• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆喀什噶尔河下游平原区地下咸水中碘形态及碘富集成因

    孙英 周殷竹 周金龙 鲁涵 葛婷婷 纪媛媛

    孙英, 周殷竹, 周金龙, 鲁涵, 葛婷婷, 纪媛媛, 2024. 新疆喀什噶尔河下游平原区地下咸水中碘形态及碘富集成因. 地球科学, 49(2): 781-792. doi: 10.3799/dqkx.2022.178
    引用本文: 孙英, 周殷竹, 周金龙, 鲁涵, 葛婷婷, 纪媛媛, 2024. 新疆喀什噶尔河下游平原区地下咸水中碘形态及碘富集成因. 地球科学, 49(2): 781-792. doi: 10.3799/dqkx.2022.178
    Sun Ying, Zhou Yinzhu, Zhou Jinlong, Lu Han, Ge Tingting, Ji Yuanyuan, 2024. Iodine Species and Causes of Iodine Enrichment in Saline Groundwater in Plain Area of Lower Reaches of Kashigar River. Earth Science, 49(2): 781-792. doi: 10.3799/dqkx.2022.178
    Citation: Sun Ying, Zhou Yinzhu, Zhou Jinlong, Lu Han, Ge Tingting, Ji Yuanyuan, 2024. Iodine Species and Causes of Iodine Enrichment in Saline Groundwater in Plain Area of Lower Reaches of Kashigar River. Earth Science, 49(2): 781-792. doi: 10.3799/dqkx.2022.178

    新疆喀什噶尔河下游平原区地下咸水中碘形态及碘富集成因

    doi: 10.3799/dqkx.2022.178
    基金项目: 

    国家自然科学基金资助项目 42067035

    国家自然科学基金资助项目 42007161

    新疆农业大学水利工程重点学科项目 SLXK2019-10

    “新疆水利工程安全与水灾害防治自治区重点实验室”2021年开放课题 ZDSYS-JS-2021-10

    详细信息
      作者简介:

      孙英(1994-),女,博士研究生,主要从事地下水资源评价与水质演化方面的研究. ORCID:0000-0002-1737-8726. E-mail:879986831@qq.com

      通讯作者:

      周金龙,ORCID:0000-0001-5055-0252. E-mail: zjzhoujl@163.com

    • 中图分类号: P641

    Iodine Species and Causes of Iodine Enrichment in Saline Groundwater in Plain Area of Lower Reaches of Kashigar River

    • 摘要: 新疆喀什噶尔河位于典型的干旱-半干旱区,河流下游平原区地下水溶解性总固体(TDS)和碘含量异常,严重威胁当地用水安全. 以喀什噶尔河下游平原区为研究区,通过对地下水水化学特征、Cl/Br摩尔比、氢氧稳定同位素、赋存环境与水文地球化学作用的分析确定该区地下咸水中碘的分布与碘富集的影响因素. 结果表明,研究区地下水碘含量变化范围为 < 0.40~435.00 μg/L(均值为123.50 μg/L),其中潜水和承压水碘含量均值分别为58.75 μg/L和188.25 μg/L,高碘水占比分别为25.0%和75.0%,水化学类型主要为Cl·SO4型和SO4·Cl型. 地下水TDS变化范围为3 079.13~15 249.50 mg/L,主要为中性至弱碱性咸水(87.5%),其次为盐水(12.5%). 碘元素的存在形态主要为I-(87.5%),其次为IO3-(12.5%),且无共存形态,亚氧化环境和亚还原环境分别利于碘元素以IO3-和I-形态存在. 高TDS、细粒岩性、平缓的地势、地下水浅埋条件及碱性环境均有利于地下水碘的富集. 潜水碘富集主要受蒸发浓缩作用和蒸发岩溶解作用的影响,承压水碘富集主要受还原条件下含铁矿物的溶解和冲积-湖积物的影响. Cl-与Cl/Br摩尔比值表明高碘潜水受到一定程度蒸发浓缩作用的影响.

       

    • 图  1  喀什噶尔河下游平原区地下水取样点分布(a)、水文地质图(b)及水文地质剖面图(c)

      Fig.  1.  Distribution of groundwater sampling sites in plain area(a), hydrogeologic (b) and hydrogeological profile(c) of lower reaches of Kashigar river

      图  2  研究区地下水Piper三线图

      Fig.  2.  Piper trilinear diagram of groundwater in the study area

      图  3  地下水碘含量与TDS(a)、碘含量与井深(b)、TDS与井深(c)的关系

      Fig.  3.  Relationship between iodine content and TDS (a), iodine content and well depth (b), TDS and well depth (c) of groundwater

      图  4  研究区地下水δ(D)和δ(18O)的关系

      Fig.  4.  Correlation between δ(D) and δ(18O) of groundwater

      图  5  研究区地下水碘含量与Eh(a)、pH(b)、Fe(c)、SI(菱铁矿)(d)的关系

      Fig.  5.  Correlation between iodine content and Eh (a), pH (b), Fe (c), Siderite SI (d) of groundwater

      图  6  研究区地下水碘含量与γCa2+/γCl-的关系

      Fig.  6.  Correlation between iodine content and γCa2+/γCl- of groundwater

      图  7  研究区第四纪地质图

      Fig.  7.  Quaternary geological map of the study area

      图  8  地下水Cl-和Cl/Br摩尔比

      Fig.  8.  Correlation between Cl- concentration and Cl/Br molar ratio of groundwater

      图  9  地下水I含量和DOC的关系

      Fig.  9.  Correlation between I concentration and DOC of groundwater

      图  10  研究区地下水Gibbs图

      Fig.  10.  Gibbs diagram of groundwater

      图  11  地下水γCa2+/γNa2+和γHCO3-/γNa2+端元图

      Fig.  11.  End members of correlation between γCa2+/γNa2+ and γHCO3-/γNa2+ ratio in groundwater

      图  12  地下水中矿物相的饱和指数随TDS的变化关系

      Fig.  12.  The relationship between the saturation index of mineral phase and TDS in groundwater

      表  1  研究区地下水化学组分含量统计表

      Table  1.   Statistics of hydrogeochemical composition content in groundwater

      样品编号 K1 K2 K3 K4 K5 K6 K7 K8
      地下水类型 潜水 潜水 潜水 承压水 承压水 潜水 承压水 承压水
      井深(m) 123 35 18 70 52 45 40 40
      Eh(mV) 24.90 1.50 4.90 2.80 8.50 -11.10 1.50 -0.30
      pH值 7.20 7.36 7.36 7.65 7.35 7.51 7.49 7.38
      K++Na+(mg/L) 4 254.02 877.27 1 191.38 1 087.74 1 609.80 502.79 1 624.04 1 017.36
      Ca2+(mg/L) 858.96 538.11 603.48 542.13 535.09 361.69 663.83 372.15
      Mg2+(mg/L) 411.18 308.08 331.87 277.58 333.09 135.68 336.75 333.09
      Cl-(mg/L) 5 574.51 985.51 1 683.88 1 581.07 1 648.43 566.49 2 339.70 1 403.82
      SO42-(mg/L) 3 887.76 2 489.01 2 359.42 2 084.10 3 098.04 1 340.00 2 651.30 1 934.57
      HCO3-(mg/L) 521.32 463.94 512.77 324.76 452.95 329.64 277.14 411.44
      I(μg/L) 144.0 51.0 < 40.0 435.0 96.0 < 40.0 101.0 121.0
      总Fe(mg/L) 0.25 8.25 0.89 0.19 0.32 6.82 0.32 2.11
      TH(mg/L) 3 837.58 2 611.97 2 873.16 2 496.44 2 707.41 1 461.70 3 043.95 2 300.54
      TDS(mg/L) 15 249.50 5 439.40 6 428.22 5 736.79 7 452.60 3 079.13 7 755.45 5 269.71
      Br-(mg/L) 1.76 0.20 0.23 0.46 0.37 0.14 1.16 0.35
      DOC(mg/L) 0.81 2.74 2.14 0.92 1.40 1.53 1.14 1.26
      δD (‰) -47.40 -72.08 -73.30 -65.86 -74.71 -72.73 -68.94 -70.07
      δ18O(‰) -6.19 -9.50 -9.76 -8.12 -10.16 -9.59 -8.70 -8.51
      下载: 导出CSV
    • Amiri, V., Sohrabi, N., Dadgar, M. A., 2015. Evaluation of Groundwater Chemistry and Its Suitability for Drinking and Agricultural Uses in the Lenjanat Plain, Central Iran. Environmental Earth Sciences, 74(7): 6163-6176. https://doi.org/10.1007/s12665-015-4638-6
      Andersson, M., Karumbunathan, V., Zimmermann, M. B., 2012. Global Iodine Status in 2011 and Trends Over the Past Decade. The Journal of Nutrition, 142(4): 744-750. https://doi.org/10.3945/jn.112.161729
      Cartwright, I., Weaver, T. R., Fulton, S., et al., 2004. Hydrogeochemical and Isotopic Constraints on the Origins of Dryland Salinity, Murray Basin, Victoria, Australia. Applied Geochemistry, 19(8): 1233-1254. https://doi.org/10. 1016/j.apgeochem.2003.12.006 doi: 10.1016/j.apgeochem.2003.12.006
      Chen, J. L., Yang, H. X., Liu, W., et al., 2017. Study on the Total Iodine and Iodine Speciation Characteristics in Xilingol League, Inner Mongolia and Tacheng, Xinjiang High Iodine Area by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Rock and Mineral Analysis, 36(6): 614-623(in Chinese with English abstract).
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133: 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
      Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088
      Hao, S., Li, F. D., Li, Y. H., et al., 2019. Stable Isotope Evidence for Identifying the Recharge Mechanisms of Precipitation, Surface Water, and Groundwater in the Ebinur Lake Basin. Science of the Total Environment, 657: 1041-1050. https://doi.org/10. 1016/j.scitotenv. 2018. 12.102 doi: 10.1016/j.scitotenv.2018.12.102
      Hou, X. L., Hansen, V., Aldahan, A., et al., 2009. A Review on Speciation of Iodine-129 in the Environmental and Biological Samples. Analytica Chimica Acta, 632(2): 181-196. https://doi.org/10.1016/j.aca.2008.11.013
      Hu, Q. H., Zhao, P. H., Moran, J. E., et al., 2005. Sorption and Transport of Iodine Species in Sediments from the Savannah River and Hanford Sites. Journal of Contaminant Hydrology, 78(3): 185-205. https://doi.org/10.1016/j.jconhyd.2005.05.007
      Jia, Y. F., 2021. Geogenic-Contaminated Groundwater in China. Global Groundwater, Elsevier, Amsterdam, 229-242.
      Li, L., Qiu, S. J., Tan, F. F., et al., 2013. Effects of Salinity and Exogenous Substrates on the Decomposition and Transformation of Soil Organic carbon in the Yellow River Delta. Acta Ecologica Sinica, 33(21): 6844-6852 (in Chinese with English abstract). doi: 10.5846/stxb201206290914
      Li, J. X., Wang, Y. X., Guo, W., et al. 2014. Iodine Mobilization in Groundwater System at Datong Basin, China: Evidence from Hydrochemistry and Fluorescence Characteristics. Science of the Total Environment, 468: 738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
      Li, J. X., Wang, Y. X., Xie, X. J., 2016. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and Its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China. Science of the Total Environment, 544: 158-167. https://doi.org/10.1016/j.scitotenv.2015.08.144
      Li, J. X., Wang, Y. X., Xue, X. B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater During the Transformation of Iron Minerals in Aquifer Sediments. Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
      Li, W. P., Hao, A. B., Zheng, Y. J., et al., 2006. Regional Environmental Isotopic Features of Groundwater and Their Hydrogeological Explanation in the Tarim Basin. Earth Science Frontiers, 13(1): 191-198(in Chinese with English abstract).
      Liu, Y. L., 2019. Groundwater Salinization Mechanism and Interaction Processes of the Evaporation and Salt Accumulation in an Arid Inland Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Okin, G. S., Gillette, D. A., Herrick, J. E., 2006. Multi-Scale Controls on and Consequences of Aeolian Processes in Landscape Change in Arid and Semi-Arid Environments. Journal of Arid Environments, 65(2): 253-275. https://doi.org/10.1016/j.jaridenv.2005.06.029
      Orr, C. A., 2017. Warren JK: Evaporites: A Geological Compendium, 2nd Ed. Environmental Earth Sciences, 76: 687. https://doi.org/10.1007/s12665-017-6965-2
      Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/ 10.1016/j.proeps.2016. 12.135 doi: 10.1016/j.proeps.2016.12.135
      Qian, C., Wu, X., Mu, W. P., et al., 2016. Hydrogeochemical Characterization and Suitability Assessment of Groundwater in an Agro-Pastoral Area, Ordos Basin, NW China. Environmental Earth Sciences, 75(20): 1356-1371. https://doi.org/10.1007/s12665-016-6123-2
      Qian, K., Li, J. X., Chi, Z. Y., et al., 2020. Natural Organic Matter-Enhanced Transportation of Iodine in Groundwater in the Datong Basin: Impact of Irrigation Activities. Science of the Total Environment, 730: 138460. https://doi.org/10.1016/j.scitotenv.2020.138460
      Schwehr, K. A., Santschi, P. H., Kaplan, D. I., et al., 2009. Organo-Iodine Formation in Soils and Aquifer Sediments at Ambient Concentrations. Environmental Science & Technology, 43(19): 7258-7264. https://doi.org/10.1021/es900795k
      Schofield, R., Thomas, D. S. G., Kirkby, M. J., 2001. Causal Processes of Soil Salinization in Tunisia, Spain and Hungary. Land Degradation & Development, 12(2): 163-181. https://doi.org/10.1002/ldr.446
      Shen, H. M., Zhang, S. B., Liu, S. J., et al., 2007. Study on the Geographic Distribution of National High Water Iodine Areas and the Contours of Water Iodine in High Iodine Areas. Chinese Journal of Endemiology, 26(6): 658-661(in Chinese with English abstract).
      Sun, Y., Zhou, J. L., Liang, X., et al., 2021. Distribution and Genesis of Shallow High-Iodine Groundwater in Southern Margin of Tarim Basin: A Case Study of Plain Area in Minfeng County, Xinjiang. Earth Science, 46(8): 2999-3011(in Chinese with English abstract).
      Voutchkova, D. D., Ernstsen, V., Kristiansen, S. M., et al., 2017. Iodine in Major Danish Aquifers. Environmental Earth Sciences, 76(13): 1-16. https://doi.org/10.1007/s12665-017-6775-6
      Wang, H. T., Zhou, J. L., Zeng, Y. Y., et al., 2019. Spatial Distribution and Enrichment Factors of Iodine in Drinking Groundwater in Kashgar Prefecture of Xinjiang. Journal of Xinjiang Agricultural University, 42(2): 145-150(in Chinese with English abstract).
      Wang, Y. X., Li, J. X., Ma, T., et al., 2021. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24): 2895-2933. https://doi.org/10.1080/10643389. 2020.1807452 doi: 10.1080/10643389.2020.1807452
      Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural HighIodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320. (in Chinese with English abstract).
      Wang, Z., Du, H. B., 2003. Discussion on Groundwater Resources and Development and Utilization Mode in Bachu County. Xinjiang Water Resources, (2): 16-19(in Chinese).
      Wei, X., Zhou, J. L., Jia, R. L., et al., 2017. Distribution and Resource Estimation of Shallow Groundwater with Different TDS in Kashgar Region of Xinjiang. Water Saving Irrigation, (9): 51-54(in Chinese with English abstract).
      Xu, F., Ma, T., Shi, L., et al., 2012. Hydrogeochemical Characteristics of High Iodine Groundwater in the Hetao Plain, Inner Mongolia. Hydrogeology & Engineering Geology, 39(5): 8-15(in Chinese with English abstract).
      Xue, J. K., Deng, Y. M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along the Middle Reaches of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 46(11): 4140-4149 (in Chinese with English abstract).
      Zeng, H. B., Su, C. L., Xie, X. J., et al., 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277(in Chinese with English abstract).
      Zeng, Y. Y., 2018. Study on Formation Mechanism of Poor Quality Groundwater in Western Kashgar Prefecture of Xinjiang (Dissertation). Xinjiang Agricultural University, Urumqi (in Chinese with English abstract).
      Zhang, E. Y., Zhang, F. C., Qian, Y., et al., 2010. The Distribution of High Iodine Groundwater in Typical Areas of China and Its Inspiration. Geology in China, 37(3): 797-802(in Chinese with English abstract).
      Zhang, L. Y., 2012. Using Hydrochemistry and Strontium Isotopes to Identify the Sources of Salt in Groundwater Waters of the Tianjin Coastal Area(Dissertation). Tianjin Normal University, Tianjin (in Chinese with English abstract).
      Zhang, R. Q., Liang, X., Jin M. G., et al., 2018. Fundamentals of Hydrogeology. Geological Publishing House, Beijing, 90-95(in Chinese).
      Zhou, Y. Z., Sun, Y., Zhou, J. L., et al., 2021. Distribution and Co-Enrichment Factors of Arsenic and Iodine in Groundwater in the Shihezi Area, Xinjiang. Environmental Chemistry, 40(11): 3464-3473 (in Chinese with English abstract).
      陈俊良, 杨红霞, 刘崴, 等, 2017. HPLC-ICP-MS法研究内蒙古锡盟和新疆塔城高碘地区地下水的总碘及碘形态特征. 岩矿测试, 36(6): 614-623. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201706009.htm
      李玲, 仇少君, 檀菲菲, 等, 2013. 盐分和底物对黄河三角洲区土壤有机碳分解与转化的影响. 生态学报, 33(21): 6844-6852. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201321010.htm
      李文鹏, 郝爱兵, 郑跃军, 等, 2006. 塔里木盆地区域地下水环境同位素特征及其意义. 地学前缘, 13(1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200601026.htm
      刘亚磊, 2019. 干旱内陆盆地地下水咸化与蒸发-累盐相互作用机理研究(博士学位论文). 武汉: 中国地质大学.
      申红梅, 张树彬, 刘守军, 等, 2007. 全国高水碘地区地理分布及高碘地区水碘等值线研究. 中国地方病学杂志, 26(6): 658-661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDFB200706027.htm
      孙英, 周金龙, 梁杏, 等, 2021. 塔里木盆地南缘浅层高碘地下水的分布及成因: 以新疆民丰县平原区为例. 地球科学, 46(8): 2999-3011. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108024.htm
      王红太, 周金龙, 曾妍妍, 等, 2019. 新疆喀什地区饮用地下水碘分布及其富集因素分析. 新疆农业大学学报, 42(2): 145-150. https://www.cnki.com.cn/Article/CJFDTOTAL-XJNY201902011.htm
      王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101024.htm
      王智, 杜海波, 2003. 巴楚县地下水资源及开发利用模式的探讨. 新疆水利, (2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SXSN200805049.htm
      魏兴, 周金龙, 贾瑞亮, 等, 2017. 喀什地区不同TDS浅层地下水分布及资源量估算. 节水灌溉, (9): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201709014.htm
      徐芬, 马腾, 石柳, 等, 2012. 内蒙古河套平原高碘地下水的水文地球化学特征. 水文地质工程地质, 39(5): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205001.htm
      薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 46(11): 4140-4149. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111026.htm
      曾邯斌, 苏春利, 谢先军, 等, 2021. 河套灌区西部浅层地下水咸化机制. 地球科学, 46(6): 2267-2277. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106023.htm
      曾妍妍, 2018. 新疆喀什地区西部劣质地下水形成机理研究(博士学位论文). 乌鲁木齐: 新疆农业大学.
      张二勇, 张福存, 钱永, 等, 2010. 中国典型地区高碘地下水分布特征及启示. 中国地质, 37(3): 797-802. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201003037.htm
      张琳怡, 2012. 天津滨海地区地下水咸化的水化学及锶同位素示踪研究(博士学位论文). 天津: 天津师范大学.
      张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础. 北京: 地质出版社, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-JYDZ202301013.htm
      周殷竹, 孙英, 周金龙, 等,2021. 新疆石河子地区地下水砷、碘分布规律及共富集因素分析. 环境化学,40(11):3464-3473.
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  311
    • HTML全文浏览量:  319
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-30
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回