithium during Subduction: Experiments and Models. Geochimica et cosmochimica Acta, 62(19-20): 3337-3347. https://doi.org/10.1016/S0016-7037(98)00224-5
      Bridgestock, L., Hsieh, Y. T., Porcelli, D., et al., 2018. Controls on the Barium Isotope Compositions of Marine Sediments. Earth and Planetary Science Letters, 481: 101-110. https://doi.org/10.1016/j.epsl.2017.10.019
      Busigny, V., Cartigny, P., Philippot, P., et al., 2003. Massive Recycling of Nitrogen and other Fluid-Mobile Elements (K, Rb, Cs, H) in a Cold Slab Environment: Evidence from HP to UHP Oceanic Metasediments of the Schistes LustrésNappe (Western Alps, Europe). Earth and Planetary Science Letters, 215(1-2): 27-42. https://doi.org/10.1016/s0012-821x(03)00453-9
      Chen, H., Liu, X. M., Wang, K., 2020. Potassium Isotope Fractionation during Chemical Weathering of Basalts. Earth and Planetary Science Letters, 539: 116192. https://doi.org/10.1016/j.epsl.2020.116192
      Chen, S., Hin, R. C., John, T., et al., 2019a. Molybdenum Systematics of Subducted Crust Record Reactive Fluid Flow from Underlying Slab Serpentine Dehydration. Nature Communication, 10(1): 4773-4779. https://doi.org/10.1038/s41467-019-12696-3
      Chen, Y. X., Lu, W. N., He, Y. S., et al., 2019b. Tracking Fe Mobility and Fe Speciation in Subduction Zone Fluids at the Slab-Mantle Interface in a Subduction Channel: A Tale of Whiteschist from the Western Alps. Geochimica et Cosmochimica Acta, 267: 1-16. https://doi.org/10.1016/j.gca.2019.09.020
      Debret, B., Bolfan-Casanova, N., Padron-Navarta, J. A., et al., 2015. Redox State of Iron during High-Pressure Serpentinite Dehydration. Contributions to Mineralogy and Petrology, 169(4): 1-18. https://doi.org/10.1007/s00410-015-1130-y
      Debret, B., Millet, M. A., Pons, M. L., et al., 2016. Isotopic Evidence for Iron Mobility during Subduction. Geology (Boulder), 44(3): 215-218. https://doi.org/10.1130/G37565.1
      Debret, B., Reekie, C. D. J., Mattielli, N., et al., 2020. Redox Transfer at Subduction Zones: Insights from Fe Isotopes in the Mariana Forearc. Geochemical Perspectives Letters, 12: 46-51. https://doi.org/10.7185/geochemlet.2003
      Debret, B., Sverjensky, D. A., 2017. Highly Oxidising Fluids Generated during Serpentinite Breakdown in Subduction Zones. Sci Rep, 7(1): 10351-6. https://doi.org/10.1038/s41598-017-09626-y
      Deng, J. H., He, Y., Zartman, R. E., et al., 2022. Large Iron Isotope Fractionation during Mantle Wedge Serpentinization: Implications for Iron Isotopes of Arc Magmas. Earth and PlanetaryScience Letters, 583: 117423. https://doi.org/10.1016/j.epsl.2022.117423
      Elliott, T., 2003. Inside the Subduction Factory (Geophysical Monograph 138). Washington Dc American Geophysical Union Geophysical Monograph, 138: 23-45. https://doi.org/10.1029/138GM03
      Evans, K. A., 2012. The Redox Budget of Subduction Zones. Earth-Science Reviews, 113(1-2): 11-32. https://doi.org/10.1016/j.earscirev.2012.03.003
      Evans, K. A., Reddy, S. M., Tomkins, A. G., et al., 2017. Effects of Geodynamic Setting on the Redox State of Fluids Released by Subducted Mantle Lithosphere. Lithos, 278: 26-42. https://doi.org/10.1016/j.lithos.2016.12.023
      Ewart, A., Hawkesworth, C. J., 1987. The Pleistocene Recent Tonga Kermadec Arc Lavas-Interpretation of New Isotopic and Rare-Earth Data in Terms of a Depleted Mantle Source Model. Journal of Petrology, 28(3): 495-530. https://doi.org/10.1093/petrology/28.3.495
      Fu, L. L., Xiao, Y. L., Zhang, X. L., et al., 2021. Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater. Earth Science, 46(6): 2073-2082(in Chinese with English abstract).
      Gale, A., Dalton, C. A., Langmuir, C. H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry Geophysics Geosystems, 14(3): 489-518. https://doi.org/10.1029/2012gc004334
      Guo, S., Zhao, K., John, T., et al., 2019. Metasomatic Flow of Metacarbonate-derived Fluids Carrying Isotopically Heavy Boron in Continental Subduction Zones: Insights from Tourmaline-bearing Ultra-High Pressure Eclogites and Veins (Dabie terrane, eastern China). Geochimica et Cosmochimica Acta, 253: 159-200. https://doi.org/10.1016/j.gca.2019.03.013
      Hanna, H. D., Liu, X. M., Park, Y. R., et al., 2020. Lithium Isotopes may Trace Subducting Slab Signatures in Aleutian Arc Lavas and Intrusions. Geochimica et Cosmochimica Acta, 278: 322-339. https://doi.org/10.1016/j.gca.2019.07.049
      Hao, L. L., Wang, Q., Kerr, A. C., et al., 2022. Contribution of Continental Subduction to Very Light B Isotope Signatures in Post-Collisional Magmas: Evidence from Southern Tibetan Ultrapotassic Rocks. Earth and Planetary Science Letters, 584: 117508. https://doi.org/10.1016/j.epsl.2022.117508
      Harvey, J., Garrido, C. J., Savov, I., et al., 2014. B-11-Rich Fluids in Subduction Zones: The Role of Antigorite Dehydration in Subducting Slabs and Boron Isotope Heterogeneity in the Mantle. Chemical Geology, 376: 20-30. https://doi.org/10.1016/j.chemgeo.2014.03.015
      Hattori, K. H., Guillot, S., 2007. Geochemical Character of Serpentinites Associated with High- to Ultrahigh-Pressure Metamorphic Rocks in the Alps, Cuba, and the Himalayas: Recycling of Elements in Subduction Zones. Geochemistry, Geophysics, Geosystems, 8(9): Q09010. https://doi.org/10.1029/2007gc001594
      Henry, D. J., Dutrow, B. L., 1996. Metamorphic Tourmaline and its Petrologic Applications. Boron, 33: 503-557.
      Hermann, J., 2002. Allanite: Thorium and Light Rare Earth Element Carrier in Subducted Crust. Chemical Geology, 192(3-4): 289-306. https://doi.org/10.1016/s0009-2541(02)00222-x
      Hermann, J., Rubatto, D., 2009. Accessory Phase Control on the Trace Element Signature of Sediment Melts in Subduction Zones. Chemical Geology, 265(3-4): 512-526. https://doi.org/10.1016/j.chemgeo.2009.05.018
      Hill, P. S., Schauble, E. A., Young, E. D. 2010. Effects of Changing Solution Chemistry on Fe3+/Fe2+ Isotope Fractionation in Aqueous Fe-Cl Solutions. Geochimica et Cosmochimica Acta, 74(23): 6669-6689. https://doi.org/10.1016/j.gca.2010.08.038
      Hofmann, A. W., 1997. Mantle Geochemistry: the Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
      Hu, Y., Teng, F. -Z., Plank, T., et al., 2020. Potassium Isotopic Heterogeneity in Subducting Oceanic Plates. Science Advances, 6(49). https://doi.org/10.1126/sciadv.abb2472
      Hu, Y., Teng, F. Z., Chauvel, C., 2021. Potassium Isotopic Evidence for Sedimentary Input to the Mantle Source of Lesser Antilles lavas. Geochimica et Cosmochimica Acta, 295: 98-111. https://doi.org/10.1016/j.gca.2020.12.013
      Huang, T. Y., Teng, F. Z., Rudnick, R. L., et al., 2020. Heterogeneous Potassium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 278: 122-136. https://doi.org/10.1016/j.gca.2019.05.022
      Ishikawa, T., Nakamura, E., 1994. Origin of the Slab Component in Arc Lavas from Across-Arc Variation of B and Pb Isotopes. Nature, 370(6486): 205-208. https://doi.org/10.1038/370205a0
      Ishikawa, T., Tera, F., 1997. Source, Composition and Distribution of the Fluid in the Kurile Mantle Wedge: Constraints from Across-Arc Variations of B/Nb and B Isotopes. Earth and PlanetaryScience Letters, 152(1-4): 123-138. https://doi.org/10.1016/S0012-821x(97)00144-1
      Ishikawa, T., Tera, F., 1999. Two Isotopically Distinct Fluid Components Involved in the Mariana Arc: Evidence from Nb/B Ratios and B, Sr, Nd, and Pb Isotope Systematics. Geology, 27(1): 83-86. https://doi.org/10.1130/0091-7613(1999)027<0083:TIDFCI>2.3.CO;2 doi: 10.1130/0091-7613(1999)027<0083:TIDFCI>2.3.CO;2
      Ishikawa, T., Tera, F., Nakazawa, T., 2001. Boron Isotope and Trace Element Systematics of the Three Volcanic Zones in the Kamchatka Arc. Geochimica et Cosmochimica Acta, 65(24): 4523-4537. https://doi.org/10.1016/S0016-7037(01)00765-7
      Jeffcoate, A. B., Elliott, T., Kasemann, S. A., et al., 2007. Li Isotope Fractionation in Peridotites and Mafic Melts. Geochimica et Cosmochimica Acta, 71(1): 202-218. https://doi.org/10.1016/j.gca.2006.06.1611
      John, T., Gussone, N., Podladchikov, Y. Y., et al., 2012. Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs. Nature Geoscience, 5(7): 489-492. https://doi.org/10.1038/ngeo1482
      Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
      Klein, F., Bach, W., 2009. Fe-Ni-Co-O-S Phase Relations in Peridotite-Seawater Interactions. Journal of Petrology, 50(1): 37-59. https://doi.org/10.1093/petrology/egn071
      Konrad-Schmolke, M., Halama, R., Manea, V. C., 2016. Slab Mantle Dehydrates beneath Kamchatka-Yet Recycles Water into the Deep Mantle. Geochemistry, Geophysics, Geosystems, 17(8): 2987-3007. https://doi.org/10.1002/2016gc006335
      Leeman, W. P., 1996. Boron and Other Fluid-Mobile Elements in Volcanic Arc Lavas; Implications for Subduction Processes. Geophysical Monograph, 96: 269-276. https://doi.org/10.1029/GM096p0269
      Leeman, W. P., Tonarini, S., Chan, L. H., et al., 2004. Boron and Lithium Isotopic Variations in a Hot Subduction Zone : the Southern Washington Cascades. Chemical Geology, 212(1-2): 101-124. https://doi.org/10.1016/j.chemgeo.2004.08.010
      Leeman, W. P., Tonarini, S., Turner, S., 2017. Boron Isotope Variations in Tonga-Kermadec-New Zealand Arc Lavas: Implications for the Origin of Subduction Components and Mantle Influences. Geochemistry Geophysics Geosystems, 18(3): 1126-1162. https://doi.org/10.1002/2016gc006523
      Li, W. Y., Yu, H. M., Xu, J., et al., 2019a. Barium Isotopic Composition of the Mantle: Constraints from Carbonatites. Geochimica et Cosmochimica Acta, 278: 235-243 https://doi.org/10.1016/j.gca.2019.06.041
      Li, W., Li, S., Beard, B. L., 2019b. Geological Cycling of Potassium and the K Isotopic Response: Insights from Loess and Shales. Acta Geochimica, 38(4): 508-516. https://doi.org/10.1007/s11631-019-00345-x
      Liu, H., Wang, K., Sun, W. -D., et al., 2020a. Extremely Light K in Subducted Low-T Altered Oceanic Crust: Implications for K Recycling in Subduction Zone. Geochimica et Cosmochimica Acta, 277: 206-223. https://doi.org/10.1016/j.gca.2020.03.025
      Liu, H., Xiao, Y., Sun, H., et al., 2020b. Trace Elements and Li Isotope Compositions Across the Kamchatka Arc: Constraints on Slab‐Derived Fluid Sources. Journal of Geophysical Research: Solid Earth, 125(5): 18. https://doi.org/10.1029/2019jb019237
      Liu, H. Y., Xue, Y. Y., Wang, K., et al., 2021. Contributions of Slab-Derived Fluids to Ultrapotassic Rocks Indicated by K Isotopes. Lithos, 396-397. https://doi.org/10.1016/j.lithos.2021.106202
      Liu, S. Q., Zhang, G. B., Zhang, L. F., et al., 2022. Boron Isotopes of Tourmalines from the Central Himalaya: Implications for Fluid Activity and Anatexis in the Himalayan Orogen. Chemical Geology, 596: 120800. https://doi.org/10.1016/j.chemgeo.2022.120800.
      Lu, Y. G., Xiao, Y. L., Wang, Y. Y., et al., 2021. Exploration of Li Isotope in Application of Ore Deposits. Earth Science, 46(12): 4346-4365 (in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112009
      Ma, L., Gou, G. -N., Kerr, A. C., et al., 2021. B Isotopes Reveal Eocene Mélange Melting in Northern Tibet during Continental Subduction. Lithos, 392-393: 13. https://doi.org/10.1016/j.lithos.2021.106146
      Magna, T., Wiechert, U., Grove, T. L., et al., 2006. Lithium Isotope Fractionation in the Southern Cascadia Subduction Zone. Earth and Planetary Science Letters, 250(3-4): 428-443. https://doi.org/10.1016/j.epsl.2006.08.019
      Magna, T., Wiechert, U., Halliday, A. N., 2006. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 243(3-4): 336-353. https://doi.org/10.1016/j.epsl.2006.01.005
      Marschall, H. R., Foster, G. L. 2018. Boron Isotopes in the Earth and Planetary Sciences: A Short History and Introduction. Boron Isotopes, 1-11. https://doi.org/10.1007/978-3-319-64666-4_1
      Marschall, H. R., Meyer, C., Wunder, B., et al., 2009. Experimental Boron Isotope Fractionation between Tourmaline and Fluid: Confirmation from in Situ Analyses by Secondary Ion Mass Spectrometry and from Rayleigh Fractionation Modelling. Contributions to Mineralogy and Petrology, 158(5): 675-681. https://doi.org/10.1007/s00410-009-0403-8
      Marschall, H. R., Strandmann, P. A. E. P. V., Seitz, H. M., et al., 2007. The Lithium Isotopic Composition of Orogenic Eclogites and Deep Subducted Slabs. Earth and Planetary Science Letters, 262(3-4): 563-580. https://doi.org/10.1016/j.epsl.2007.08.005
      Marschall, H. R., Schumacher, J. C., 2012. Arc Magmas Sourced from Mélange Diapirs in Subduction Zones. Nature Geoscience, 5(12): 862-867. https://doi.org/10.1038/ngeo1634
      Marschall, H. R., Wanless, V. D., Shimizu, N., et al., 2017. The Boron and Lithium Isotopic Composition of Mid-Ocean Ridge Basalts and the Mantle. Geochimica et Cosmochimica Acta, 207: 102-138. https://doi.org/10.1016/j.gca.2017.03.028
      Martin, C., Flores, K. E., Harlow, G. E., 2016. Boron Isotopic Discrimination for Subduction-Related Serpentinites. Geology, 44(11): 899-902. https://doi.org/10.1130/G38102.1
      Millot, R., Guerrot, C., Vigier, N., 2004. Accurate and High-Precision Measurement of Lithium Isotopes in Two Reference Materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 28(1): 153-159. https://doi.org/10.1111/j.1751-908X.2004.tb01052.x
      Moriguti, T., Nakamura, E., 1998. Across-Arc Variation of Li Isotopes in Lavas and Implications for Crust/Mantle Recycling at Subduction Zones. Earth and Planetary Science Letters, 163(1-4): 167-174. https://doi.org/10.1016/S0012-821x(98)00184-8
      Moriguti, T., Shibata, T., Nakamura, E., 2004. Lithium, Boron and Lead Isotope and Trace Element Systematics of Quaternary Basaltic Volcanic Rocks in Northeastern Japan: Mineralogical Controls on Slab-Derived Fluid Composition. Chemical Geology, 212(1-2): 81-100. https://doi.org/10.1016/j.chemgeo.2004.08.005
      Muttik, N., Kirsimae, K., Newsom, H. E., et al., 2011. Boron Isotope Composition of Secondary Smectite in Suevites at the Ries Crater, Germany: Boron Fractionation in Weathering and Hydrothermal Processes. Earth and Planetary Science Letters, 310(3-4): 244-251. https://doi.org/10.1016/j.epsl.2011.08.028
      Nakano, T., Nakamura, E., 2001. Boron Isotope Geochemistry of Metasedimentary Rocks and Tourmalines in a Subduction Zone Metamorphic Suite. Physics of the Earth and Planetary Interiors, 127(1-4): 233-252. https://doi.org/10.1016/S0031-9201(01)00230-8
      Nan, X. Y., Yu, H. M., Rudnick, R. L., et al., 2018. Barium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 233: 33-49. https://doi.org/10.1016/j.gca.2018.05.004
      Nielsen, S. G., Horner, T. J., Pryer, H. V., et al., 2018. Barium Isotope Evidence for Pervasive Sediment Recycling in the Upper Mantle. Science Advances, 4(7). https://doi.org/10.1126/sciadv.aas8675
      Nielsen, S. G., Marschall, H. R., 2017. Geochemical Evidence for Mélange Melting in Global Arcs. Science Advances, 3(4). https://doi.org/10.1126/sciadv.1602402
      Nielsen, S. G., Shu, Y., Auro, M., et al., 2020. Barium Isotope Systematics of Subduction Zones. Geochimica et Cosmochimica Acta, 275: 1-18. https://doi.org/10.1016/j.gca.2020.02.006
      Ota, T., Kobayashi, K., Katsura, T., et al., 2008. Tourmaline Breakdown in a Pelitic System: Implications for Boron Cycling through Subduction Zones. Contributions to Mineralogy and Petrology, 155(1): 19-32. https://doi.org/10.1007/s00410-007-0228-2
      Ottolini, L., Le Fevre, B., Vannucci, R., 2004. Direct Assessment of Mantle Boron and Lithium Contents and Distribution by SIMS Analyses of Peridotite Minerals. Earth and Planetary Science Letters, 228(1-2): 19-36. https://doi.org/10.1016/j.epsl.2004.09.027
      Palmer, M. R., 2017. Boron Cycling in Subduction Zones. Elements, 13(4): 237-242. https://doi.org/10.2138/gselements.13.4.237
      Parendo, C. A., Jacobsen, S. B., Kimura, J. I., et al., 2022. Across-Arc Variations in K-Isotope Ratios in Lavas of the Izu Arc: Evidence for Progressive Depletion of the Slab in K and Similarly Mobile Elements. Earth and Planetary Science Letters, 578. https://doi.org/10.1016/j.epsl.2021.117291
      Parendo, C. A., Jacobsen, S. B., Wang, K., 2017. K Isotopes as a Tracer of Seafloor Hydrothermal Alteration. Proceedings of the National Academy of Sciences of the United States of America, 114(8): 1827-1831. https://doi.org/10.1073/pnas.1609228114
      Penniston-Dorland, S. C., Sorensen, S. S., Ash, R. D., et al., 2010. Lithium Isotopes as a Tracer of Fluids in a Subduction Zone Melange: Franciscan Complex, CA. Earth and Planetary Science Letters, 292(1-2): 181-190. https://doi.org/10.1016/j.epsl.2010.01.034
      Plank, T., 2014. The Chemical Composition of Subducting Sediments. Treatise on Geochemistry, 4: 607-629. https://doi.org/10.1016/B978-0-08-095975-7.00319-3
      Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
      Polyakov, V. B., Mineev, S. D., 2000. The Use of Mossbauer Spectroscopy in Stable Isotope Geochemistry. Geochimica et Cosmochimica Acta, 64(5): 849-865. https://doi.org/10.1016/S0016-7037(99)00329-4
      Qiu, L., Rudnick, R. L., McDonough, W. F., et al., 2011. The Behavior of Lithium in Amphibolite- to Granulite-Facies Rocks of the Ivrea-Verbano Zone, NW Italy. Chemical Geology, 289(1-2): 76-85. https://doi.org/10.1016/j.chemgeo.2011.07.014
      Qiu, L., Rudnick, R. L., McDonough, W. F., et al., 2009. Li and δ7Li in Mudrocks from the British Caledonides: Metamorphism and Source Influences. Geochimica et cosmochimica Acta, 73(24): 7325-7340. https://doi.org/10.1016/j.gca.2009.08.017
      Richter, F. M., Davis, A. M., DePaolo, D. J., et al., 2003. Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905-3923. https://doi.org/10.1016/S0016-7037(03)00174-1
      Romer, R. L., Meixner, A., Hahne, K., 2014. Lithium and Boron Isotopic Composition of Sedimentary Rocks: The Role of Source History and Depositional Environment: A 250Ma Record from the Cadomian Orogeny to the Variscan Orogeny. Gondwana Research, 26(3-4): 1093-1110. https://doi.org/10.1016/j.gr.2013.08.015
      Rosner, M., Erzinger, J., Franz, G., et al., 2003. Slab-Derived Boron Isotope Signatures in Arc Volcanic Rocks from the Central Andes and Evidence for Boron Isotope Fractionation During Progressive Slab Dehydration. Geochemistry Geophysics Geosystems, 4(8): 9005-9028. https://doi.org/10.1029/2002gc000438
      Ryan, J. G., Chauvel, C. 2014. The Subduction-Zone Filter and the Impact of Recycled Materials on the Evolution of the Mantle. Treatise on Geochemistry, 3: 479-508. https://doi.org/10.1016/B978-0-08-095975-7.00211-4
      Ryan, J. G., Kyle, P. R., 2004. Lithium Abundance and Lithium Isotope Variations in Mantle Sources: Insights from Intraplate Volcanic Rocks from Ross Island and Marie Byrd Land (Antarctica) and other Oceanic Islands. Chemical Geology, 212(1-2): 125-142. https://doi.org/10.1016/j.chemgeo.2004.08.006
      Ryan, J. G., Langmuir, C. H., 1987. The Systematics of Lithium Abundances in Young Volcanic-Rocks. Geochimica et Cosmochimica Acta, 51(6): 1727-1741. https://doi.org/10.1016/0016-7037(87)90351-6
      Savov, I., Tonarini, S., Jeffrey, R., et al. 2004. Boron Isotope Geochemistry of Serpentinities and Porefluids from Leg 195, Site 1200; S. Chamorro Seamount, Marina Forearc Region, International Geological Congress, 32: 1041.
      Savov, I. P., Ryan, J. G., D'Antonio, M., et al., 2007. Shallow Slab Fluid Release across and along the Mariana Arc-Basin System: Insights from Geochemistry of Serpentinized Peridotites from the Mariana Fore Arc. Journal of Geophysical Research-Solid Earth, 112(B9): B09205. https://doi.org/10.1029/2006jb004749
      Savov, I. P., Ryan, J. G., D'Antonio, M., et al., 2005. Geochemistry of Serpentinized Peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the Elemental Recycling at Subduction Zones. Geochemistry Geophysics Geosystems, 6(4): Q04J15. https://doi.org/10.1029/2004gc000777
      Scambelluri, M., Tonarini, S., 2012. Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle. Geology, 40(10): 907-910. https://doi.org/10.1130/G33233.1
      Seitz, H. M., Brey, G. P., Lahaye, Y., et al., 2004. Lithium Isotopic Signatures of Peridotite Xenoliths and Isotopic Fractionation at High Temperature between Olivine and Pyroxenes. Chemical Geology, 212(1-2): 163-177. https://doi.org/10.1016/j.chemgeo.2004.08.009
      Shibata, T., Nakamura, E., 1997. Across-Arc Variations of Isotope and Trace Element Compositions from Quaternary Basaltic Volcanic Rocks in Northeastern Japan: Implications for Interaction between Subducted Oceanic Slab and Mantle Wedge. Journal of Geophysical Research-Solid Earth, 102(B4): 8051-8064. https://doi.org/10.1029/96jb03661
      Simons, K. K., Harlow, G. E., Brueckner, H. K., et al., 2010. Lithium Isotopes in Guatemalan and Franciscan HP–LT Rocks: Insights into the Role of Sediment-Derived Fluids during Subduction. Geochimica et Cosmochimica Acta, 74(12): 3621-3641. https://doi.org/10.1016/j.gca. 2010. 02.033 doi: 10.1016/j.gca.2010.02.033
      Straub, S. M., Layne, G. D., 2002. The Systematics of Boron Isotopes in Izu Arc Front Volcanic Rocks. Earth and Planetary Science Letters, 198(1-2): 25-39. https://doi.org/10.1016/S0012-821x(02)00517-4
      Su, B. X., Zhang, H. F., Deloule, E., et al., 2012. Extremely High Li and Low δ7Li Signatures in the Lithospheric Mantle. Chemical Geology, 292-293: 149-157. https://doi.org/10.1016/j.chemgeo.2011.11.023
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.Sp.1989.042.01.19
      Sun, Y., Teng, F. Z., Hu, Y., et al., 2020. Tracing Subducted Oceanic Slabs in the Mantle by Using Potassium Isotopes. Geochimica et Cosmochimica Acta, 278: 353-360. https://doi.org/10.1016/j.gca.2019.05.013
      Tang, M., Rudnick, R. L., Chauvel, C., 2014. Sedimentary Input to the Source of Lesser Antilles Lavas: A Li Perspective. Geochimica et Cosmochimica Acta, 144: 43-58. https://doi.org/10.1016/j.gca.2014.09.003
      Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2013. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149: 79-90. https://doi.org10.1016/j.lithos.2011.12.001
      Tang, Y. J., Zhang, H. F., Ying, J. F., 2007. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49(4): 374-388. https://doi.org/10.2747/0020-6814.49.4.374
      Taylor, R. N., Nesbitt, R. W., 1998. Isotopic Characteristics of Subduction Fluids in an Intra-Oceanic Setting, Izu-Bonin Arc, Japan. Earth and Planetary Science Letters, 164(1-2): 79-98. https://doi.org/10.1016/S0012-821x(98)00182-4
      Teng, F. Z., Hu, Y., Ma, J. L., et al., 2020. Potassium Isotope Fractionation during Continental Weathering and Implications for Global K Isotopic Balance. Geochimica et Cosmochimica Acta, 278: 261-271. https://doi.org/10.1016/j.gca.2020.02.029
      Teng, F. Z., Dauphas, N., Helz, R. T., 2008. Iron Isotope Fractionation during Magmatic Differentiation in Kilauea Iki Lava Lake. Science, 320(5883): 1620-1622. https://doi.org/10.1126/science.1157166
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006. Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3-4): 701-710. https://doi.org/10.1016/j.epsl.2006.01.036
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2007. Limited Lithium Isotopic Fractionation during Progressive Metamorphic Dehydration in Metapelites: A Case Study from the Onawa Contact Aureole, Maine. Chemical Geology, 239(1-2): 1-12. https://doi.org/10.1016/j.chemgeo.2006.12.003
      Tian, Y., Xiao, Y., Chen, Y. X., et al., 2019. Serpentinite-Derived Low δ7Li Fluids in Continental Subduction Zones: Constraints from the Fluid Metasomatic Rocks (Whiteschist) from the Dora-Maira Massif, Western Alps. Lithos, 348-349: 105177. https://doi.org/10.1016/j.lithos.2019.105177
      Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Geochemistry of Non-Traditional Stable Isotopes, 55(1): 153-195. https://doi.org/10.2138/gsrmg. 55. 1.153 doi: 10.2138/gsrmg.55.1.153
      Tomascak, P. B., Widom, E., Benton, L. D., et al., 2002. The Control of Lithium Budgets in Island Arcs. Earth and Planetary Science letters, 196(3-4): 227-238. https://doi.org/10.1016/S0012-821x(01)00614-8
      Tonarini, S., Agostini, S., Doglioni, C., et al., 2007. Evidence for Serpentinite Fluid in Convergent Margin Systems: The Example of El Salvador (Central America) Arc Lavas. Geochemistry Geophysics Geosystems, 8(9): Q09014. https://doi.org/10.1029/2006gc001508
      Tonarini, S., Leeman, W. P., Leat, P. T., 2011. Subduction Erosion of Forearc Mantle Wedge Implicated in the Genesis of the South Sandwich Island (SSI) Arc: Evidence from Boron Isotope Systematics. Earth and Planetary Science Letters, 301(1-2): 275-284. https://doi.org/10.1016/j.epsl.2010.11.008
      Trumbull, R. B., Krienitz, M. S., Grundmann, G., et al., 2008. Tourmaline Geochemistry and δ11B Variations as a Guide to Fluid–Rock Interaction in the Habachtal Emerald Deposit, Tauern Window, Austria. Contributions to Mineralogy and Petrology, 157(3): 411-427. https://doi.org/10.1007/s00410-008-0342-9
      Tuller-Ross, B., Marty, B., Chen, H., et al., 2019a. Potassium Isotope Systematics of Oceanic Basalts. Geochimica et Cosmochimica Acta, 259: 144-154. https://doi.org/10.1016/j.gca.2019.06.001
      Tuller-Ross, B., Savage, P. S., Chen, H., et al., 2019b. Potassium Isotope Fractionation during Magmatic Differentiation of Basalt to Rhyolite. Chemical Geology, 525: 37-45. https://doi.org/10.1016/j.chemgeo.2019.07.017
      Wang, K., Close, H. G., Tuller-Ross, B., et al., 2020. Global Average Potassium Isotope Composition of Modern Seawater. ACS Earth and Space Chemistry, 4(7): 1010-1017. https://doi.org/10.1021/acsearthspacechem.0c00047
      Wang, Z. Z., Teng, F. Z., Prelevic, D., et al., 2021. Potassium Isotope Evidence for Sediment Recycling into the Orogenic Lithospheric Mantle. Geochemical Perspectives Letters, 18: 43-47. https://doi.org/10.7185/geochemlet.2123
      Wei, C. J., Zheng, Y. F., 2021. Metamorphism, Fluid Behavior and Magmatism in Oceanic Subduction Zones. Science in China(Earth Sciences), 50(1): 1-27 (in Chinese with English abstract).
      Williams, H. M., McCammon, C. A., Peslier, A. H., et al., 2004. Iron Isotope Fractionation and the Oxygen Fugacity of the Mantle. Science, 304(5677): 1656-1659. https://doi.org/10.1126/science.1095679
      Woodhead, J. D., 1989. Geochemistry of the Mariana Arc (Western Pacific): Source Composition and Processes. Chemical Geology, 76(1-2): 1-24. https://doi.org/10.1016/0009-2541(89)90124-1
      Wu, F., Turner, S., Schaefer, B. F., 2020. Mélange Versus Fluid and Melt Enrichment of Subarc Mantle: A Novel Test Using Barium Isotopes in the Tonga-Kermadec Arc. Geology, 48(11): 1053-1057. https://doi.org/10.1130/g47549.1
      Wunder, B., Meixner, A., Romer, R. L., et al., 2007. Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 238(3-4): 277-290. https://doi.org/10.1016/j.chemgeo.2006.12.001
      Xiong, J. W., Chen, Y. X., Ma, H. Z., et al., 2022. Tourmaline Boron Isotopes Trace Metasomatism by Serpentinite-Derived Fluid in Continental Subduction Zone. Geochimica et Cosmochimica Acta, 320: 122-142. http://doi.org/10.1016/j.gca.2022.01.003
      Xu, J., Zhang, G. B., Marschall, H. M., et al., 2022. Boron Isotopes of White Mica and Tourmaline in an Ultra-high Pressure Metapelite from the Western Tianshan, China: Dehydration and Metasomatism during Exhumation of Subducted Ocean-Floor Sediments. Contributions to Mineralogy and Petrology, 177: 46. http://doi.org/10.1007/s00410-022-01916-7
      Xu, Y. G., Wang, X., Tang, G. J., et al., 2020. The Origin of Arc Basalts: New Advances and Remaining Questions. Science in China(Earth Sciences), 50(12): 1818-1844 (in Chinese with English abstract).
      Zack, T., Rivers, T., Foley, S. J. C. t. M., et al., 2001. Cs-Rb-Ba Systematics in Phengite and Amphibole: an Assessment of Fluid Mobility at 2.0 GPa in Eclogites from Trescolmen, Central Alps. Contributions to Mineralogy and Petrology, 140(6): 651-669. https://doi.org/10.1007/s004100000206
      Zack, T., Tomascak, P. B., Rudnick, R. L., et al., 2003. Extremely Light Li in Orogenic Eclogites: The Role of Isotope Fractionation during Dehydration in Subducted Oceanic Crust. Earth and Planetary Science Letters, 208(3-4): 279-290. https://doi.org/10.1016/S0012-821x(03)00035-9
      Zeng H., Rozsa V. F., Nie N. X., et al., 2019. Ab Initio Calculation of Equilibrium Isotopic Fractionations of Potassium and Rubidium in Minerals and Water. ACS Earth and Space Chemistry, 3: 2601-2612. https://doi.org/10.1021/acsearthspacechem.9b00180
      Zhang, H. F., Deloule, E., Tang, Y. J., et al., 2010. Melt/Rock Interaction in Remains of Refertilized Archean Lithospheric Mantle in Jiaodong Peninsula, North China Craton: Li Isotopic Evidence. Contributions to Mineralogy and Petrology, 160(2): 261-277. https://doi.org/10.1007/s00410-009-0476-4
      Zhao, Y. P., Tang, Y. J., Xu, J., et al., 2021. Barium Isotope Evidence for Recycled Crustal Materials in the Mantle Source of Continental Basalts. Lithos, 390-391(B9): 106111. https://doi.org/10.1016/j.lithos.2021.106111
      付露露, 肖益林, 张兴亮, 等, 2021. Li同位素组成对太古宙海水相关的表生环境过程的初步限定. 地球科学, 46(6): 2073-2082 doi: 10.3799/dqkx.2020.108
      陆一敢, 肖益林, 王洋洋, 等, 2021. Li同位素在矿床学中的应用: 现状与展望. 地球科学, 46(12): 4346-4365 doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112009
      魏春景, 郑永飞, 2020. 大洋俯冲带变质作用, 流体行为与岩浆作用. 中国科学: 地球科学, 50(1): 1-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001001.htm
      徐义刚, 王强, 唐功建, 等, 2020. 弧玄武岩的成因: 进展与问题. 中国科学: 地球科学, 50(12): 1818-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202303001.htm
    • 加载中
    图(4)
    计量
    • 文章访问数:  328
    • HTML全文浏览量:  357
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-25
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回