• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高砷地下水中氮循环对砷释放过程的影响

    张振超 梁莹 许洁 姜雪 马瑞

    张振超, 梁莹, 许洁, 姜雪, 马瑞, 2024. 高砷地下水中氮循环对砷释放过程的影响. 地球科学, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189
    引用本文: 张振超, 梁莹, 许洁, 姜雪, 马瑞, 2024. 高砷地下水中氮循环对砷释放过程的影响. 地球科学, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189
    Zhang Zhenchao, Liang Ying, Xu Jie, Jiang Xue, Ma Rui, 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189
    Citation: Zhang Zhenchao, Liang Ying, Xu Jie, Jiang Xue, Ma Rui, 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189

    高砷地下水中氮循环对砷释放过程的影响

    doi: 10.3799/dqkx.2022.189
    基金项目: 

    湖北省科技创新群体项目 2019CFA013

    国家自然科学基金项目 41722208

    详细信息
      作者简介:

      张振超(1994-),女,硕士研究生,主要从事水文地球化学中砷的地球化学行为方面的研究.ORCID:0000-0002-5549-8278. E-mail:1201910300@cug.edu.cn

      通讯作者:

      马瑞,E-mail: rma@cug.edu.cn

    • 中图分类号: P641

    Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content

    • 摘要: 高As地下水中往往伴随着高NH4+组分的分布,但是有关氮循环如何影响As迁移释放的研究还较少.江汉平原为高砷地下水分布区,同时地下水中NH4+浓度也普遍较高,本研究旨在探讨江汉平原地下水系统中氮迁移转化对砷组分时空分布的控制过程.对江汉平原不同水体的水化学和同位素指标进行测试,利用氮和砷相关物理化学指标对采样点进行层次聚类分析.结果表明,沿着地下水流方向,由于地下水氧化还原环境等因素的改变,氮反应迁移过程对As释放过程的影响机制也不相同.在补给区附近,地下水处于偏氧化环境,NO3的富集会抑制铁氧化物溶解过程;沿地下水径流方向,地下水环境向还原条件转化,反硝化作用加强,促进了铁氧化物的溶解并导致As释放到地下水中;在地下水排泄区,地下水环境处于还原状态,反硝化反应进一步增强,可能发生利用Fe2+作为电子供体进行的反硝化反应和DNRA过程,进而通过氧化还原反应影响As释放.

       

    • 图  1  江汉平原地下水采样点分布

      Fig.  1.  Distribution map of groundwater sampling points in Jianghan Plain

      图  2  主成分载荷

      Fig.  2.  Principal component loading plot

      图  3  聚类分析结果

      Fig.  3.  Cluster analysis result graph

      图  4  聚类分组主要组分箱型图

      Fig.  4.  Cluster grouping main component box diagram

      图  5  聚类分组地下水Piper三线图

      Fig.  5.  Cluster grouped groundwater Piper ternary diagram

      图  6  T_As与Fe2+、NH4+、DOC、Eh相关关系

      Fig.  6.  Relationship of T_As vs. Fe2+, NH4+, DOC and Eh

      图  7  地下水NO3/Cl与Cl关系

      Fig.  7.  Relationship of NO3/Cl and Cl in groundwater

      图  8  δ15N-NO3,δ18O-NO3关系(据Liang et al., 2020)

      Fig.  8.  Relationship of δ15N-NO3 and δ18O-NO3 (after Liang et al., 2020)

      图  9  δ15N-NO3,δ15N-NH4+垂向关系

      Fig.  9.  Vertical relationship of δ15N - NO3 and δ15N-NH4+

      图  10  T_As和相关化学组分垂向分布

      Fig.  10.  Vertical distribution of related chemical composition and T_As

      图  11  DOC/ NO3垂向分布

      Fig.  11.  Vertical distribution of DOC/ NO3

      图  12  DOC/ NO3与Fe2+、SO42‒关系

      Fig.  12.  Relationship of DOC/NO3 vs. Fe2+ and SO42‒

      表  1  水样测试手段及方法

      Table  1.   Testing means and methods for water samples

      测试指标 仪器或方法 最低检出浓度 测试单位
      F、Cl、NO3
      SO42‒
      离子色谱法
      (Dionex 2500,Thermo,美国)
      0.02、0.13、0.02、0.14 mg/L 中国地质大学(武汉)环境学院实验中心
      Ca2+、Mg2+
      Na+、K+
      电感耦合等离子体发射光谱仪
      (ICP-OES)
      0.003、0.020、0.020、0.150 μg/mL
      As 原子荧光分光光度计
      (AFS-8220,北京吉天,中国)
      0.3 μg/L
      DOC 总有机碳分析仪
      (multi N/C 3100,Elementar,德国)
      4 μg/L
      δ15N-NO3
      δ18O-NO3
      同位素比质谱仪
      (Tracegas-lsoprime100,德国)
      0.2‰、0.7‰ 中国农业科学院环境稳定同位素实验室
      δ15N-NH4+ 同位素比质谱仪(EA-lsoprime100, 德国) 0.2‰
      下载: 导出CSV
    • Bahrami, M., Khaksar, E., Khaksar, E., 2020. Spatial Variation Assessment of Groundwater Quality Using Multivariate Statistical Analysis (Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 8(3): 230-243. https://doi.org/10.19637/j.cnki.2305-7068.2020.03.004
      Bhattacharya, P., Jacks, G., Ahmed, K. M., et al., 2002. Arsenic in Groundwater of the Bengal Delta Plain Aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69(4): 538-545. https://doi.org/10.1007/s00128-002-0095-5
      Deng, Y. M., Zheng, T. L., Wang, Y. X., et al., 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. The Science of the Total Environment, 619-620: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
      Gan, Y. Q., Zhao, K., Deng, Y. M., et al., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
      Gao, Z. P., Weng, H. C., Guo, H. M., 2021. Unraveling Influences of Nitrogen Cycling on Arsenic Enrichment in Groundwater from the Hetao Basin Using Geochemical and Multi-Isotopic Approaches. Journal of Hydrology, 595: 125981. https://doi.org/10.1016/j.jhydrol.2021.125981
      Hsu, C. H., Han, S. T., Kao, Y. H., et al., 2010. Redox Characteristics and Zonation of Arsenic-Affected Multi-Layers Aquifers in the Choushui River Alluvial Fan, Taiwan. Journal of Hydrology, 391(3): 351-366. https://doi.org/10.1016/j.jhydrol.2010.07.037
      Jiang, X., Ma, R., Ma, T., et al., 2022. Modeling the Effects of Water Diversion Projects on Surface Water and Groundwater Interactions in the Central Yangtze River Basin. Science of the Total Environment, 830: 154606. https://doi.org/10.1016/j.scitotenv.2022.154606
      Kessler, A. J., Roberts, K. L., Bissett, A., et al., 2018. Biogeochemical Controls on the Relative Importance of Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Estuaries. Global Biogeochemical Cycles, 32(7): 1045-1057. https://doi.org/10.1029/2018gb005908
      Li, J. C., Cao, W. G., Pan, D., et al., 2022. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain. Rock and Mineral Analysis, 41(1): 120-132 (in Chinese with English abstract).
      Li, Q., Zhou, J. L., Zeng, Y. Y., 2017. Effects of Nitrogens on the Migration and Enrichment of Arsenic in the Groundwater in the Plain Area of Kuitun River and Manas River Basin. Environmental Chemistry, 36(10): 2227-2234 (in Chinese with English abstract).
      Liang, X., Zhang, J. W., Lan, K., et al., 2020. Hydrochemical Characteristics of Groundwater and Analysis of Groundwater Flow Systems in Jianghan Plain, Bulletin of Geological Science and Technology, 39(1): 21-33 (in Chinese with English abstract).
      Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. The Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
      Mayorga, P., Moyano, A., Anawar, H. M., et al., 2013. Temporal Variation of Arsenic and Nitrate Content in Groundwater of the Duero River Basin (Spain). Physics and Chemistry of the Earth, (58-60): 22-27. https://doi.org/10.1016/j.pce.2013.04.001
      Nghiem, A. A., Shen, Y. T., Stahl, M., et al., 2020. Aquifer-Scale Observations of Iron Redox Transformations in Arsenic-Impacted Environments to Predict Future Contamination. Environmental Science & Technology Letters, 7(12): 916-922. https://doi.org/10.1021/acs.estlett.0c00672
      Nikolenko, O., Jurado, A., Borges, A. V., et al., 2018. Isotopic Composition of Nitrogen Species in Groundwater under Agricultural Areas: A Review. The Science of the Total Environment, 621: 1415-1432. https://doi.org/10.1016/j.scitotenv.2017.10.086
      Perović, M., Šenk, I., Tarjan, L., et al., 2021. Machine Learning Models for Predicting the Ammonium Concentration in Alluvial Groundwaters. Environmental Modeling & Assessment, 26(2): 187-203. https://doi.org/10.1007/s10666-020-09731-9
      Podgorski, J., Berg, M., 2020. Global Threat of Arsenic in Groundwater. Science, 368(6493): 845-850. https://doi.org/10.1126/science.aba1510
      Roberts, K. L., Kessler, A. J., Grace, M. R., et al., 2014. Increased Rates of Dissimilatory Nitrate Reduction to Ammonium (DNRA) under Oxic Conditions in a Periodically Hypoxic Estuary. Geochimica et Cosmochimica Acta, 133: 313-324. https://doi.org/10.1016/j.gca.2014.02.042
      Rütting, T., Boeckx, P., Müller, C., et al., 2011. Assessment of the Importance of Dissimilatory Nitrate Reduction to Ammonium for the Terrestrial Nitrogen Cycle. Biogeosciences, 8(7): 1779-1791. https://doi.org/10.5194/bg-8-1779-201110.5194/bgd-8-1169-2011
      Salk, K. R., Erler, D. V., Eyre, B. D., et al., 2017. Unexpectedly High Degree of Anammox and DNRA in Seagrass Sediments: Description and Application of a Revised Isotope Pairing Technique. Geochimica et Cosmochimica Acta, 211: 64-78. https://doi.org/10.1016/j.gca.2017.05.012
      Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. https://doi.org/10.1016/s0883-2927(02)00018-5
      Sun, Y., Lan, J. R., Chen, X. H., et al., 2021. Impacts of External Organic Carbon on Arsenic Release in Aquifer of Jianghan Plain, Central China. ACS Earth and Space Chemistry, 5(6): 1343-1354. https://doi.org/10.1021/acsearthspacechem.0c00358
      Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13: 288-295. https://doi.org/10.1038/s41561-020-0557-6
      Weng, T. N., Liu, C. W., Kao, Y. H., et al., 2017. Isotopic Evidence of Nitrogen Sources and Nitrogen Transformation in Arsenic-Contaminated Groundwater. The Science of the Total Environment, 578: 167-185. https://doi.org/10.1016/j.scitotenv.2016.11.013
      Weng, H. C., 2019. Source, Transformation of Nitrogens and Significance for Arsenic Enrichment in High Arsenic Groudwater Based on Nitrogen and Oxygen Isotopes (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Xie, Z. M., Wang, J., Wei, X. F., et al., 2018. Interactions between Arsenic Adsorption/Desorption and Indigenous Bacterial Activity in Shallow High Arsenic Aquifer Sediments from the Jianghan Plain, Central China. The Science of the Total Environment, 644: 382-388. https://doi.org/10.1016/j.scitotenv.2018.06.377
      Xiong, F., Gan, Y. Q., Duan, Y. H., 2015. Analysis of Relationship between Nitrogen and the Migration and Enrichment of Arsenic in Groundwater in the Jianghan Plain. Safety and Environmental Engineering, 22(2): 39-43, 48 (in Chinese with English abstract).
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Xue, D. M., Botte, J., De Baets, B., et al., 2009. Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface- and Groundwater. Water Research, 43(5): 1159-1170. https://doi.org/10.1016/j.watres.2008.12.048
      Yang, J., Ye, M., Tang, Z. H., et al., 2020a. Using Cluster Analysis for Understanding Spatial and Temporal Patterns and Controlling Factors of Groundwater Geochemistry in a Regional Aquifer. Journal of Hydrology, 583: 124594. https://doi.org/10.1016/j.jhydrol.2020.124594
      Yang, Y. J., Deng, Y. M., Xie, X. J., et al., 2020b. Iron Isotope Evidence for Arsenic Mobilization in Shallow Multi-Level Alluvial Aquifers of Jianghan Plain, Central China. Ecotoxicology and Environmental Safety, 206: 111120. https://doi.org/10.1016/j.ecoenv.2020.111120
      Ye, H. P., Yang, Z. Y., Wu, X., et al., 2017. Sediment Biomarker, Bacterial Community Characterization of High Arsenic Aquifers in Jianghan Plain, China. Scientific Reports, 7: 42037. https://doi.org/10.1038/srep42037
      Yu, K., Gan, Y. Q., Zhou, A. G., et al., 2018. Organic Carbon Sources and Controlling Processes on Aquifer Arsenic Cycling in the Jianghan Plain, Central China. Chemosphere, 208: 773-781. https://doi.org/10.1016/j.chemosphere.2018.05.188
      Zaryab, A., Nassery, H. R., Knoeller, K., et al., 2022. Determining Nitrate Pollution Sources in the Kabul Plain Aquifer (Afghanistan) Using Stable Isotopes and Bayesian Stable Isotope Mixing Model. The Science of the Total Environment, 823: 153749. https://doi.org/10.1016/j.scitotenv.2022.153749
      Zhang, J., Liang, X., Liu, Y. F., et al., 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831 (in Chinese with English abstract).
      Zhu, X. B., 2020. Nitrate Transformations Catalyzed by the Arsenic Redox Microorganisms and Their Environmental Influences, China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhu, X. B., Zeng, X. C., Chen, X. M., et al., 2019. Inhibitory Effect of Nitrate/Nitrite on the Microbial Reductive Dissolution of Arsenic and Iron from Soils into Pore Water. Ecotoxicology, 28(5): 528-538. https://doi.org/10.1007/s10646-019-02050-0
      Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843 (in Chinese with English abstract).
      李谨丞, 曹文庚, 潘登, 等, 2022. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响. 岩矿测试, 41(1): 120-132.
      李巧, 周金龙, 曾妍妍, 2017. 奎屯河及玛纳斯河流域平原区地下水中氮素对砷迁移富集的影响. 环境化学, 36(10): 2227-2234.
      梁杏, 张婧玮, 蓝坤, 等, 2020. 江汉平原地下水化学特征及水流系统分析. 地质科技通报. 39(1): 21-33.
      翁海成, 2019. 基于氮氧同位素的高砷地下水氮来源、转化及富砷意义(硕士学位论文), 北京: 中国地质大学.
      熊峰, 甘义群, 段艳华, 2015. 江汉平原地下水中氮素与砷迁移富集的相关性研究. 安全与环境工程, 22(2): 39-43, 48.
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      张洁, 梁杏, 刘延锋, 等, 2023. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
      祝贤彬, 2020. 砷氧化还原微生物催化的硝酸盐转化及其对环境的影响(博士学位论文). 武汉: 中国地质大学.
      朱子超, 刘慧, 毛胜军, 等, 2023. 河水‒地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  313
    • HTML全文浏览量:  152
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-23
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回