• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    二氧化锰改性粉煤灰制备及其对地下水中砷的吸附特性

    王丽楠 杨保国 谢作明 赵欣鑫 石天池

    王丽楠, 杨保国, 谢作明, 赵欣鑫, 石天池, 2024. 二氧化锰改性粉煤灰制备及其对地下水中砷的吸附特性. 地球科学, 49(3): 1005-1016. doi: 10.3799/dqkx.2022.198
    引用本文: 王丽楠, 杨保国, 谢作明, 赵欣鑫, 石天池, 2024. 二氧化锰改性粉煤灰制备及其对地下水中砷的吸附特性. 地球科学, 49(3): 1005-1016. doi: 10.3799/dqkx.2022.198
    Wang Linan, Yang Baoguo, Xie Zuoming, Zhao Xinxin, Shi Tianchi, 2024. Preparation of Fly Ash Modified with Manganese Dioxide to Enhance As(Ⅲ) and As(Ⅴ) Adsorption from Groundwater. Earth Science, 49(3): 1005-1016. doi: 10.3799/dqkx.2022.198
    Citation: Wang Linan, Yang Baoguo, Xie Zuoming, Zhao Xinxin, Shi Tianchi, 2024. Preparation of Fly Ash Modified with Manganese Dioxide to Enhance As(Ⅲ) and As(Ⅴ) Adsorption from Groundwater. Earth Science, 49(3): 1005-1016. doi: 10.3799/dqkx.2022.198

    二氧化锰改性粉煤灰制备及其对地下水中砷的吸附特性

    doi: 10.3799/dqkx.2022.198
    基金项目: 

    宁夏自然科学基金项目 2020AAC03448

    国家自然科学基金面上项目 41572230

    国家自然科学基金面上项目 41172219

    国家自然科学基金创新研究群体项目 41521001

    详细信息
      作者简介:

      王丽楠(1997-),女,硕士研究生,主要从事环境地球化学方面的研究. ORCID:0000-0003-4191-5541. E-mail:1197291110@qq.com

      通讯作者:

      杨保国,E-mail:bgyang@cug.edu.cn

    • 中图分类号: P59

    Preparation of Fly Ash Modified with Manganese Dioxide to Enhance As(Ⅲ) and As(Ⅴ) Adsorption from Groundwater

    • 摘要: 高砷地下水在我国广泛分布,开发绿色高效的除砷材料对于促进地区发展和保障居民饮用水安全具有重要意义.采用共沉淀法结合NaOH水热处理技术制备了二氧化锰改性粉煤灰吸附材料MFA150,并研究其对地下水中As(Ⅲ)和As(Ⅴ)的吸附特性.结果表明,NaOH水热处理破坏了原始粉煤灰的玻璃体结构,且在这一过程中生成沸石相,粉煤灰比表面积由1.30 m2/g增加至40.26 m2/g.在负载MnO2后,MFA150比表面积达到148.82 m2/g.此外,吸附材料表面-OH的含量显著增加,为As(Ⅲ)和As(Ⅴ)提供了更多的吸附活性位点.MFA150对As(Ⅲ)和As(Ⅴ)的吸附过程符合Elovich模型和Freundlich模型.在中性条件下MFA150对As(Ⅴ)和As(Ⅲ)的吸附量分别达到2.55 mg/g和9.71 mg/g,酸性条件更有利于吸附.溶液中共存的HCO3和PO43‒会抑制As(Ⅲ)和As(Ⅴ)的吸附,而SO42‒对As(Ⅲ)和As(Ⅴ)的去除具有轻微促进作用.在模拟地下水中,MFA150对总砷的去除率达到91.90%.MFA150制备方法简单,制备原料廉价易得,吸附性能好有望用于含砷地下水处理.

       

    • 图  1  粉煤灰及其改性材料SEM图像和EDS分析

      a.FA; b.NFA; c.MFA150

      Fig.  1.  SEM image and EDS of fly ash and the modified materials

      图  2  粉煤灰及其改性材料XRD图

      Fig.  2.  XRD patterns of fly ash and modified materials

      图  3  FA、NFA及MFA150的FT-IR图

      Fig.  3.  FT-IR spectra of FA, NFA and MFA150

      图  4  FA以及不同MnO2负载量的MFA对As(Ⅴ)和As(Ⅲ)的去除率

      Fig.  4.  Removal rates of As(Ⅴ) and As(Ⅲ) by FA and MFA with different MnO2 loads

      图  5  初始浓度对As(Ⅴ) (a)和As(Ⅲ) (b)吸附去除影响

      Fig.  5.  Effect of initial concentration on adsorption removal of As(Ⅴ) (a) and As(Ⅲ) (b)

      图  6  MFA150的动力学曲线

      a. As(Ⅴ); b. As(Ⅲ)

      Fig.  6.  The kinetics curves of MFA150

      图  7  MFA150吸附As(Ⅲ)和As(Ⅴ)的吸附等温线拟合曲线

      Fig.  7.  The adsorption isotherm for As(Ⅲ) and As(Ⅴ)

      图  8  初始pH对MFA150吸附去除As(Ⅲ)和As(Ⅴ)的影响

      a. As(Ⅲ)和As(Ⅴ)去除率随pH变化;b. MFA150零电荷点测定;c. 锰元素浸出量

      Fig.  8.  Effect of initial pH of on As(Ⅲ) and As(Ⅴ) removal

      图  9  共存阴离子(HCO3、SO42‒、PO43‒)对MFA150吸附去除As(Ⅴ) (a)和As(Ⅲ) (b)的影响

      Fig.  9.  Effect of coexisted ion (HCO3, SO42‒ and PO43‒) on As(Ⅴ) (a) and As(Ⅲ) (b) removal by MFA150

      图  10  MFA150吸附去除模拟地下水中的砷

      a. As(T); b. As(Ⅲ); c. As(Ⅴ)

      Fig.  10.  Removal of arsenic from simulated groundwater over MFA150

      表  1  粉煤灰重金属元素浸出量

      Table  1.   Leaching amount of heavy metals from fly ash

      元素 Cr Ni Cu Zn As Cd Hg Pb
      浸出量(μg/g) 1.330 0.034 0.003 0.009 0.044 0.004 0.019 0.008
      下载: 导出CSV

      表  2  FA、NFA和MFA150的比表面积和孔结构参数

      Table  2.   Specific surface area and pore structure parameters of FA, NFA and MFA150

      材料 BET比表面积(m2/g) 孔容(cm3/g) 平均孔径(nm)
      FA 1.30 6.14×10‒3 28.47
      NFA 40.26 1.59×10‒1 10.78
      MFA150 148.82 2.00×10‒1 7.82
      下载: 导出CSV

      表  3  MFA150吸附As(Ⅴ)和As(Ⅲ)的动力学拟合参数

      Table  3.   The kinetic parameters of adsorption As(Ⅲ) and As(Ⅴ) over MFA150

      qe, exp 准一级动力学模型 准二级动力学模型 Elovich模型
      qe, cal k1 R2 qe, cal k1 R2 α β R2
      As(Ⅲ) 0.86 0.79 0.062 0.6557 0.82 0.124 0.8603 8.290 14.690 0.9928
      As(Ⅴ) 0.86 0.79 0.023 0.7900 0.82 0.038 0.8616 0.164 9.953 0.9800
      颗粒内扩散模型
      第一阶段 第二阶段 第三阶段
      kd1 C1 R12 kd2 C2 R22 kd3 C3 R32
      As(Ⅲ) 0.020 0.437 0.8834 0.010 0.556 0.9757 0.001 0.797 0.9257
      As(Ⅴ) 0.037 0.171 0.9842 0.014 0.374 0.9804 0.003 0.687 0.9949
      下载: 导出CSV

      表  4  MFA150吸附As(Ⅲ)和As(Ⅴ)吸附等温线拟合参数

      Table  4.   The Langmuir and Freundlich parameters of adsorption As(Ⅲ) and As(Ⅴ) over MFA150

      Langmuir Freundlich
      qmax(μg/g) KL(L/μg) R2 1/n Kf(μg/g) R2
      As(Ⅲ) 9 713.9 0.000 1 0.945 9 0.246 9 262.68 0.986 3
      As(Ⅴ) 2 545.1 0.002 1 0.944 1 0.537 7 38.77 0.980 4
      下载: 导出CSV
    • Algoufi, Y. T., Hameed, B. H., 2014. Synthesis of Glycerol Carbonate by Transesterification of Glycerol with Dimethyl Carbonate over K⁃Zeolite Derived from Coal Fly Ash. Fuel Processing Technology, 126: 5-11. https://doi.org/10.1016/j.fuproc.2014.04.004
      Asl, S. M. H., Javadian, H., Khavarpour, M., et al., 2019. Porous Adsorbents Derived from Coal Fly Ash as Cost⁃Effective and Environmentally⁃Friendly Sources of Aluminosilicate for Sequestration of Aqueous and Gaseous Pollutants: A Review. Journal of Cleaner Production, 208: 1131-1147. https://doi.org/10.1016/j.jclepro.2018.10.186
      Cuong, D. V., Wu, P. C., Chen, L. I., et al., 2021. Active MnO2/Biochar Composite for Efficient As(Ⅲ) Removal: Insight into the Mechanisms of Redox Transformation and Adsorption. Water Research, 188: 116495. https://doi.org/10.1016/j.watres.2020.116495
      Deschamps, E., Ciminelli, V. S. T., Höll, W. H., 2005. Removal of As(Ⅲ) and As(Ⅴ) from Water Using a Natural Fe and Mn Enriched Sample. Water Research, 39(20): 5212-5220. https://doi.org/10.1016/j.watres.2005.10.007
      Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
      Feng, W. L., Lü, X. B., Xiong, J., et al., 2021. Research Progress of High Added Value Utilization of Coal Fly Ash. Inorganic Chemicals Industry, 53(4): 25-31 (in Chinese with English abstract).
      Ferguson, J. F., Gavis, J., 1972. A Review of the Arsenic Cycle in Natural Waters. Water Research, 6(11): 1259-1274. https://doi.org/10.1016/0043⁃1354(72)90052⁃8
      Gollakota, A. R. K., Volli, V., Shu, C. M., 2019. Progressive Utilisation Prospects of Coal Fly Ash: A Review. Science of the Total Environment, 672: 951-989. https://doi.org/10.1016/j.scitotenv.2019.03.337
      Ho, Y. S., 2006. Review of Second⁃Order Models for Adsorption Systems. Journal of Hazardous Materials, 136(3): 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043
      Huang, X. R., Zhao, H. H., Hu, X. F., et al., 2020a. Optimization of Preparation Technology for Modified Coal Fly Ash and Its Adsorption Properties for Cd2+. Journal of Hazardous Materials, 392: 122461. https://doi.org/10.1016/j.jhazmat.2020.122461
      Huang, X. R., Zhao, H. H., Zhang, G. B., et al., 2020b. Potential of Removing Cd(Ⅱ) and Pb(Ⅱ) from Contaminated Water Using a Newly Modified Fly Ash. Chemosphere, 242: 125148. https://doi.org/10.1016/j.chemosphere.2019.125148
      Jiang, L., 2020. Comprehensiveutilization Situation of Fly Ash in Coal⁃Fired Power Plants and Its Development Suggestions. Clean Coal Technology, 26(4): 31-39 (in Chinese with English abstract).
      Jiang, L., Chen, J. Y., Li, X. M., et al., 2011. Adsorption of Phosphate from Wastewater by Fly Ash Ceramsite. Acta Scientiae Circumstantiae, 31(7): 1413-1420 (in Chinese with English abstract).
      Karanac, M., Đolić, M., Veljović, Đ., et al., 2018. The Removal of Zn2+, Pb2+, and As(Ⅴ) Ions by Lime Activated Fly Ash and Valorization of the Exhausted Adsorbent. Waste Management, 78: 366-378. https://doi.org/10.1016/j.wasman.2018.05.052
      Liang, J., Li, X. M., Yu, Z. G., et al., 2017. Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(Ⅱ) and Cd(Ⅱ). ACS Sustainable Chemistry & Engineering, 5(6): 5049-5058. https://doi.org/10.1021/acssuschemeng.7b00434
      Lou, Z. M., Cao, Z., Xu, J., et al., 2017. Enhanced Removal of As(Ⅲ)/(Ⅴ) from Water by Simultaneously Supported and Stabilized Fe⁃Mn Binary Oxide Nanohybrids. Chemical Engineering Journal, 322: 710-721. https://doi.org/10.1016/j.cej.2017.04.079
      Manning, B. A., Fendorf, S. E., Bostick, B., et al., 2002. Arsenic(Ⅲ) Oxidation and Arsenic(Ⅴ) Adsorption Reactions on Synthetic Birnessite. Environmental Science & Technology, 36(5): 976-981. https://doi.org/10.1021/es0110170
      Min, X. Z., Han, C. Y., Yang, L., et al., 2021. Enhancing As(Ⅴ) and As(Ⅲ) Adsorption Performance of Low Alumina Fly Ash with Ferric Citrate Modification: Role of FeSiO3 and Monosodium Citrate. Journal of Environmental Management, 287: 112302. https://doi.org/10.1016/j.jenvman.2021.112302
      Pengthamkeerati, P., Satapanajaru, T., Chatsatapattayakul, N., et al., 2010. Alkaline Treatment of Biomass Fly Ash for Reactive Dye Removal from Aqueous Solution. Desalination, 261(1-2): 34-40. https://doi.org/10.1016/j.desal.2010.05.050
      Qiu, R. F., Cheng, F. Q., Huang, H. M., 2018. Removal of Cd2+ from Aqueous Solution Using Hydrothermally Modified Circulating Fluidized Bed Fly Ash Resulting from Coal Gangue Power Plant. Journal of Cleaner Production, 172: 1918-1927. https://doi.org/10.1016/j.jclepro.2017.11.236
      Rathi, B. S., Kumar, P. S., 2021. A Review on Sources, Identification and Treatment Strategies for the Removal of Toxic Arsenic from Water System. Journal of Hazardous Materials, 418: 126299. https://doi.org/10.1016/j.jhazmat.2021.126299
      Rubinos, D. A., Iglesias, L., Díaz⁃Fierros, F., et al., 2011. Interacting Effect of pH, Phosphate and Time on the Release of Arsenic from Polluted River Sediments (Anllóns River, Spain). Aquatic Geochemistry, 17(3): 281-306. https://doi.org/10.1007/s10498⁃011⁃9135⁃2
      Sağ, Y., Aktay, Y., 2002. Kinetic Studies on Sorption of Cr(Ⅵ) and Cu(Ⅱ) Ions by Chitin, Chitosan and Rhizopus Arrhizus. Biochemical Engineering Journal, 12(2): 143-153. https://doi.org/10.1016/S1369⁃703X(02)00068⁃2
      Salam, M. A., Al⁃Zhrani, G., Kosa, S. A., 2014. Removal of Heavy Metal Ions from Aqueous Solution by Multi⁃Walled Carbon Nanotubes Modified with 8⁃Hydroxyquinoline: Kinetic Study. Journal of Industrial and Engineering Chemistry, 20(2): 572-580. https://doi.org/10.1016/j.jiec.2013.05.016
      Shen, Q. B., Wang, Z. Y., Yu, Q., et al., 2020. Removal of Tetracycline from an Aqueous Solution Using Manganese Dioxide Modified Biochar Derived from Chinese Herbal Medicine Residues. Environmental Research, 183: 109195. https://doi.org/10.1016/j.envres.2020.109195
      Shen, Z. L., Guo, H. M., Xu, G., et al., 2010. Abnormal Groundwater Chemistry and Endemic Disease. Chinese Journal of Nature, 32(2): 83-89 (in Chinese with English abstract).
      Su, Y., Cui, H., Li, Q., et al., 2013. Strong Adsorption of Phosphate by Amorphous Zirconium Oxide Nanoparticles. Water Research, 47(14): 5018-5026. https://doi.org/10.1016/j.watres.2013.05.044
      Teng, H., Hsieh, C. T., 1999. Activation Energy for Oxygen Chemisorption on Carbon at Low Temperatures. Industrial & Engineering Chemistry Research, 38(1): 292-297. https://doi.org/10.1021/ie980107j
      Tiwari, M. K., Bajpai, S., Dewangan, U. K., et al., 2015. Suitability of Leaching Test Methods for Fly Ash and Slag: A Review. Journal of Radiation Research and Applied Sciences, 8(4): 523-537. https://doi.org/10.1016/j.jrras.2015.06.003
      Tournassat, C., Charlet, L., Bosbach, D., et al., 2002. Arsenic(Ⅲ) Oxidation by Birnessite and Precipitation of Manganese(Ⅱ) Arsenate. Environmental Science & Technology, 36(3): 493-500. https://doi.org/10.1021/es0109500
      Wang, Y. L., Liu, H. P., Wang, S. F., et al., 2020. Simultaneous Removal and Oxidation of Arsenic from Water by δ⁃MnO2 Modified Activated Carbon. Journal of Environmental Sciences, 94: 147-160. https://doi.org/10.1016/j.jes.2020.03.006
      Wu, D. Y., Sui, Y. M., Chen, X. C., et al., 2008. Changes of Mineralogical⁃Chemical Composition, Cation Exchange Capacity, and Phosphate Immobilization Capacity during the Hydrothermal Conversion Process of Coal Fly Ash into Zeolite. Fuel, 87(10-11): 2194-2200. https://doi.org/10.1016/j.fuel.2007.10.028
      Wu, K., Wang, M., Li, A. Z., et al., 2021. The Enhanced As(Ⅲ) Removal by Fe⁃Mn⁃Cu Ternary Oxide via Synergistic Oxidation: Performances and Mechanisms. Chemical Engineering Journal, 406: 126739. https://doi.org/10.1016/j.cej.2020.126739
      Xie, X. J., Lu, C., Xu, R., et al., 2022. Arsenic Removal by Manganese⁃Doped Mesoporous Iron Oxides from Groundwater: Performance and Mechanism. Science of the Total Environment, 806: 150615. https://doi.org/10.1016/j.scitotenv.2021.150615
      Xiyili, H., Çetintaş, S., Bingöl, D., 2017. Removal of Some Heavy Metals onto Mechanically Activated Fly Ash: Modeling Approach for Optimization, Isotherms, Kinetics and Thermodynamics. Process Safety and Environmental Protection, 109: 288-300. https://doi.org/10.1016/j.psep.2017.04.012
      Zhang, G. S., Qu, J. H., Liu, H. J., et al., 2007. Removal Mechanism of As(Ⅲ) by a Novel Fe⁃Mn Binary Oxide Adsorbent: Oxidation and Sorption. Environmental Science & Technology, 41(13): 4613-4619. https://doi.org/10.1021/es063010u
      Zhang, K. H., Zhang, D. X., Zhang, K., 2016. Arsenic Removal from Water Using a Novel Amorphous Adsorbent Developed from Coal Fly Ash. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 73(8): 1954-1962. https://doi.org/10.2166/wst.2016.028
      Zhao, X., Zhao, H. H., Huang, X. R., et al., 2021. Effect and Mechanisms of Synthesis Conditions on the Cadmium Adsorption Capacity of Modified Fly Ash. Ecotoxicology and Environmental Safety, 223: 112550. https://doi.org/10.1016/j.ecoenv.2021.112550
      冯文丽, 吕学斌, 熊健, 等, 2021. 粉煤灰高附加值利用研究进展. 无机盐工业, 53(4): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202104005.htm
      姜龙, 2020. 燃煤电厂粉煤灰综合利用现状及发展建议. 洁净煤技术, 26(4): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202004004.htm
      蒋丽, 谌建宇, 李小明, 等, 2011. 粉煤灰陶粒对废水中磷酸盐的吸附试验研究. 环境科学学报, 31(7): 1413-1420. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201107011.htm
      沈照理, 郭华明, 徐刚, 等, 2010. 地下水化学异常与地方病. 自然杂志, 32(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201002006.htm
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  54
    • HTML全文浏览量:  21
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-04
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回