• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北羌塘宁多地区三叠纪过铝质花岗岩的成因及其地球动力学背景

    刘彬 徐雨 马昌前 李福林 赵少卿 湛君明 孙洋 黄坚

    刘彬, 徐雨, 马昌前, 李福林, 赵少卿, 湛君明, 孙洋, 黄坚, 2023. 北羌塘宁多地区三叠纪过铝质花岗岩的成因及其地球动力学背景. 地球科学, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191
    引用本文: 刘彬, 徐雨, 马昌前, 李福林, 赵少卿, 湛君明, 孙洋, 黄坚, 2023. 北羌塘宁多地区三叠纪过铝质花岗岩的成因及其地球动力学背景. 地球科学, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191
    Liu Bin, Xu Yu, Ma Changqian, Li Fulin, Zhao Shaoqing, Zhan Junming, Sun Yang, Huang Jian, 2023. Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191
    Citation: Liu Bin, Xu Yu, Ma Changqian, Li Fulin, Zhao Shaoqing, Zhan Junming, Sun Yang, Huang Jian, 2023. Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191

    北羌塘宁多地区三叠纪过铝质花岗岩的成因及其地球动力学背景

    doi: 10.3799/dqkx.2022.191
    基金项目: 

    国家自然科学基金项目 42130309

    国家自然科学基金项目 41972066

    国家自然科学基金项目 41502050

    中国地质调查局项目 12120115026901

    中国地质调查局项目 1212011121270

    详细信息
      作者简介:

      刘彬(1987-),男,博士,副教授,硕士生导师,从事火成岩岩石学与地球化学研究.ORCID:0000-0003-1372-6006. E-mail:binliu@yangtzeu.edu.cn

      通讯作者:

      马昌前,E-mail:cqma@cug.edu.cn

    • 中图分类号: P581

    Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane

    • 摘要: 青藏高原中部(包括北羌塘地区)出露了大规模三叠纪中酸性岩浆活动.然而,目前人们对于这些岩浆的起源、岩石成因及其地球动力学机制等问题至今还存在较多分歧.本文以北羌塘宁多地区过铝质花岗岩体为研究对象,开展锆石U-Pb年代学、全岩和同位素地球化学等综合研究,为深入认识与理解过铝质花岗岩形成机制及青藏高原中部三叠纪构造‒岩浆演化过程等提供新的线索.宁多过铝质花岗岩的岩性为黑云母花岗闪长岩,主要由斜长石(35%~40%)、石英(25%~30%)、碱性长石(15%~20%)和黑云母(5%~10%)组成.宁多花岗岩的锆石U-Pb年龄为248±1 Ma,为早三叠世岩浆活动的产物.样品均具有中等程度的SiO2和MgO含量,相对富钾和铝,总体上与强过铝质花岗岩成分特征类似.所有岩石样品相对原始地幔要明显富集Rb、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、Ti和P等高场强元素.岩石样品具有相对高的87Sr/86Sr初始比值(ISr为0.720~0.722)、相对低的εNdt)值(-12.4~-12.3)以及古老的两阶段模式年龄(T2DM为2.02~2.03 Ga),可与北羌塘地体东南部元古代片麻岩及由前寒武纪变质基底熔融形成的S型花岗岩特征类比.宁多过铝质花岗岩具有显著高的锆饱和温度(806~845 ℃)和锆石Ti温度(830~1 033 ℃),可与世界上典型高温花岗岩类的结晶温度类比.研究结果表明,这些过铝质花岗岩的形成与北羌塘前寒武纪基底物质(变杂砂岩和少量变泥质岩组分)的高温熔融有关.结合区域上多学科研究资料可以判断,在龙木错‒双湖古特提斯洋北向俯冲的背景下,板片回撤引发弧后伸展和大量玄武质岩浆底侵,进而导致这一时期古老基底物质发生高温熔融.

       

    • 图  1  北羌塘北部玉树‒治多地区所在大地构造位置(a)及其岩浆岩地质分布简图(b)

      Fig.  1.  Tectonic location (a) and simplified geological map (b) of the Yushu-Zhiduo magmatic rocks in the north part of the North Qiangtang terrane

      图  2  宁多花岗岩体地质图

      Fig.  2.  Geological map of the Ningduo granitic intrusion

      图  3  宁多花岗岩野外露头(a~b)及显微镜下照片(c~d)

      矿物缩写:Bt.黑云母;Kfs.碱性长石;Pl.斜长石;Qz.石英

      Fig.  3.  Field photographs (a‒b) and microscope photographs (c‒d) of the Ningduo granites

      图  4  宁多花岗岩典型锆石CL图像特征(a)以及锆石LA-ICP-MS U-Pb年龄谐和图(b)

      Fig.  4.  CL images (a) and zircon U-Pb concordant diagrams (b) of zircon grains for the Ninguo granites

      图  5  宁多花岗岩样品FeOT、MgO、TiO2、P2O5、Na2O、K2O、Nb、Sr、Rb、Ba、La和Th与LOI之间的协变图解

      图 5及本文其他部分用到的东达山和吉塘花岗岩的数据分别据Peng et al.(2015)和Tao et al.(2014)

      Fig.  5.  Plots of FeOT, MgO, TiO2, P2O5, Na2O, K2O, Nb, Sr, Rb, Ba, La, and Th versus LOI for the Ningduo granites

      图  6  宁多花岗岩样品成分判别图解

      a.(Na2O + K2O)vs. SiO2图解,据Irvine and Baragar(1971)Middlemost(1994);b. SiO2 vs. AR图解,据Wright(1969);c. FeOT/(FeOT + MgO)vs. SiO2图解,Frost et al.(2001);d. A/NK vs. A/CNK图解,据Maniar and Piccoli(1989)

      Fig.  6.  Geochemical classification plots for the Ningduo granites

      图  7  宁多花岗岩样品的稀土元素球粒陨石标准化分布图(a)和微量元素原始地幔标准化蛛网图(b)

      原始地幔和球粒陨石标准化值据Sun and McDonough(1989)Taylor and McLennan(1985)

      Fig.  7.  Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spider diagrams for the Ningduo granites

      图  8  宁多花岗岩样品的εNd(t) vs. ISr图解(a);εNd(t) vs. T2DM图解(b);εNd(t) vs. Nb/La图解(c)和εNd(t) vs. (La/Yb)N图解(d)

      HBSG地体三叠纪浊积岩数据来源于de Sigoyer et al.(2014)She et al.(2006)Zhang et al.(2007)

      Fig.  8.  Plots of εNd(t) vs. ISr (a), εNd(t) vs. T2DM (b), εNd(t) vs. Nb/La (c), and εNd(t) vs. (La/Yb)N (d) for the Ningduo granites

      图  9  宁多花岗岩样品Zr vs. 10 000×Ga/Al (a;Whalen et al., 1987)、ACF (b;Chappell and White, 1992)、P2O5 vs. SiO2 (c)和Th vs. Rb (d)图解

      Fig.  9.  Plots of Zr vs. 10 000×Ga/Al diagram (a; Whalen et al., 1987), ACF diagram (b; Chappell and White, 1992), P2O5 vs. SiO2, (c) and Th vs. Rb (d) for the Ningduo granites

      图  10  宁多花岗岩Dy/Sm vs. Zr/Sm (a; Wu et al., 2003)和Rb vs. Sr (b; Sisson, 1994)图解

      Bt.黑云母;Grt.石榴子石;Hb.角闪石;Kfs.碱性长石;Ms.白云母;Pl.斜长石

      Fig.  10.  Plots of Dy/Sm vs. Zr/Sm (a; Wu et al., 2003) and Rb vs. Sr (b; Sisson, 1994) for the Ningduo granites

      图  11  宁多花岗岩Rb/Ba vs. Rb/Sr (a)、molar K2O/Na2O vs. CaO/(MgO+FeOT) (b)、molar K2O/Na2O vs. A/CNK (c)和T(℃,锆饱和温度) vs. A/CNK图解(d)

      底图分别据Altherr and Siebel(2002)刘彬等(2012)修改

      Fig.  11.  Plots of Rb/Ba vs. Rb/Sr (a), molar K2O/Na2O vs. CaO/(MgO+FeOT) (b), molar K2O/Na2O vs. A/CNK (c), and T(℃) vs. A/CNK (d) for the Ningduo granites

    • Altherr, R., Siebel, W., 2002. Ⅰ-Type Plutonism in a Continental Back-Arc Setting: Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415. https://doi.org/10.1007/s00410-002-0352-y
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous Ⅰ-Type Granites. Lithos, 153: 142-153. https://doi.org/10.1016/j.lithos.2012.07.008
      Chappell, B. W., White, A. J. R., 1992. Ⅰ- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh-Earth Sciences, 83(1-2): 1-26. http://dx. doi.org/10.1017/S0263593300007720
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Clarke, D. B., 1981. The Mineralogy of Peraluminous Granites: A Review. Canadian Mineralogist, 19: 3-17
      Clemens, J. D., Stevens, G., 2012. What Controls Chemical Variation in Granitic Magmas? Lithos, 134-135: 317-329. https://doi.org/10.1016/j.lithos.2012.01.001
      Dan, W., Wang, Q., White, W. M., et al., 2018. Rapid Formation of Eclogites during a nearly Closed Ocean: Revisiting the Pianshishan Eclogite in Qiangtang, Central Tibetan Plateau. Chemical Geology, 477: 112-122. https://doi.org/10.1016/j.chemgeo.2017.12.012
      de Sigoyer, J., Vanderhaeghe, O., Duchêne, S., et al., 2014. Generation and Emplacement of Triassic Granitoids within the Songpan Ganze Accretionary-Orogenic Wedge in a Context of Slab Retreat Accommodated by Tear Faulting, Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 192-216. https://doi.org/10.1016/j.jseaes.2014.01.010
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162.
      He, S. P., Li, R. S., Wang, C., et al., 2011. Discovery of ∼4.0 Ga Detrital Zircons in the Changdu Block, North Qiangtang, Tibetan Plateau. Chinese Science Bulletin, 56(7): 647-658. https://doi.org/10.1007/s11434-010-4320-z
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Kapp, P., Yin, A., Manning, C. E., et al., 2003. Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet. Tectonics, 22(4): 1043. https://doi.org/10.1029/2002TC001383
      Li, C., Huang, X. P., Zhai, Q. G., et al., 2006. The Longmu Co-Shuanghu-Jitang Plate Suture and the Northern Boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 136-147 (in Chinese with English abstract).
      Li, C., Zhai, Q. G., Dong, Y. S., et al., 2008. Oceanic Crust on the Northern Margin of Gond-Wana-Evidence from Early Paleozoic Ophiolite in Central Qiangtang, Qinghai-Tibet Plateau. Geological Bulletin of China, 27(10): 1605-1612 (in Chinese with English abstract).
      Li, S., Miller, C. F., Tao, W., et al., 2021. Role of Sediment in Generating Contemporaneous, Diverse "Type" Granitoid Magmas. Geology, 50(4): 427-431. http://dx. doi.org/10.1130/G49509.1.
      Lin, G. C., Ma, C. Q., 2003. Genesis of Peraluminous Granitoids and Their Tectonic Settings. Geology and Mineral Resources of South China, 19(1): 65-70 (in Chinese with English abstract).
      Liu, B., Ma, C. Q., Guo, P., et al., 2013. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5): 947-962 (in Chinese with English abstract).
      Liu, B., Ma, C. Q., Guo, P., et al., 2016a. Evaluation of Late Permian Mafic Magmatism in the Central Tibetan Plateau as a Response to Plume-Subduction Interaction. Lithos, 264: 1-16. https://doi.org/10.1016/j.lithos.2016.08.011
      Liu, B., Ma, C. Q., Guo, Y. H., et al., 2016b. Petrogenesis and Tectonic Implications of Triassic Mafic Complexes with MORB/OIB Affinities from the Western Garzê-Litang Ophiolitic Mélange, Central Tibetan Plateau. Lithos, 260: 253-267. https://doi.org/10.1016/j.lithos.2016.06.009
      Liu, B., Ma, C. Q., Huang, J., et al., 2016. Petrogenetic Mechanism and Tectonic Significance of Triassic Yushu Volcanic Rocks in the Northern Part of the North Qiangtang Terrane. Acta Petrologica et Mineralogica, 35(1): 1-15 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2016.01.001
      Liu, B., Ma, C. Q., Tang, Y. J., et al., 2021. Triassic High-Mg Andesitic Magmatism Induced by Sediment Melt-Peridotite Interactions in the Central Tibetan Plateau. Lithos, 398-399: 106266. https://doi.org/10.1016/j.lithos.2021.106266
      Liu, B., Ma, C. Q., Zhang, J. Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785-1807 (in Chinese with English abstract).
      Liu, B., Xu, Y., Li, Q. A., et al., 2020. Origin of Triassic Mafic Magmatism in the North Qiangtang Terrane, Central Tibetan Plateau: Implications for the Development of a Continental Back-Arc Basin. Journal of the Geological Society, 177(4): 826-842. https://doi.org/10.1144/jgs2019-130
      Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51: 537-571. https://doi.org/10.1093/petrology/egp082.
      Liu, Y., Zong, K., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks From the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247: 133-153. https://doi.org/10.1016/ j.chemgeo.2007.10.016. doi: 10.1016/j.chemgeo.2007.10.016
      Lu, L., Qin, Y., Li, Z. F., et al., 2019. Diachronous Closure of the Shuanghu Paleo-Tethys Ocean: Constraints from the Late Triassic Tanggula Arc-Related Volcanism in the East Qiangtang Subterrane, Central Tibet. Lithos, 328-329: 182-199. https://doi.org/10.1016/j.lithos.2019.01.034
      Lu, L., Zhang, K. J., Yan, L. L., et al., 2017. Was Late Triassic Tanggula Granitoid (Central Tibet, Western China) a Product of Melting of Underthrust Songpan-Ganzi Flysch Sediments? Tectonics, 36(5): 902-928. https://doi.org/10.1002/2016tc004384
      Ma, C. Q., Zou, B. W., Gao, K., et al., 2020. Crystal Mush Storage, Incremental Pluton Assemblyand Granitic Petrogenesis. Earth Science, 45(12): 4332-4351 (in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)0310529: hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
      Mo, X. X., 2010. A Review and Prospect of Geological Researches on the Qinghai-Tibet Plateau. Geology in China, 37(4): 841-853 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.04.002
      Moecher, D. P., McDowell, S. M., Samson, S. D., et al., 2014. Ti-in-Zircon Thermometry and Crystallization Modeling Support Hot Grenville Granite Hypothesis. Geology, 42(3): 267-270. https://doi.org/10.1130/g35156.1
      Nie, S. Y., Yin, A., Rowley, D. B., et al., 1994. Exhumation of the Dabie Shan Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch Sequence, Central China. Geology, 22(11): 999-1002. https://doi.org/10.1130/0091-7613(1994)0220999: eotdsu>2.3.co;2 doi: 10.1130/0091-7613(1994)0220999:eotdsu>2.3.co;2
      Peng, T. P., Zhao, G. C., Fan, W. M., et al., 2015. Late Triassic Granitic Magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau: Geochronology, Petrogenesis and Implications for the Tectonic Evolution of the Paleo-Tethys. Gondwana Research, 27(4): 1494-1508. https://doi.org/10.1016/j.gr.2014.01.009
      Schiller, D., Finger, F., 2019. Application of Ti-in-Zircon Thermometry to Granite Studies: Problems and Possible Solutions. Contributions to Mineralogy and Petrology, 174(6): 1-16. https://doi.org/10.1007/s00410-019-1585-3
      Shand, S. J., 1927. Eruptive Rocks (1st Edition). John Wiley & Sons, Inc., New York. http://dx.doi.org/10.1097/00010694-194807000-00012
      She, Z. B., Ma, C. Q., Mason, R., et al., 2006. Provenance of the Triassic Songpan-Ganzi Flysch, West China. Chemical Geology, 231(1-2): 159-175. https://doi.org/10.1016/j.chemgeo.2006.01.001
      Sisson, T. W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1-4): 331-344. https://doi.org/10.1016/0009-2541(94)90135-X
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
      Tao, Y., Bi, X. W., Li, C. S., et al., 2014. Geochronology, Petrogenesis and Tectonic Significance of the Jitang Granitic Pluton in Eastern Tibet, SW China. Lithos, 184-187: 314-323. https://doi.org/10.1016/j.lithos.2013.10.031
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust Its Composition and Evolution. Blackwell Scientific Publications, Oxford. https://doi.org/10.1002/gj.3350210116
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490. https://doi.org/10.1007/s00410-007-0253-1
      Wang, X. L., 2017. Some New Research Progresses and Main Scientific Problems of Granitic Rocks. Acta Petrologica Sinica, 33(5): 1445-1458 (in Chinese with English abstract).
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wright, J. B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4): 370-384. https://doi.org/10.1017/s0016756800058222
      Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ): Geochronology and Petrogenesis. Lithos, 66(3-4): 241-273. https://doi.org/10.1016/S0024-4937(02)00222-0
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese).
      Wu, T., Zhou, J. X., Wang, X. C., et al., 2018. Identification of Ca. 850 Ma High-Temperature Strongly Peraluminous Granitoids in Southeastern Guizhou Province, South China: A Result of Early Extension along the Southern Margin of the Yangtze Block. Precambrian Research, 308: 18-34. https://doi.org/10.1016/j.precamres.2018.02.007
      Xu, X. S., Wang, X. L., Zhao, K., et al., 2020. Progresses and Tendencies of Granite Researches in last Decade: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 39(5): 899-911, 1069 (in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract).
      Yang, T. N., Zhang, H. R., Liu, Y. X., et al., 2011. Permo-Triassic Arc Magmatism in Central Tibet: Evidence from Zircon U-Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry. Chemical Geology, 284(3-4): 270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zen, E. A., 1988. Phase Relations of Peraluminous Granitic Rocks and Their Petrogenetic Implications. Annual Review of Earth and Planetary Sciences, 16: 21-51. https://doi.org/10.1146/annurev.ea.16.050188.000321
      Zhai, M. G., Zhang, Q., Chen, G. N., et al., 2016. Adventure on the Research of Continental Evolution and Related Granite Geochemistry. Chinese Science Bulletin, 61(13): 1414-1420 (in Chinese). doi: 10.1360/N972015-01272
      Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013a. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet: Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63: 162-178. https://doi.org/10.1016/j.jseaes.2012.08.025
      Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2013b. The Carboniferous Ophiolite in the Middle of the Qiangtang Terrane, Northern Tibet: SHRIMP U-Pb Dating, Geochemical and Sr-Nd-Hf Isotopic Characteristics. Lithos, 168-169: 186-199. https://doi.org/10.1016/j.lithos.2013.02.005
      Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China: Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1-2): 173-189. https://doi.org/10.1016/j.lithos.2011.02.004
      Zhang, G. W., Guo, A. L., Yao, A. P., 2004. Western Qinling-Songpan Continental Tectonic Node in China's Continental Tectonics. Earth Science Frontiers, 11(3): 23-32 (in Chinese with English abstract).
      Zhang, K. J., Zhang, Y. X., Li, B., et al., 2007. Nd Isotopes of Siliciclastic Rocks from Tibet, Western China: Constraints on Provenance and Pre-Cenozoic Tectonic Evolution. Earth and Planetary Science Letters, 256(3-4): 604-616. https://doi.org/10.1016/j.epsl.2007.02.014
      Zhang, Q., Wang, Y., Pan, G. Q., et al., 2008. Sources of Granites: Some Crucial Questions on Granite Study (4). Acta Petrologica Sinica, 24(6): 1193-1204 (in Chinese with English abstract).
      李才, 黄小鹏, 翟庆国, 等, 2006. 龙木错‒双湖‒吉塘板块缝合带与青藏高原冈瓦纳北界. 地学前缘, 13(4): 136-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604011.htm
      李才, 翟庆国, 董永胜, 等, 2008. 冈瓦纳大陆北缘早期的洋壳信息: 来自青藏高原羌塘中部早古生代蛇绿岩的依据. 地质通报, 27(10): 1605-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810004.htm
      林广春, 马昌前, 2003. 过铝花岗岩的成因类型与构造环境研究综述. 华南地质与矿产, 19(1): 65-70. doi: 10.3969/j.issn.1007-3701.2003.01.013
      刘彬, 马昌前, 郭盼, 等, 2013. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学, 38(5): 947-962. doi: 10.3799/dqkx.2013.093
      刘彬, 马昌前, 黄坚, 等, 2016. 北羌塘北缘玉树三叠纪火山岩的成因机制及其构造意义. 岩石矿物学杂志, 35(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201601001.htm
      刘彬, 马昌前, 张金阳, 等, 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206008.htm
      马昌前, 邹博文, 高珂, 等, 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351. doi: 10.3799/dqkx.2020.316
      莫宣学, 2010. 青藏高原地质研究的回顾与展望. 中国地质, 37(4): 841-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004004.htm
      王孝磊, 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5): 1445-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705005.htm
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学(D辑), 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202201006.htm
      徐夕生, 王孝磊, 赵凯, 等, 2020. 新时期花岗岩研究的进展和趋势. 矿物岩石地球化学通报, 39(5): 899-911, 1069. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202005002.htm
      许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      翟明国, 张旗, 陈国能, 等, 2016. 大陆演化与花岗岩研究的变革. 科学通报, 61(13): 1414-1420. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201613005.htm
      张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭-松潘大陆构造结. 地学前缘, 11(3): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403004.htm
      张旗, 王焰, 潘国强, 等, 2008. 花岗岩源岩问题: 关于花岗岩研究的思考之四. 岩石学报, 24(6): 1193-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705008.htm
    • dqkxzx-48-9-3296-附表1-2.docx
    • 加载中
    图(11)
    计量
    • 文章访问数:  465
    • HTML全文浏览量:  502
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-22
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回