• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义

    刘彬 伍炼华 马昌前 徐雨 李福林 湛君明 黄坚 孙洋

    刘彬, 伍炼华, 马昌前, 徐雨, 李福林, 湛君明, 黄坚, 孙洋, 2023. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义. 地球科学, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188
    引用本文: 刘彬, 伍炼华, 马昌前, 徐雨, 李福林, 湛君明, 黄坚, 孙洋, 2023. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义. 地球科学, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188
    Liu Bin, Wu Lianhua, Ma Changqian, Xu Yu, Li Fulin, Zhan Junming, Huang Jian, Sun Yang, 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188
    Citation: Liu Bin, Wu Lianhua, Ma Changqian, Xu Yu, Li Fulin, Zhan Junming, Huang Jian, Sun Yang, 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188

    东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义

    doi: 10.3799/dqkx.2022.188
    基金项目: 

    国家自然科学基金项目 42130309

    国家自然科学基金项目 41972066

    国家自然科学基金项目 41502050

    中国地质调查局项目 12120115026901

    中国地质调查局项目 1212011121270

    详细信息
      作者简介:

      刘彬(1987-),男,博士,副教授,从事火成岩岩石学与地球化学研究. ORCID:0000-0003-1372-6006. E-mail:binliu@yangtzeu.edu.cn

    • 中图分类号: P581

    Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt

    • 摘要: 细致地调查与研究同折返或后碰撞岩浆岩能为理解大陆深俯冲-折返中的壳-幔相互作用及恢复碰撞造山带构造演化历史提供非常关键的线索.以东昆仑东段巴隆-金水口地区晚志留世-泥盆纪同折返期中性岩类为研究对象,开展锆石U-Pb年代学、岩石学、地球化学和同位素地质学等综合研究,以期为深入认识东昆仑造山带同折返期岩浆形成机制及其始特提斯洋构造演化提供新的证据.结果显示,巴隆和金水口地区中性岩的锆石U-Pb年龄分别为420 Ma和405 Ma,与东昆仑地区榴辉岩的折返时限重叠.其中,巴隆闪长玢岩具有相对低的MgO、Mg#以及相对高的K2O,而金水口闪长岩则具有相对高的MgO、Mg#以及相对高的Na2O.巴隆闪长玢岩的Nb/La比值随着Mg#降低而降低,符合同化混染与分离结晶作用(assimilation and fractional crystallization,AFC)的成分演化趋势,并且样品在La/Sm-La图解中投影均落在分离结晶演化曲线上.但是金水口闪长岩的Nb/La比值与Mg#之间不存在线性正相关关系,样品在La/Sm-La图解中投影均落在部分熔融曲线上.此外,与金水口闪长岩相比,巴隆闪长玢岩具有相对高的Isr值和相对低的εNdt)值,并且显示更高的初始岩浆熔体温度.综合本文岩石学和地球化学等研究成果,可以确定巴隆和金水口地区两套中性岩的形成分别与玄武质岩浆的分离结晶与地壳混染、下地壳玄武质岩石的部分熔融有关.结合区域上已报道的最新研究资料,可以判断,这些中性岩类应形成于碰撞后伸展的环境中,板片断离很可能是触发东昆仑晚志留世-泥盆纪大规模同折返期岩浆活动关键因素.东昆仑地区至少从440 Ma开始进入大陆碰撞及陆壳深俯冲阶段.

       

    • 图  1  东昆仑造山带东段大地构造位图(a)与地质简图(b)以及金水口(c)和巴隆(d)地区地质图

      Fig.  1.  The simplified geological map (a) and the tectonic location (b) of the East Kunlun orogen, and the geological maps of the Jinshuikou (c) and Balong (d) areas

      图  2  巴隆闪长玢岩(a、c)和金水口闪长岩(b、d)的野外露头特征及正交偏光显微镜下照片

      a.巴隆闪长玢岩岩墙侵入志留纪花岗岩中;b.金水口闪长岩局部出现不规则状花岗岩捕掳体;Bt.黑云母;Hb.角闪石;Pl.斜长石;Opa.不透明金属矿物;Qz.石英

      Fig.  2.  Field photographs (a, b) and photomicrographs with perpendicular polarized light (b, d) for the Balong diorite-porphyrite and the Jinshuikou diorite

      图  3  巴隆闪长玢岩样品锆石U-Pb协和图及代表性锆石阴极发光图像

      Fig.  3.  Zircon U-Pb concordia plots with CL images of representative zircons for the Balong diorite-porphyrite

      图  4  巴隆和金水口地区中性岩样品的Zr/TiO2-Nb/Y图解(a)和SiO2-K2O图解(b)

      a据Winchester and Floyd(1977);b据Peccerillo and Taylor(1976);图中及文章其他地方出现的寒武纪-泥盆纪中性岩数据赵振明等(2008)崔美慧等(2011)奥琮等(2014)罗明非(2015)祁生胜(2015)鲁海峰等(2019)

      Fig.  4.  Zr/TiO2-Nb/Y (a) and SiO2-K2O (b) diagrams for the Balong and Jinshuikou intermediate rocks

      图  5  巴隆和金水口地区中性岩样品的稀土元素球粒陨石标准化分布图和微量元素原始地幔标准化蛛网图

      球粒陨石和原始地幔标准化值分别据Taylor and McLennan(1985)Sun and McDonough(1989)

      Fig.  5.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) for the Balong and Jinshuikou intermediate rocks

      图  6  巴隆和金水口地区中性岩样品的εNd(t)-Isr图解

      前寒武纪基底成分数据巴金等(2012)和余能等(2005);晚志留世镁铁质岩类数据张照伟等(2018);源自富集地幔的镁铁质岩类数据引自Tang et al.(2020)刘彬等(2013b)张照伟等(2018)表 3巴隆和金水口地区中性岩样品Sr-Nd同位素组成

      Fig.  6.  Plot of εNd(t)-Isr for the Balong and Jinshuikou intermediate rocks

      图  7  巴隆和金水口地区中性岩样品的Nb/La-Mg#(a)和La/Sm-La(b)图解

      寒武纪-泥盆纪中性岩数据来源同图 4

      Fig.  7.  Plots of Nb/La-Mg# (a) La/Sm-La (b) for the Balong and Jinshuikou intermediate rocks

      图  8  巴隆和金水口地区中性岩样品的FeOt、TiO2、P2O5、CaO、CaO/Al2O3、K2O/Na2O和Mg#图解

      寒武纪-泥盆纪中性岩数据来源同图 4

      Fig.  8.  Plots of FeOt, TiO2, P2O5, CaO, CaO/Al2O3, K2O/Na2O versus Mg# for the Balong and Jinshuikou intermediate rocks

      图  9  巴隆和金水口地区中性岩样品的CaO/(MgO+FeOt)-K2O/Na2O和Mg#-锆石饱和温度图解

      寒武纪-泥盆纪中性岩数据来源同图 4

      Fig.  9.  CaO/(MgO+FeOt)-K2O/Na2O and zirconium saturation temperatures vs. Mg# for the Balong and Jinshuikou intermediate rocks

      图  10  东昆仑造山带早古生代主要岩浆活动与变质事件

      图中引用的年龄数据来源为:1. 张亚峰等(2010);2. 崔美慧等(2011);3 祁生胜(2015);4. 罗明非(2015);5. 鲁海峰等(2019);6. 赵振明等(2008);7. 奥琮等(2014);8. 高晓峰等(2010);9. Xiong et al.(2013);10. Zhou et al.(2016);11. 王涛等(2016);12. Zhang et al.(2014);13. Xin et al.(2018);14. 刘彬等(2013a);15. 刘彬等(2012);16. Yang et al.(1996);17. 刘彬等(2013b);18. 张照伟等(2018);19. Tang et al.(2020);20. 李怀坤等(2006);21. 陈能松等(2002);22. Meng et al.(2013);23. Song et al.(2018);24. 国显正等(2018);25. 张照伟等(2017)

      Fig.  10.  A timeline of Early Paleozoic magmatism and metamorphism of the East Kunlun orogenic belt

      表  1  巴隆闪长玢岩锆石LA-ICP-MS U-Pb定年结果

      Table  1.   Zircon LA-ICP-MS U-Pb dating results of the Balong diorite-porphyrite

      测试点 元素含量(10-6) Th/U 同位素比值 同位素年龄(Ma)
      232Th 238U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
      HT01-01 505 598 0.85 0.059 08 0.002 97 0.557 86 0.027 98 0.067 57 0.001 11 570 80 450 18 422 7
      HT01-02 2 586 1 760 1.47 0.059 21 0.002 17 0.560 03 0.020 79 0.067 67 0.000 97 575 56 452 14 422 6
      HT01-03 979 840 1.17 0.056 52 0.002 85 0.532 69 0.026 26 0.067 64 0.000 96 473 84 434 17 422 6
      HT01-04 195.8 569 0.34 0.149 64 0.004 30 8.022 47 0.221 72 0.382 73 0.004 87 2 342 30 2 234 25 2 089 23
      HT01-05 1 212 1 258 0.96 0.068 70 0.003 31 0.663 25 0.034 91 0.068 02 0.001 07 890 83 517 21 424 6
      HT01-06 907 744 1.22 0.062 80 0.008 01 0.582 57 0.072 99 0.067 28 0.001 61 701 285 466 47 420 10
      HT01-07 206.5 435 0.47 0.127 92 0.004 35 4.273 76 0.144 15 0.239 15 0.003 81 2070 37 1 688 28 1 382 20
      HT01-08 3 769 2 100 1.79 0.061 58 0.004 89 0.561 16 0.033 48 0.067 32 0.001 19 660 98 452 22 420 7
      HT01-09 1 689 1 452 1.16 0.065 11 0.002 30 0.619 61 0.023 13 0.067 97 0.000 92 778 55 490 15 424 6
      HT01-10 578 751 0.77 0.054 42 0.004 97 0.499 95 0.044 88 0.066 63 0.001 08 389 209 412 30 416 7
      HT01-11 1 139 969 1.18 0.065 04 0.003 65 0.602 86 0.031 82 0.067 23 0.000 93 776 88 479 20 419 6
      HT01-12 2 709 1 642 1.65 0.057 34 0.002 21 0.541 42 0.022 18 0.067 73 0.000 92 505 66 439 15 422 6
      HT01-13 77.8 142.1 0.55 0.074 76 0.008 16 0.915 23 0.096 19 0.088 79 0.002 60 1 062 229 660 51 548 15
      HT01-14 2 029 1 606 1.26 0.058 65 0.002 18 0.544 45 0.019 08 0.067 45 0.000 78 554 56 441 13 421 5
      HT01-15 734 679 1.08 0.055 72 0.005 62 0.514 90 0.050 84 0.067 02 0.001 37 441 230 422 34 418 8
      HT01-16 1 324 996 1.33 0.055 43 0.004 79 0.509 53 0.043 61 0.066 67 0.000 83 430 198 418 29 416 5
      HT01-17 3 618 2 537 1.43 0.057 20 0.005 65 0.526 64 0.051 21 0.066 77 0.001 13 499 224 430 34 417 7
      HT01-18 362 344 1.05 0.061 18 0.004 08 0.564 53 0.035 71 0.067 40 0.001 21 646 105 454 23 420 7
      HT01-19 259 907 0.29 0.063 33 0.002 06 0.983 02 0.034 72 0.112 02 0.001 73 719 49 695 18 684 10
      下载: 导出CSV

      表  2  巴隆和金水口地区中性岩样品的主量元素、稀土和微量元素组成

      Table  2.   Major (%), rare earth and trace element (10-6) compositions of the Balong and Jinshuikou intermediate rocks

      岩体 巴隆闪长玢岩 金水口闪长岩
      样品号 HT06-1 HT01-1 HT01-2 HT02-1 HT03-1 HT05-6 YJ06-1 YJ06-2 YJ07-1
      SiO2 60.07 61.67 56.27 56.32 61.58 61.70 58.68 57.89 55.43
      TiO2 0.80 1.19 0.80 0.80 1.25 1.23 0.82 0.93 1.11
      Al2O3 18.03 15.05 17.70 17.64 15.00 14.95 17.27 17.55 17.94
      Fe2O3 2.22 1.65 1.58 1.57 1.63 1.88 0.84 0.96 1.51
      FeO 3.07 5.37 7.42 7.62 5.50 5.00 5.37 4.50 5.95
      FeOt 5.07 6.85 8.84 9.03 6.97 6.69 6.13 5.36 7.31
      MnO 0.11 0.10 0.13 0.12 0.11 0.11 0.15 0.11 0.12
      MgO 0.48 1.61 2.89 2.90 1.64 1.67 2.97 3.17 3.98
      CaO 2.46 3.38 4.49 4.79 3.40 3.87 5.90 6.31 7.55
      Na2O 4.15 2.93 3.01 2.93 2.98 3.40 3.43 3.74 3.46
      K2O 7.31 4.52 3.06 3.03 4.46 3.70 2.03 2.41 1.25
      P2O5 0.23 0.47 0.30 0.30 0.48 0.46 0.21 0.22 0.24
      LOI 0.75 1.80 2.06 1.87 1.70 1.78 2.11 1.99 1.23
      Mg# 14 30 37 36 30 31 46 51 49
      Sc 14.7 13.8 12.7 13.2 13.7 13.6 13.6 14.6 17.7
      V 6 61 81 84 61 62 139 129 182
      Cr 3.8 9.4 5.3 5.6 13.4 11.6 8.9 15.2 31.9
      Co 33.1 28.2 35.8 31.7 31.2 45.0 15.9 12.3 20.9
      Ni 2.0 4.8 6.2 7.8 5.6 5.1 7.2 6.7 12.6
      Cu 10.7 21.5 7.5 2.6 6.8 14.2 7.5 40.1 18.4
      Zn 56.2 109.5 131.7 128.9 94.3 103.6 114.9 38.6 100.6
      Ga 19.8 22.1 24.7 25.2 22.2 21.7 22.7 21.3 21.7
      Rb 88.3 245.9 307.7 298.0 235.0 197.7 66.5 94.0 21.9
      Sr 199 253 245 219 286 369 599 516 648
      Y 24.6 50.3 24.0 25.2 50.1 49.2 18.5 20.6 18.2
      Zr 967 524 167 167 534 509 155 155 144
      Nb 11.1 27.5 9.0 9.1 28.1 27.3 8.4 9.2 8.0
      Cs 0.7 7.7 21.0 17.3 5.1 4.2 2.7 5.4 0.9
      Ba 1 884 1 035 409 313 1 301 1 142 662 613 441
      La 46.2 73.7 31.2 32.7 74.5 72.5 22.5 46.6 19.7
      Ce 96.3 147.1 64.4 67.3 149.9 146.8 52.3 74.2 47.0
      Pr 12.0 16.7 7.6 7.9 16.9 16.6 6.2 7.9 5.9
      Nd 49.4 61.3 28.9 30.8 62.0 61.1 25.5 29.5 24.8
      Sm 8.12 11.13 5.34 5.72 11.50 11.63 5.03 5.52 5.30
      Eu 4.38 2.33 1.49 1.47 2.38 2.47 1.33 1.34 1.44
      Gd 6.45 9.68 4.55 4.92 9.48 9.50 4.62 4.94 4.51
      Tb 0.86 1.48 0.70 0.75 1.47 1.51 0.66 0.74 0.67
      Dy 4.70 8.68 4.14 4.37 8.65 8.63 3.64 4.19 3.64
      Ho 0.90 1.64 0.75 0.81 1.64 1.68 0.65 0.72 0.64
      Er 2.50 4.68 2.22 2.35 4.52 4.57 1.75 1.97 1.72
      Tm 0.40 0.68 0.34 0.33 0.69 0.67 0.26 0.29 0.25
      Yb 2.57 4.22 2.21 2.23 4.07 4.27 1.52 1.60 1.43
      Lu 0.43 0.64 0.32 0.34 0.64 0.62 0.21 0.24 0.22
      Hf 14.64 11.18 4.19 4.24 11.01 11.44 3.93 3.97 3.67
      Ta 0.62 1.69 0.59 0.60 1.62 1.68 0.54 0.65 0.43
      Pb 14.0 29.2 40.0 42.8 23.6 34.3 55.4 79.2 37.6
      Th 4.61 22.11 8.34 8.44 21.37 22.98 4.27 4.81 2.48
      U 0.88 3.64 1.62 1.63 3.56 3.95 0.98 1.20 0.49
      注:FeOt = 0.899 81×Fe2O3+FeO;Mg# = 100×Mg2+/(Mg2++Fet2+).
      下载: 导出CSV

      表  3  巴隆和金水口地区中性岩样品Sr-Nd同位素组成

      Table  3.   Sr-Nd isotopic compositions of the Balong and Jinshuikou intermediate rocks

      样品号 87Rb/86Sr 87Sr/86Sr 147Sm/144Nd 143Nd/144Nd t(Ma) Isr εNd(t) T2DM(Nd)
      HT03-1 2.377 784 0.724 915 0.112 188 8 0.512 091 400 0.711 -6.4 1.7
      HT05-6 1.552 428 0.721 154 0.115 065 9 0.512 103 400 0.712 -6.3 1.7
      YJ06-1 0.321 268 0.709 653 0.119 427 3 0.512 265 400 0.708 -3.3 1.4
      YJ06-2 0.527 240 0.712 125 0.113 128 3 0.512 222 400 0.709 -3.8 1.5
      YJ07-1 0.0978 49 0.708 637 0.129 189 0 0.512 259 400 0.708 -3.9 1.5
      下载: 导出CSV

      表  4  东昆仑造山带早古生代主要中性岩类的锆饱和温度计和锆石Ti温度计的计算结果

      Table  4.   Zirconium saturation temperatures (Tzr) and Ti-in-zircon temperatures (TTi-in-Zircon) for the typical Early Paleozoic intermediate rocks from the East Kunlun orogenic belt

      时代 岩性 Zr(岩石) Ti(锆石) Tzr (℃) TTi-in-zircon(℃) 计算数据来源
      寒武纪(~512 Ma) 石英闪长岩 51~166 / 618~754 / 张亚峰等(2010)
      奥陶纪(445~480 Ma) 闪长岩、安山岩 22~254 / 589~777 / 崔美慧等(2011)罗明非(2015)
      早志留世(441 Ma) 闪长玢岩 160~174 / 743~757 / 鲁海峰等(2019)
      晚志留世(~420 Ma) 闪长玢岩 167~967 23.1~68.8 764~922 849~963 本文研究
      泥盆纪(~405 Ma) 闪长岩 144~155 4.8~7.2 722~747 711~749 本文研究
      其他泥盆纪(413~382 Ma) 石英闪长岩、英云闪长岩、闪长玢岩 85~481 / 713~817 / 赵振明等(2008)奥琮等(2014)祁生胜等(2015)
      注:Zr单位10-6.
      下载: 导出CSV
    • Ao, C., Sun, F. Y., Li, B. L., et al., 2014. Geochemistry, Zircon U-Pb Dating and Geological Significance of Diorite Porphyrite in Xiarihamu Deposit, Eastern Kunlun Orogenic Belt, Qinghai. Northwestern Geology, 47(1): 96-106(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2014.01.007
      Ba, J., Chen, N. S., Wang, Q. Y., et al., 2012. Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications. Earth Science, 37(Suppl. 1): 80-92(in Chinese with English abstract).
      Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135: 304-316. https://doi.org/10.1016/j.lithos.2011.09.013
      Chen, N. S., He, L., Sun, M., et al., 2002. Precise Definition of Early Paleozoic Metamorphic Peak Period and Thrust Tectonic Deformation Age in East Kunlun Orogenic Belt. Chinese Science Bulletin, 47(8): 628-631(in Chinese). doi: 10.1360/csb2002-47-8-628
      Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.03.013
      Cui, M. H., Meng, F. C., Wu, X. K., 2011. Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun: Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks. Acta Petrologica Sinica, 27(11): 3365-3379(in Chinese with English abstract).
      Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
      Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
      Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006
      Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162
      Gao, X. F., Xiao, P. X., Xie, C. R., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China. Geological Bulletin of China, 29(7): 1001-1008(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.07.005
      Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12): 4300-4318(in Chinese with English abstract).
      Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1): 42-44. https://doi.org/10.1130/0091-7613(1997)0250042:meolku>2.3.co;2 doi: 10.1130/0091-7613(1997)0250042:meolku>2.3.co;2
      Kepezhinskas, P., Defant, M. J., Drummond, M. S., 1996. Progressive Enrichment of Island Arc Mantle by Melt-Peridotite Interaction Inferred from Kamchatka Xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229. https://doi.org/10.1016/0016-7037(96)00001-4
      Li, H. K., Lu, S. N., Xiang, Z. Q., et al., 2006. SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2006.06.034
      Liu, B., 2011. Petrology, Zircon U-Pb Geochronology, and Petrogenesis of Early Devonian Yuejinshan Intrusive Complex in the Eastern Kunlun Orogen (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Liu, B., Ma, C. Q., Guo, P., et al., 2013a. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5): 947-962(in Chinese with English abstract). http://doi.org/10.3799/dqkx.2013.093.
      Liu, B., Ma, C. Q., Jiang, H. A., et al., 2013b. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106(in Chinese with English abstract).
      Liu, B., Ma, C. Q., Tang, Y. J., et al., 2021. Triassic High-Mg Andesitic Magmatism Induced by Sediment Melt-Peridotite Interactions in the Central Tibetan Plateau. Lithos, 398-399: 106266. https://doi.org/10.1016/j.lithos.2021.106266
      Liu, B., Ma, C. Q., Zhang, J. Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785-1807(in Chinese with English abstract).
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Lu, H. F., Chen, J., Yu, F. C., et al., 2019. Study of Genesis and Geodynamic Setting of Diorite-Porphyrite in Xiarihamu Area: Constraints from Geochronology, Geochemistry and Hf Isotopic Data. Mineralogy and Petrology, 39(4): 61-68(in Chinese with English abstract).
      Lu, L., Wu, Z. H., Hu, D. G., et al., 2010. Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains. Acta Petrologica Sinica, 26(4): 1150-1158(in Chinese with English abstract).
      Luo, M. F., 2015. Spatial-Temporal Patten and Geological Implications of Early Paleozoic-Early Mesozoic Granitoids in the East Kunlun Orogenic Belt (Eastern Segment) (Dissertation). China University of Geosciences, Beijing, 169(in Chinese with English abstract).
      Meng, F. C., Zhang, J. X., Cui, M. H., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance. Gondwana Research, 23(2): 825-836. https://doi.org/10.1016/j.gr.2012.06.007
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2007.03.010
      Qi, S. S., 2015. Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province (Dissertation). China University of Geosciences, Beijing, 343(in Chinese with English abstract).
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Sakuyama, M., 1981. Petrological Study of the Myoko and Kurohime Volcanoes, Japan: Crystallization Sequence and Evidence for Magma Mixing. Journal of Petrology, 22(4): 553-583. https://doi.org/10.1093/petrology/22.4.553
      Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225
      Smith, D. C., 1984. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 310: 641-644. https://doi.org/10.1038/310641a0
      Sobolev, N. V., Shatsky, V. S., 1990. Diamond Inclusions in Garnets from Metamorphic Rocks: A New Environment for Diamond Formation. Nature, 343: 742-746. https://doi.org/10.1038/343742a0
      Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089
      Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170-171: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016
      Tamura, Y., Sato, T., Fujiwara, T., et al., 2016. Advent of Continents: A New Hypothesis. Scientific Reports, 6: 33517. https://doi.org/10.1038/srep33517
      Tang, Y. J., Liu, B., Li, M. J., et al., 2020. Origin of Devonian Mafic Magmatism in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Exhumation. Geological Magazine, 157(8): 1265-1280. https://doi.org/10.1017/s0016756819001353
      Taniuchi, H., Kuritani, T., Nakagawa, M., 2020. Generation of Calc-Alkaline Andesite Magma through Crustal Melting Induced by Emplacement of Mantle-Derived Water-Rich Primary Magma: Evidence from Rishiri Volcano, Southern Kuril Arc. Lithos, 354-355: 105362. https://doi.org/10.1016/j.lithos.2019.105362
      van Hunen, J., Allen, M. B., 2011. Continental Collision and Slab Break-Off: A Comparison of 3-D Numerical Models with Observations. Earth and Planetary Science Letters, 302(1-2): 27-37. https://doi.org/10.1016/j.epsl.2010.11.035
      Wang, G. C., Wei, Q. R., Jia, C. X., et al., 2007. Some Ideas of Precambrian Geology in the East Kunlun, China. Geological Bulletin of China, 26(8): 929-937(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.08.003
      Wang, T., Li, B., Chen, J., et al., 2016. Characteristics of Chronology and Geochemistry of the Early Silurian Monzagranite in the Wulonggou Area, East Kunlun and Its Geological Significance. Journal of Mineralogy and Petrology, 36(2): 62-70(in Chinese with English abstract).
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Xin, W., Sun, F. Y., Li, L., et al., 2018. The Wulonggou Metaluminous A2-Type Granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of Subduction-Related Felsic Crust and Implications for Post-Collision Extension. Lithos, 312-313: 108-127. https://doi.org/10.1016/j.lithos.2018.05.005
      Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2013. Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau. International Geology Review, 55(14): 1817-1834. https://doi.org/10.1080/00206814.2013.804683
      Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860(in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2-3): 160-173. https://doi.org/10.1016/j.jseaes.2005.09.016
      Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      Yu, N., Jin, W., Ge, W. C., et al., 2005. Geochemical Study on Peraluminous Granite from Jinshuikou in East Kunlun. World Geology, 24(2): 123-128(in Chinese with English abstract).
      Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-Off. Lithos, 210-211: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003
      Zhang, K. J., Tang, X. C., Wang, Y., et al., 2011. Geochronology, Geochemistry, and Nd Isotopes of Early Mesozoic Bimodal Volcanism in Northern Tibet, Western China: Constraints on the Exhumation of the Central Qiangtang Metamorphic Belt. Lithos, 121(1-4): 167-175. https://doi.org/10.1016/j.lithos.2010.10.015
      Zhang, X. Z., Zhou, H. Y., Qian, S. P., 2021. Reviews on Genesis of Magmatic Arc Andesite in Subduction Zone. Advances in Earth Science, 36(3): 288-306(in Chinese with English abstract).
      Zhang, Y. F., Pei, X. Z., Ding, S. P., et al., 2010. LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance. Geological Bulletin of China, 29(1): 79-85(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.01.010
      Zhang, Z. W., Qian, B., Li, W. Y., et al., 2017. The Discovery of Early Paleozoic Eclogite from the Xiarihamu Magmatic Ni-Cu Sulfide Deposit in Eastern Kunlun Orogenic Belt: Zircon U-Pb Chronologic Evidence. Geology in China, 44(4): 816-817(in Chinese with English abstract).
      Zhang, Z. W., Wang, C. Y., Qian, B., et al., 2018. The Geochemistry Characteristics of Silurian Gabbro in East Kunlun Orogenic Belt and Its Mineralization Relationship with Magmatic Ni-Cu Sulfide Deposit. Acta Petrologica Sinica, 34(8): 2262-2274(in Chinese with English abstract).
      Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3: 3413. https://doi.org/10.1038/srep03413
      Zhao, Z. M., Ma, H. D., Wang, B. Z., et al., 2008. The Evidence of Intrusive Rocks about Collision-Orogeny during Early Devonian in Eastern Kunlun Area. Geological Review, 54(1): 47-56(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2008.01.006
      Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.982
      Zhou, B., Dong, Y. P., Zhang, F. F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011
      奥琮, 孙丰月, 李碧乐, 等, 2014. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义. 西北地质, 47(1): 96-106. doi: 10.3969/j.issn.1009-6248.2014.01.007
      巴金, 陈能松, 王勤燕, 等, 2012. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37(增刊1): 80-92. doi: 10.3799/dqkx.2012.S1.008
      陈能松, 何蕾, 孙敏, 等, 2002. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定. 科学通报, 47(8): 628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016
      陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
      崔美慧, 孟繁聪, 吴祥珂, 2011. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365-3379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm
      高晓峰, 校培喜, 谢从瑞, 等, 2010. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
      国显正, 贾群子, 李金超, 等, 2018. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义. 地球科学, 43(12): 4300-4318. doi: 10.3799/dqkx.2018.142
      李怀坤, 陆松年, 相振群, 等, 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321. doi: 10.3321/j.issn:1005-2321.2006.06.034
      刘彬, 2011. 东昆仑跃进山早泥盆世侵入杂岩体岩石学、锆石U-Pb年代学及岩石成因(硕士学位论文). 武汉: 中国地质大学, 72.
      刘彬, 马昌前, 郭盼, 等, 2013a. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学, 38(5): 947-962. doi: 10.3799/dqkx.2013.093
      刘彬, 马昌前, 蒋红安, 等, 2013b. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm
      刘彬, 马昌前, 张金阳, 等, 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206008.htm
      鲁海峰, 陈静, 余福承, 等, 2019. 东昆仑夏日哈木闪长玢岩成因及动力学背景: 年代学、地球化学及Hf同位素约束. 矿物岩石, 39(4): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202206008.htm
      陆露, 吴珍汉, 胡道功, 等, 2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义. 岩石学报, 26(4): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004013.htm
      罗明非, 2015. 东昆仑东段早古生代—早中生代花岗岩类时空格架及构造意义(博士学位论文). 北京: 中国地质大学, 169.
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
      祁生胜, 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化(博士学位论文). 北京: 中国地质大学, 343.
      王国灿, 魏启荣, 贾春兴, 等, 2007. 关于东昆仑地区前寒武纪地质的几点认识. 地质通报, 26(8): 929-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm
      王涛, 李彬, 陈静, 等, 2016. 东昆仑五龙沟地区早志留世花岗岩锆石年代学、地球化学特征及其地质意义. 矿物岩石, 36(2): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201602008.htm
      许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      余能, 金巍, 葛文春, 等, 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200502004.htm
      张晓智, 周怀阳, 钱生平, 2021. 俯冲带岩浆弧安山岩的成因研究进展. 地球科学进展, 36(3): 288-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202103006.htm
      张亚峰, 裴先治, 丁仨平, 等, 2010. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义. 地质通报, 29(1): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201709012.htm
      张照伟, 钱兵, 李文渊, 等, 2017. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据. 中国地质, 44(4): 816-817. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001024.htm
      张照伟, 王驰源, 钱兵, 等, 2018. 东昆仑志留纪辉长岩地球化学特征及与铜镍成矿关系探讨. 岩石学报, 34(8): 2262-2274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808005.htm
      赵振明, 马华东, 王秉璋, 等, 2008. 东昆仑早泥盆世碰撞造山的侵入岩证据. 地质论评, 54(1): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801007.htm
      郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  569
    • HTML全文浏览量:  472
    • PDF下载量:  97
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-05
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回