Well Logging Evaluation of "Three Quality" of Jurassic Tight Gas Sandstone Reservoirs in Kuqa Depression
-
摘要: 为了阐明库车坳陷侏罗系致密砂岩气藏特征并建立配套的测井评价方法,利用岩心观察、岩石物理实验、常规测井和成像测井等资料,对阿合组致密砂岩气藏“七性关系”(岩性、物性、电性、含油气性、脆性、烃源岩特性和地应力各向异性特征)进行了研究.建立了孔隙度、渗透率、饱和度等测井解释模型及TOC、脆性指数、三轴地应力剖面的测井评价模型.在致密气藏“七性关系”测井表征基础上,提出了储层品质、烃源岩品质和工程品质(三品质)分类标准与对应测井评价体系.结果表明阿合组岩性主要包括砂砾岩、中粗砂岩和泥岩,储集空间主要为粒内溶孔、粒间溶孔、微裂缝以及微孔隙,典型含气层段表现为低伽马(< 60 API)、高电阻(> 10 Ω·m)、高声波时差(> 70 μs/ft)的特征.根据测井计算TOC刻画烃源岩品质,根据物性测试、压汞测试和裂缝发育程度,划分出4种储层品质类型,工程品质则主要通过脆性指数和地应力大小来识别与划分.最终将烃源岩品质、储层品质和工程品质测井评价结果应用到单井产能的评价与预测,与实际试油情况吻合较好,DB101等7口井8个层段中均得到验证.Abstract: In order to unravel the tight gas reservoir characteristics and establish the well log evaluation methods of Jurassic tight gas reservoirs in Kuqa depression, core observation, rock physics experiment, conventional logging and image log data were used to unravel the "seven relations" of lithology, physical property, electrical property, oil-gas bearing property, brittleness, source rock properties and in-situ stress of Jurassic Ahe Formation tight sandstone gas reservoir in monocline zone of northern Kuqa depression. The logging interpretation model of porosity, permeability and gas saturation was established, and well logging calculation model of TOC (total organic carbon), brittleness index as well as triaxial in-situ stress profile were established respectively. Then the logging methods of source rock property, reservoir quality and engineering quality are established based on the research of "seven relations". The results show that the lithology of Ahe Formation mainly includes conglomerate, medium-coarse sandstone and mudstone. The reservoir spaces are mainly intergranular dissolution pore, intragranular dissolution pore, micro-fractures and micro-pores. The typical gas-bearing interval is characterized by low gamma ray (< 60 API), high resistance (> 10 Ω·m) and high acoustic time difference (> 70 μs/ft). The source rock quality was characterized by TOC content calculated by logging, and four reservoir quality types were classified according to physical property test, mercury injection test and the degree of fracture development. The engineering quality was identified and classified mainly by brittleness index and in-situ stress. Finally, the logging evaluation results of "three qualities" were applied to the evaluation and prediction of single well productivity, which is in good agreement with the actual well test, and the results were testified in the eight intervals of seven wells including DB 101 and other wells.
-
图 1 库车坳陷构造区带划分及油气田分布图(据唐雁刚等,2021修改)
Fig. 1. The structural division of Kuqa depression and distribution of oil and gas fields (modified after Tang et al., 2021)
图 4 库车坳陷迪北地区侏罗系阿合组储集空间类型
a. YN2,4 843.3 m,J1a,粒内溶孔;b. YN5,4 846.29 m,J1a,构造缝、钾长石粒内溶孔、杂基微孔隙,少量粒间溶孔;c. YN5,4 893.17 m,J1a,构造缝,少量粒间溶孔、长石粒内溶孔;d. DB102,J1a,4 936.95 m,粒内溶孔、粒间溶蚀扩大孔、铸模孔;e. YS4,3 981.6 m,J1a,高岭石晶间孔;f. YN5,4 775.23 m,J1a,长石溶蚀孔
Fig. 4. The reservoir spaces of Jurassic Ahe Formation in Dibei area of Kuqa depression
表 1 库车坳陷迪北区块多井计算TOC误差统计
Table 1. The error analysis of log calculated TOC in Dibei area of Kuqa depression
井名 层位 统计深度(m) TOC(%) 岩心分析 ΔlgR模型 相对误差 KZ1井 克孜勒努尔组 2 825.0~3 944.0 18.28 17.52 4.16 阳霞组 3 944.0~4 344.5 8.31 8.71 4.81 YN2井 克孜勒努尔组 3 840.0~4 379.0 18.59 19.39 4.30 阳霞组 4 379.0~4 732.0 4.18 4.38 4.70 塔里奇克+黄山街组 4 732.0~5 309.5 7.27 6.88 5.36 YN4井 阳霞组 3 434.0~4 357.0 14.26 15.04 5.47 YX1井 克孜勒努尔组 2 720.0~3 520.0 31.52 32.61 3.46 阳霞组 3 780.0~3 980.0 7.91 8.35 5.56 平均值 4.73 表 2 储层综合评价标准
Table 2. The standards of reservoir comprehensive evaluation
孔隙度(%) 渗透率(mD) 排驱压力
(MPa)最大孔喉半径
(μm)裂缝密度(条/m) 试油情况 储层类型 孔隙特征 > 9 > 5 < 0.2 > 3 > 0.5 自然高产 Ⅰ类 粒内溶孔、裂缝 6~9 1~5 0.2~0.4 1.2~3.0 0.2~0.5 自然中低产,压后中高产 Ⅱ类 粒内溶孔、裂缝 4~6 0.16~1.00 0.4~1.0 0.8~1.2 0.1~0.2 压力后有一定产能 Ⅲ类 微孔隙,粒内溶孔 < 4 < 0.16 > 1 < 0.8 < 0.1 无产能 Ⅳ类非产层 微孔隙 表 3 库车坳陷迪北地区侏罗系阿合组裂缝储层综合评价与产能匹配关系
Table 3. The fractured reservoir evaluation and productivity matching relationships of Jurassic Ahe Formation in Dibei area of Kuqa depression
井名 试油
层段日产油
(m3/d)日产气
(m3/d)日产水
(m3/d)裂缝发育条数 裂缝密度条(m) 最大主应力方向 最大主应力与裂缝走向夹角 DB101 4 867~4 985 5 851 50.4 11 0.09
32330° 50° 5 053~5 061 2 096 1 0.125 20° 50° DB103 4 720~4 890 3.27 19 262 DB102 4 938~5 099 2.85 13 902 37 0.22
980° 20° DB104 4 768~4 794 11.1 206 528 2 0.077 70° 10° DX1 4 808~4 975 12.6 212 428 90 0.539 30° 25° YN2 4 746~4 760 2.33 66 470 9 0.643 40° 25° TZ4 4 217.5~4 227.5 1 585 252 0 70° -
Anovitz, L. M., Cole, D. R., 2015. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1): 61-164. https://doi.org/10.2138/rmg.2015.80.04 Anovitz, L. M., Cole, D. R., Jackson, A. J., et al., 2015. Effect of Quartz Overgrowth Precipitation on the Multiscale Porosity of Sandstone: A (U)SANS and Imaging Analysis. Geochimica et Cosmochimica Acta, 158: 199-222. https://doi.org/10.1016/j.gca.2015.01.028 Avanzini, A., Balossino, P., Brignoli, M., et al., 2016. Lithologic and Geomechanical Facies Classification for Sweet Spot Identification in Gas Shale Reservoir. Interpretation, 4(3): SL21-SL31. https://doi.org/10.1190/int⁃2015⁃0199.1 Dai, J. X., Ni, Y. Y., Wu, X. Q., 2012. Tight Gas in China and Its Significance in Exploration and Exploitation. Petroleum Exploration and Development, 39(3): 257-264(in Chinese with English abstract). Du, J. M., Zhang, X. L., Zhong, G. R., et al., 2016. Analysis on the Optimization and Application of Well Logs Indentification Methods for Organic Carbon Content in Source Rocks of the Tight Oil: Illustrated by the Example of the Source Rocks of Chang 7 Member of Yanchang Formation in Ordos Basin. Progress in Geophysics, 31(6): 2526-2533(in Chinese with English abstract). Eaton, B. A., 1969. Fracture Gradient Prediction and Its Application in Oilfield Operations. Journal of Petroleum Technology, 21(10): 1353-1360. https://doi.org/10.2118/2163⁃pa Fu, J. H., Niu, X. B., Dan, W. D., et al., 2019. The Geological Characteristics and the Progress on Exploration and Development of Shale Oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin. China Petroleum Exploration, 24(5): 601-614(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.007 Fu, S. T., Fu, J. H., Niu, X. B., et al., 2020. Accumulation Conditions and Key Exploration and Development Technologies in Qingcheng Oilfield. Acta Petrolei Sinica, 41(7): 777-795(in Chinese with English abstract). Gao, H., Zhang, X., He, M. Q., et al., 2018. Study on Evaluation of Shale Oil Reservoir Fracability Based on Well Logging Data Volume. Progress in Geophysics, 33(2): 603-612(in Chinese with English abstract). Guo, J. G., Pang, X. Q., Liu, D. D., et al., 2012. Hydrocarbon Expulsion for Middle⁃Lower Jurassic Coal Measures and Evaluation of Potential Resource in Kuqa Depression. Natural Gas Geoscience, 23(2): 327-334(in Chinese with English abstract). Higgs, K. E., Zwingmann, H., Reyes, A. G., et al., 2007. Diagenesis, Porosity Evolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, New Zealand. Journal of Sedimentary Research, 77(12): 1003-1025. https://doi.org/10.2110/jsr.2007.095 Huang, R. Z., Chen, M., Deng, J. G., et al., 1995. Study on Shale Stability of Wellbore by Mechanics Coupling with Chemistry Method. Drilling Fluid and Completion Fluld, 12(3): 15-21, 25(in Chinese with English abstract). Iqbal, O., Ahmad, M., Kadir, A. A., 2018. Effective Evaluation of Shale Gas Reservoirs by Means of an Integrated Approach to Petrophysics and Geomechanics for the Optimization of Hydraulic Fracturing: A Case Study of the Permian Roseneath and Murteree Shale Gas Reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 58: 34-58. https://doi.org/10.1016/j.jngse.2018.07.017 Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale⁃Gas Systems: The Mississippian Barnett Shale of North⁃Central Texas as one Model for Thermogenic Shale⁃Gas Assessment. Bulletin of the American Association of Petroleum Geologists, 91(4): 475-499. https://doi.org/10.1306/12190606068 Jia, D., Lu, H. X., Cai, D. S, et al., 1997. Structural Analyses of Kuqa Foreland Fold⁃Thrust Belt along the Northern Margin of Tarim Basin. Geotectonica et Metallogenia, 21(1): 1-8(in Chinese with English abstract). Jiang, F. J., Chen, X., Wang, P. W., et al., 2024. Genesis and Accumulation of Paleo-Oil Reservoir in Dabei Area, Kuqa Depression, Northwest China: Implications for Tight-Gas Accumulation. Journal of Earth Science, 35(2): 655-665. doi: 10.1007/s12583-021-1562-4 Jiang, Z. X., Li, F., Yang, H. J., et al., 2015. Development Characteristics of Fractures in Jurassic Tight Reservoir in Dibei Area of Kuqa Depression and Its Reservoir⁃Controlling Mode. Acta Petrolei Sinica, 36(Suppl. 2): 102-111(in Chinese with English abstract). Kang, H. L., Lin, C. S., Li, H. H., et al., 2016. Reservoir Characteristics and Favorable Zone Prediction of Tight Sandstone Gas of the Ahe Formation in Yinan Area, Kuqa Depression. Petroleum Geology & Experiment, 38(2): 162-169(in Chinese with English abstract). Kuang, L. C., Hou, L. H., Yang, Z., et al., 2021. Key Parameters and Methods of Lacustrine Shale Oil Reservoir Characterization. Acta Petrolei Sinica, 42(1): 1-14(in Chinese with English abstract). doi: 10.1038/s41401-020-0366-x Kumar, S., Das, S., Bastia, R., et al., 2018. Mineralogical and Morphological Characterization of Older Cambay Shale from North Cambay Basin, India: Implication for Shale Oil/Gas Development. Marine and Petroleum Geology, 97: 339-354. https://doi.org/10.1016/j.marpetgeo.2018.07.020 Lai, J., Fan, X. C., Li, Y. H., et al., 2022. Well Logging Evaluation of Seven Kinds of Relationships and Three Types of Properties of Paleogene Funing Formation Oil Shales in Subei Basin. Geological Review, 68(2): 751-768(in Chinese with English abstract). Lai, J., Pang, X. J., Xu, F., et al., 2019. Origin and Formation Mechanisms of Low Oil Saturation Reservoirs in Nanpu Sag, Bohai Bay Basin, China. Marine and Petroleum Geology, 110: 317-334. https://doi.org/10.1016/j.marpetgeo.2019.07.021 Lai, J., Wang, G. W., Fan, Z. Y., et al., 2016. Insight into the Pore Structure of Tight Sandstones Using NMR and HPMI Measurements. Energy & Fuels, 30(12): 10200-10214. https://doi.org/10.1021/acs.energyfuels.6b01982. Lai, J., Wang, G. W., Fan, Z. Y., et al., 2016. Research Progress in Brittleness Index Evaluation Methods with Logging Data in Unconventional Oil and Gas Reservoirs. Petroleum Science Bulletin, 1(3): 330-341(in Chinese with English abstract). Lai, J., Wang, G. W., Fan, Z. Y., et al., 2017. Fracture Detection in Oil⁃Based Drilling Mud Using a Combination of Borehole Image and Sonic Logs. Marine and Petroleum Geology, 84: 195-214. https://doi.org/10.1016/j.marpetgeo.2017.03.035 Lai, J., Wang, G. W., Huang, L. X., et al., 2015. Brittleness Index Estimation in a Tight Shaly Sandstone Reservoir Using Well Logs. Journal of Natural Gas Science and Engineering, 27: 1536-1545. https://doi.org/10.1016/j.jngse.2015.10.020 Lai, J., Wang, G. W., Pang, X. J., et al., 2021. The Past, Present and Future of Well Logging Geology: To Celebrate the Publication of Second Edition of "Well Logging Geology". Geological Review, 67(6): 1804-1828(in Chinese with English abstract). Lai, J., Wang, G. W., Sun, S. M., et al., 2015. Research Advances in Logging Recognition and Evaluation Method of Fractures in Tight Sandstone Reservoirs. Progress in Geophysics, 30(4): 1712-1724(in Chinese with English abstract). Lai, J., Wang, G. W., Wang, S., et al., 2018. A Review on the Applications of Image Logs in Structural Analysis and Sedimentary Characterization. Marine and Petroleum Geology, 95: 139-166. https://doi.org/10.1016/j.marpetgeo.2018.04.020 Lai, J., Wang, G. W., Xin, Y., et al., 2014. Diagenetic Facies Analysis of Tight Sandstone Gas Reservoir of Bashijiqike Formation in Kuqa Depression. Natural Gas Geoscience, 25(7): 1019-1032(in Chinese with English abstract). Li, D., Lin, C. Y., Dong, C. M., et al., 2020. Genetic Mechanism of Vertical Diagenesis Heterogeneity in Tight Sandstone as Underlying Reservoirs of Source Rocks. Journal of China University of Mining & Technology, 49(4): 693-707(in Chinese with English abstract). Li, F., Jiang, Z. X., Li, Z., et al., 2015. Enriched Mechanism of Natural Gas of Lower Jurassic in Dibei Area, Kuqa Depression. Earth Science, 40(9): 1538-1548(in Chinese with English abstract). Li, X. G., Liu, X. Z., Li, J. P., et al., 2019. Comprehensive Evaluation and Exploration Practice of Sha 4 Lacustrine Shale Oil in Damintun Sag, Liaohe Depression. China Petroleum Exploration, 24(5): 636-648(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.010 Lu, H. S., 2012. Application and Development Analysis of Well Logging Information in Petroleum Engineering. Petroleum Drilling Techniques, 40(6): 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1001-0890.2012.06.001 Passey, Q., Creaney, S., Kulla, J., et al., 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74(12): 1777-1794. https://doi.org/10.1306/0c9b25c9-1710-11d7-8645000102c1865d Qin, H., Yang, X. L., 2019. Log Interpretation Methods for Measuring the Brittleness of Tight Reservoir. Well Logging Technology, 43(5): 509-513, 530(in Chinese with English abstract). Rezaee, R., Saeedi, A., Clennell, B., 2012. Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data. Journal of Petroleum Science and Engineering, 88: 92-99. https://doi.org/10.1016/j.petrol.2011.12.014. Rybacki, E., Reinicke, A., Meier, T., et al., 2015. What Controls the Mechanical Properties of Shale Rocks? - Part Ⅰ: Strength and Young's Modulus. Journal of Petroleum Science and Engineering, 135: 702-722. https://doi.org/10.1016/j.petrol.2015.10.028 Shi, Y. J., Li, C. X., Li, G. R., et al., 2012. Well Logging Evaluation Method for Hydrocarbon Source Rock⁃Reservoir Collocation and Oil Enrichment Area Optimization of Low Permeability Reservoirs. Lithologic Reservoirs, 24(4): 45-50(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2012.04.009 Stadtmuller, M., Lis⁃Śledziona, A., Słota⁃Valim, M., 2018. Petrophysical and Geomechanical Analysis of the Lower Paleozoic Shale Formation, North Poland. Interpretation, 6(3): SH91-SH106. https://doi.org/10.1190/int⁃2017⁃0193.1 Shi, C. Q., Li, Y., Yuan, W. F., et al., 2021. Characteristics on Reservoir Architecture and Quality of Tight Sandstone Reservoirs: Taking Jurassic Ahe Formation in Dibei Area of Kuqa Foreland Basin as an Example. Journal of China University of Mining & Technology, 50(5): 877-892(in Chinese with English abstract). Sun, J. M., 2013. Coalbed Methane and Shale Gas Evaluation Based on New Seven Related Logging Goals. Well Logging Technology, 37(5): 457-465(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2013.05.001 Tang, Y. G., Yang, X. Z., Xie, H. W., et al., 2021. Tight Gas Reservoir Characteristics and Exploration Potential of Jurassic Ahe Formation in Kuqa Depression, Tarim Basin. China Petroleum Exploration, 26(4): 113-124(in Chinese with English abstract). Tang, Z. X., Zhao, J. H., Wang, T. X., 2019. Evaluation and Key Technology Application of "Sweet Area"of Tight Oil in Southern Songliao Basin. Natural Gas Geoscience, 30(8): 1114-1124(in Chinese with English abstract). Wang, G. W., Zhu, Z. Y., Zhu G. Y., 2002. Logging Identification and Evaluation of Cambrian⁃Ordovician Source Rocks in Syneclise of Tarim Basin. Petroleum Exploration and Development, 29(4): 50-52(in Chinese with English abstract). Wang, K., Zhang, R. H., Yu, C. F., et al., 2020. Characteristics and Controlling Factors of Jurassic Ahe Reservoir of the Northern Tectonic Belt, Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 31(5): 623-635(in Chinese with English abstract). Wang, P., Sun, L. H., Wang, H., et al., 2020. Microscopic Pore Structure of Ahe Tight Sand Gas Reservoirs of the Low Jurassic in Kuqa Depression and Its Controls on Tight Gas Enrichment. Oil & Gas Geology, 41(2): 295-304(in Chinese with English abstract). Wang, P. W., Pang, X. Q., Jiang, Z. X., et al., 2014. Critical Phyisical Conditions for Accumulation of Yinan 2 "Continuous" Tight Sandstone Gas Reservoir, Kuqa Depression. Earth Science, 39(10): 1381-1390(in Chinese with English abstract). Wang, X. J., Yang, Z. F., Guo, X. G., et al., 2019. Practices and Prospects of Shale Oil Exploration in Jimsar Sag of Junggar Basin. Xinjiang Petroleum Geology, 40(4): 402-413(in Chinese with English abstract). Wei, Z. T., Fan, Y. R., Chen, X. L., 2012. Application of Shear Wave Anisotropy in Fractures and In⁃Situ Stress Analysis. Progress in Geophysics, 27(1): 217-224(in Chinese with English abstract). Xu, K., Tian, J., Yang, H. J., et al., 2020. Prediction of Current In⁃Situ Stress Filed and Its Application of Deeply Buried Tight Sandstone Reservoir: A Case Study of Keshen 10 Gas Reservoir in Kelasu Structural Belt, Tarim Basin. Journal of China University of Mining & Technology, 49(4): 708-720(in Chinese with English abstract). Yan, W. L., Zhao, J., Zheng, J. D., et al., 2014. Well Logging Evaluation of Fuyu Tight Oil Reservoirs in North Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 33(5): 209-214(in Chinese with English abstract). Yin, C. F., Ke, S. Z., Jiang, M., et al., 2017. Application of New Well Logging Technology in the Evaluation of "Seven Properties" of Continental Tight Oil: A Case Study on the Gaotaizi Oil Layer in the Northern Songliao Basin. Petroleum Science Bulletin, 2(1): 32-43(in Chinese with English abstract). Zhang, G. Y., Zhao, W. Z., Wang, H. J., et al., 2007. Multicycle Tectonic Evolution and Composite Petroleum Systems in the Tarim Basin. Oil & Gas Geology, 28(5): 653-663(in Chinese with English abstract). Zhang, H. L., Shou, J. F., Chen, Z. L., et al., 2002. Sedimentary Characteristics and Sandstone Body Distribution of the Lower Jurassic in Kuqa Depression. Journal of Palaeogeography, 4(3): 47-58(in Chinese with English abstract). Zhang, L. Q., Yan, Y. M., Luo, X. R., et al., 2018. Diagenetic Differences of Tight Sandstone of the Lower Jurassic Ahe Formation in the Yiqikelike Area of the Kuqa Depression, Tarim Basin. Earth Science Frontiers, 25(2): 170-178(in Chinese with English abstract). Zhang, Y. Z., Zeng, L. B., Luo, Q., 2021. Influence of Natural Fractures on Tight Oil Migration and Production: A Case Study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Journal of Earth Science, 32(4): 927-945. Zhao, J., Qin, W. Q., Zhang, L., et al., 2005. Anisotropy of Dipole Shear Wave and Its Application to Ground Stress Evaluation. Acta Petrolei Sinica, 26(4): 54-57(in Chinese with English abstract). Zhao, X. Z., Zhou, L. H., Pu, X. G., et al., 2019. Exploration Breakthroughs and Geological Characteristics of Continental Shale Oil: A Case Study of the Kongdian Formation in the Cangdong Sag, China. Marine and Petroleum Geology, 102: 544-556. https://doi.org/10.1016/j.marpetgeo.2018.12.020 Zou, C. N., Zhu, R. K., Liu, K. Y., et al., 2012. Tight Gas Sandstone Reservoirs in China: Characteristics and Recognition Criteria. Journal of Petroleum Science and Engineering, 88-89: 82-91. https://doi.org/10.1016/j.petrol.2012.02.001 戴金星, 倪云燕, 吴小奇, 2012. 中国致密砂岩气及在勘探开发上的重要意义. 石油勘探与开发, 39(3): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm 杜江民, 张小莉, 钟高润, 等, 2016. 致密油烃源岩有机碳含量测井评价方法优选及应用: 以鄂尔多斯盆地延长组长7段烃源岩为例. 地球物理学进展, 31(6): 2526-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201606023.htm 付金华, 牛小兵, 淡卫东, 等, 2019. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展. 中国石油勘探, 24(5): 601-614. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905007.htm 付锁堂, 付金华, 牛小兵, 等, 2020. 庆城油田成藏条件及勘探开发关键技术. 石油学报, 41(7): 777-795. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111013.htm 高辉, 张晓, 何梦卿, 等, 2018. 基于测井数据体的页岩油储层可压裂性评价研究. 地球物理学进展, 33(2): 603-612. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802020.htm 郭继刚, 庞雄奇, 刘丹丹, 等, 2012. 库车坳陷中、下侏罗统煤系烃源岩排烃特征及资源潜力评价. 天然气地球科学, 23(2): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202019.htm 黄荣樽, 陈勉, 邓金根, 等, 1995. 泥页岩井壁稳定力学与化学的耦合研究. 钻井液与完井液, 12(3): 15-21, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW199503002.htm 贾东, 卢华夏, 蔡东升, 等, 1997. 塔里木盆地北缘库车前陆褶皱: 冲断构造分析. 大地构造与成矿学, 21(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706001.htm 姜振学, 李峰, 杨海军, 等, 2015. 库车坳陷迪北地区侏罗系致密储层裂缝发育特征及控藏模式. 石油学报, 36(增刊2): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2015S2009.htm 康海亮, 林畅松, 李洪辉, 等, 2016. 库车坳陷依南地区阿合组致密砂岩气储层特征与有利区带预测. 石油实验地质, 38(2): 162-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602004.htm 匡立春, 侯连华, 杨智, 等, 2021. 陆相页岩油储层评价关键参数及方法. 石油学报, 42(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202101001.htm 赖锦, 凡雪纯, 黎雨航, 等, 2022. 苏北盆地古近系阜宁组页岩七性关系与三品质测井评价. 地质论评, 68(2): 751-768. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202202023.htm 赖锦, 王贵文, 范卓颖, 等, 2016. 非常规油气储层脆性指数测井评价方法研究进展. 石油科学通报, 1(3): 330-341. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201603002.htm 赖锦, 王贵文, 庞小娇, 等, 2021. 测井地质学前世、今生与未来: 写在《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202106023.htm 赖锦, 王贵文, 孙思勉, 等, 2015. 致密砂岩储层裂缝测井识别评价方法研究进展. 地球物理学进展, 30(4): 1712-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504026.htm 赖锦, 王贵文, 信毅, 等, 2014. 库车坳陷巴什基奇克组致密砂岩气储层成岩相分析. 天然气地球科学, 25(7): 1019-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201407009.htm 李丹, 林承焰, 董春梅, 等, 2020. 源下致密砂岩储层垂向成岩非均一性成因机制. 中国矿业大学学报, 49(4): 693-707. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004008.htm 李峰, 姜振学, 李卓, 等, 2015. 库车坳陷迪北地区下侏罗统天然气富集机制. 地球科学, 40(9): 1538-1548. doi: 10.3799/dqkx.2015.138 李晓光, 刘兴周, 李金鹏, 等, 2019. 辽河坳陷大民屯凹陷沙四段湖相页岩油综合评价及勘探实践. 中国石油勘探, 24(5): 636-648. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905010.htm 陆黄生, 2012. 测井技术在石油工程中的应用分析与发展思考. 石油钻探技术, 40(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201206002.htm 覃豪, 杨小磊, 2019. 致密储层脆性测井解释方法研究. 测井技术, 43(5): 509-513, 530. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905014.htm 石玉江, 李长喜, 李高仁, 等, 2012. 特低渗透油藏源储配置与富集区优选测井评价方法. 岩性油气藏, 24(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201204013.htm 史超群, 李勇, 袁文芳, 等, 2021. 致密砂岩储层构型特征及评价: 以库车前陆盆地迪北地区侏罗系阿合组为例. 中国矿业大学学报, 50(5): 877-892. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202105006.htm 孙建孟, 2013. 基于新"七性" 关系的煤层气、页岩气测井评价. 测井技术, 37(5): 457-465. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201305002.htm 唐雁刚, 杨宪彰, 谢会文, 等, 2021. 塔里木盆地库车坳陷侏罗系阿合组致密气藏特征与勘探潜力. 中国石油勘探, 26(4): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104009.htm 唐振兴, 赵家宏, 王天煦, 2019. 松辽盆地南部致密油"甜点区(段)" 评价与关键技术应用. 天然气地球科学, 30(8): 1114-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908005.htm 王贵文, 朱振宇, 朱广宇, 2002. 烃源岩测井识别与评价方法研究. 石油勘探与开发, 29(4): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200204015.htm 王珂, 张荣虎, 余朝丰, 等, 2020. 塔里木盆地库车坳陷北部构造带侏罗系阿合组储层特征及控制因素. 天然气地球科学, 31(5): 623-635. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005004.htm 王朋, 孙灵辉, 王核, 等, 2020. 库车坳陷下侏罗统阿合组致密砂岩储层孔隙微观结构特征及其对致密气富集的控制作用. 石油与天然气地质, 41(2): 295-304. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002007.htm 王鹏威, 庞雄奇, 姜振学, 等, 2014. 库车坳陷依南2"连续型" 致密砂岩气藏成藏临界物性条件. 地球科学, 39(10): 1381-1390. doi: 10.3799/dqkx.2014.130 王小军, 杨智峰, 郭旭光, 等, 2019. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望. 新疆石油地质, 40(4): 402-413. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904003.htm 魏周拓, 范宜仁, 陈雪莲, 2012. 横波各向异性在裂缝和应力分析中的应用. 地球物理学进展, 27(1): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201201025.htm 徐珂, 田军, 杨海军, 等, 2020. 深层致密砂岩储层现今地应力场预测及应用: 以塔里木盆地克拉苏构造带克深10气藏为例. 中国矿业大学学报, 49(4): 708-720. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004009.htm 闫伟林, 赵杰, 郑建东, 等, 2014. 松辽盆地北部扶余致密油储层测井评价. 大庆石油地质与开发, 33(5): 209-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201405035.htm 尹成芳, 柯式镇, 姜明, 等, 2017. 测井新技术在陆相致密油"七性" 评价中的应用: 以松辽盆地北部高台子油层为例. 石油科学通报, 2(1): 32-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201701004.htm 张光亚, 赵文智, 王红军, 等, 2007. 塔里木盆地多旋回构造演化与复合含油气系统. 石油与天然气地质, 28(5): 653-663. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200705019.htm 张惠良, 寿建峰, 陈子料, 等, 2002. 库车坳陷下侏罗统沉积特征及砂体展布. 古地理学报, 4(3): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200203006.htm 张立强, 严一鸣, 罗晓容, 等, 2018. 库车坳陷依奇克里克地区下侏罗统阿合组致密砂岩储层的成岩差异性特征研究. 地学前缘, 25(2): 170-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802024.htm 赵军, 秦伟强, 张莉, 等, 2005. 偶极横波各向异性特征及其在地应力评价中的应用. 石油学报, 26(4): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200504010.htm -