• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原季节冻土山区河流的溶解性碳输出特征及控制因素

    赵鲁松 孙自永 马瑞 胡雅璐 常启昕 潘艳喜 潘钊

    赵鲁松, 孙自永, 马瑞, 胡雅璐, 常启昕, 潘艳喜, 潘钊, 2024. 青藏高原季节冻土山区河流的溶解性碳输出特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    引用本文: 赵鲁松, 孙自永, 马瑞, 胡雅璐, 常启昕, 潘艳喜, 潘钊, 2024. 青藏高原季节冻土山区河流的溶解性碳输出特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    Zhao Lusong, Sun Ziyong, Ma Rui, Hu Yalu, Chang Qixin, Pan Yanxi, Pan Zhao, 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    Citation: Zhao Lusong, Sun Ziyong, Ma Rui, Hu Yalu, Chang Qixin, Pan Yanxi, Pan Zhao, 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204

    青藏高原季节冻土山区河流的溶解性碳输出特征及控制因素

    doi: 10.3799/dqkx.2022.204
    基金项目: 

    国家自然科学基金项目 41772270

    中国科学院A类战略性先导科技专项 XDA2010010304

    详细信息
      作者简介:

      赵鲁松(1994—),女,硕士研究生,主要从事高寒山区河流碳循环的研究工作. ORCID:0000-0002-6962-2698. E-mail:zhaolusong@cdu.edu.cn

      通讯作者:

      孙自永, ORCID: 0000-0001-6556-8105. E-mail: ziyong.sun@cug.edu.cn

    • 中图分类号: P641

    Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau

    • 摘要: 高寒山区土壤碳是全球冻土碳库的重要组成部分,以溶解相从陆地侧向输出到河流是该地区土壤碳输出的重要途径,而以往研究主要集中在多年冻土区,对季节冻土区关注较少.为探讨季节冻土区河流溶解性碳的输出规律、影响因素及其作用机制,以位于青藏高原祁连山北麓黑河上游的季节冻土山区——红泥沟小流域为研究区,通过对河水中溶解性有机碳(DOC)和溶解性无机碳(DIC)浓度与通量的连续观测,结合河水中稳定同位素丰度及流域内气象、水文、地温等观测数据,发现在冻土消融前期(春末),流域出口河水中DOC和DIC浓度较高但通量较低;在冻土消融后期(夏季),河水中DOC和DIC浓度较低但通量较高;河水中DOC和DIC浓度在消融后期总体呈下降趋势,但低流量期的浓度比高流量期略有上升.研究表明:对以红泥沟小流域为代表的季节冻土山区,消融前期溶解性碳输出的主控因素仍是冻土特征及动态,但在消融后期则变为水文输入特征主控,以细粒残坡积物为主的薄层含水层和广泛发育的冻融扰动地貌也对其有重要影响,导致河流中DOC浓度高于青藏高原其他地区的报道值.

       

    • 图  1  红泥沟小流域在青藏高原的位置(a)以及小流域内采样点和监测点的位置(b)

      Fig.  1.  Maps showing the location (a) of the Hongnigou catchment on the Qinghai-Xizang Plateau and the monitoring and sampling sites (b) in the Hongnigou catchment

      图  2  2012年9月~2013年8月红泥沟小流域山坡顶部(a、b)、中部(c、d)和河岸带(e、f)不同深度处土壤温度随时间的变化

      Fig.  2.  Time series of soil temperature at different depths at the top (a, b), middle (c, d) and bottom (e, f) of a slope in the Hongnigou catchment from September 2012 to August 2013

      图  3  不同时期红泥沟小流域内河水、土壤水和降水的δ18O-δ2H关系(a、c、d)及其统计值(b)

      Fig.  3.  The δ18O and δ2H relationships (a, c, d) and their means and standard deviations (b) of stream water, soil water and precipitation in the Hongnigou catchment during different periods

      图  4  红泥沟小流域出口河道径流量、河水水化学和同位素组成的动态变化

      Fig.  4.  Time series of stream discharge and the hydrochemical and isotopic compositions of stream water at the outlet of the Hongnigou catchment

      图  5  红泥沟小流域出口河流流量与河水中DOC、DIC及TDS浓度间的关系

      Fig.  5.  Relationships between solute concentration and discharge at the outlet of the Hongnigou catchment for DOC, DIC and TDS

      图  6  红泥沟小流域DOC、DIC输出通量的动态变化及其与河流流量的关系

      Fig.  6.  Time series of DOC and DIC export fluxes from the Hongnigou catchment and their relationships with stream discharge

      图  7  红泥沟小流域河岸带内因土壤冻结“排盐”所导致的地表盐分聚积现象(摄于2013年4月)

      Fig.  7.  Pictures showing the salt accumulation on ground surface in the riparian zone of the Hongnigou catchment caused by salt exclusion during the soil re-freezing (taken in April 2013)

      表  1  土壤温度监测剖面的位置及监测深度

      Table  1.   Location and monitoring depths of three soil temperature monitoring profiles

      土壤温度监测剖面 海拔
      (m)
      土壤温度监测深度
      (cm)
      T1(山坡顶部) 3 172 20、40、60、80、120、160、260
      T2(山坡中部) 3 159 20、40、60、80、120、160、240
      T3(山坡底部河岸带) 3 144 20、40、60、80、120、160、200
      下载: 导出CSV

      表  2  红泥沟小流域出口河水水化学及溶解性碳输出的统计特征

      Table  2.   Statistical characteristics of stream water chemistry and dissolved carbon export at the outlet of the Hongnigou catchment

      参数 单位 消融前期(2013年5月9日至6月1日) 消融后期(2013年7月5日至9月21日)
      最小值 最大值 平均值±
      标准差
      最小值 最大值 平均值±
      标准差
      δ2H ‒40.45 ‒29.19 ‒34.53±2.71 ‒37.90 ‒21.25 ‒30.03±2.67
      δ18O ‒6.81 ‒4.83 ‒5.90±0.48 ‒6.60 ‒4.85 ‒5.77±0.37
      TDS mg/L 2 743.67 4 106.81 3 387.07±348.87 1 147.41 3 128.59 2 167.64±491.50
      DOC mg/L 9.19 19.48 15.23±2.30 7.46 14.78 12.52±1.13
      DOC
      通量
      kgC/d 0.38 13.49 3.69±3.58 5.83 49.21 18.00±10.66
      DIC mg/L 102.70 190.31 160.74±19.78 82.09 167.42 125.98±13.97
      DIC
      通量
      kgC/d 4.96 155.41 38.34±39.89 59.22 436.38 175.94±96.56
      δ13CDIC ‒7.55 ‒5.94 ‒6.78±0.41 ‒9.22 ‒5.27 ‒8.00±0.63
      下载: 导出CSV
    • Amankwah, S. K., Ireson, A. M., Maulé, C., et al., 2021. A Model for the Soil Freezing Characteristic Curve that Represents the Dominant Role of Salt Exclusion. Water Resources Research, 57(8): e2021WR030070. https://doi.org/10.1029/2021WR030070
      An, Z. H., Sun, Z. Y., Hu, Y. L., et al., 2018. Export of Dissolved Organic Carbon in Streams Draining Permafrost­Dominated Areas: A Review. Geological Science and Technology Information, 37(1): 204-211 (in Chinese with English abstract).
      Buffam, I., Laudon, H., Temnerud, J., et al., 2007. Landscape­Scale Variability of Acidity and Dissolved Organic Carbon during Spring Flood in a Boreal Stream Network. Journal of Geophysical Research: Biogeosciences, 112: G01022. https://doi.org/10.1029/2006jg000218
      Chang, Q. X., Ma, R., Sun, Z. Y., et al., 2018. Using Isotopic and Geochemical Tracers to Determine the Contribution of Glacier­Snow Meltwater to Streamflow in a Partly Glacierized Alpine­Gorge Catchment in Northeastern Qinghai­Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): 10037-10056. https://doi.org/10.1029/2018jd028683
      Chen, R., Liu, J., Kang, E., et al., 2015. Precipitation Measurement Intercomparison in the Qilian Mountains, North­Eastern Tibetan Plateau. The Cryosphere, 9(5): 1995-2008. https://doi.org/10.5194/tc­9­1995­2015
      Cheng, G. D., Jin, H. J., 2013. Groundwater in the Permafrost Regions on the Qinghai­Tibet Plateau and it Changes. Hydrogeology & Engineering Geology, 40(1): 1-11 (in Chinese with English abstract).
      Dornblaser, M. M., Striegl, R. G., 2015. Switching Predominance of Organic Versus Inorganic Carbon Exports from an Intermediate­Size Subarctic Watershed. Geophysical Research Letters, 42(2): 386-394. https://doi.org/10.1002/2014gl062349
      Lloret, E., Dessert, C., Pastor, L., et al., 2013. Dynamic of Particulate and Dissolved Organic Carbon in Small Volcanic Mountainous Tropical Watersheds. Chemical Geology, 351: 229-244. https://doi.org/10.1016/j.chemgeo.2013.05.023
      Evans, S. G., Ge, S. M., 2017. Contrasting Hydrogeologic Responses to Warming in Permafrost and Seasonally Frozen Ground Hillslopes. Geophysical Research Letters, 44(4): 1803-1813. https://doi.org/10.1002/2016gl072009
      Gao, T. G., Kang, S. C., Chen, R. S., et al., 2019. Riverine Dissolved Organic Carbon and Its Optical Properties in a Permafrost Region of the Upper Heihe River Basin in the Northern Tibetan Plateau. Science of the Total Environment, 686: 370-381. https://doi.org/10.1016/j.scitotenv.2019.05.478
      Hirst, C., Mauclet, E., Monhonval, A., et al., 2022. Seasonal Changes in Hydrology and Permafrost Degradation Control Mineral Element­Bound DOC Transport from Permafrost Soils to Streams. Global Biogeochemical Cycles, 36(2): e2021GB007105. https://doi.org/10.1029/2021GB007105
      Ireson, A. M., van der Kamp, G., Ferguson, G., et al., 2013. Hydrogeological Processes in Seasonally Frozen Northern Latitudes: Understanding, Gaps and Challenges. Hydrogeology Journal, 21(1): 53-66. https://doi.org/10.1007/s10040­012­0916­5
      Jencso, K. G., McGlynn, B. L., Gooseff, M. N., et al., 2009. Hydrologic Connectivity between Landscapes and Streams: Transferring Reach­ and Plot­Scale Understanding to the Catchment Scale. Water Resources Research, 45(4): W04428. https://doi.org/10.1029/2008wr007225
      Liu, Z. W., Chen, R. S., Song, Y. X., et al., 2012. Characteristics of Rainfall Interception for Four Typical Shrubs in Qilian Mountain. Acta Ecologica Sinica, 32(4): 333-342 (in Chinese with English abstract).
      Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane­Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      McGuire, A. D., Anderson, L. G., Christensen, T. R., et al., 2009. Sensitivity of the Carbon Cycle in the Arctic to Climate Change. Ecological Monographs, 79(4): 523-555. https://doi.org/10.1890/08­2025.1
      Mu, C. C., Zhang, T. J., Cao, B., et al., 2013. Study of the Organic Carbon Storage in the Active Layer of Permafrost over the Eboling Mountain in the Upper Reaches of the Heihe River in the Eastern Qilian Mountains. Journal of Glaciology and Geocryology, 35(1): 1-9 (in Chinese with English abstract).
      Mu, C., Zhang, T., Wu, Q., et al., 2015. Editorial: Organic Carbon Pools in Permafrost Regions on the Qinghai­Xizang (Tibetan) Plateau. The Cryosphere, 9(2): 479-486. https://doi.org/10.5194/tc­9­479­2015
      Mu, C. C., Abbott, B. W., Wu, X. D., et al., 2017. Thaw Depth Determines Dissolved Organic Carbon Concentration and Biodegradability on the Northern Qinghai­Tibetan Plateau. Geophysical Research Letters, 44(18): 9389-9399. https://doi.org/10.1002/2017gl075067
      Pan, Z., Sun, Z. Y., Ma, R., et al., 2018. Isotopic Investigation of Rainfall­Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai­Tibet Plateau. Earth Science, 43(11): 4226-4236 (in Chinese with English abstract).
      Plaza, C., Pegoraro, E., Bracho, R., et al., 2019. Direct Observation of Permafrost Degradation and Rapid Soil Carbon Loss in Tundra. Nature Geoscience, 12(8): 627-631. https://doi.org/10.1038/s41561­019­0387­6
      Prokushkin, A. S., Pokrovsky, O. S., Shirokova, L. S., et al., 2011. Sources and the Flux Pattern of Dissolved Carbon in Rivers of the Yenisey Basin Draining the Central Siberian Plateau. Environmental Research Letters, 6(4): 045212. https://doi.org/10.1088/1748­9326/6/4/045212
      Song, C. L., Wang, G. X., Mao, T. X., et al., 2019. Importance of Active Layer Freeze­Thaw Cycles on the Riverine Dissolved Carbon Export on the Qinghai­Tibet Plateau Permafrost Region. PeerJ, 7: e7146. https://doi.org/10.7717/peerj.7146
      Stein, R., MacDonald, R., 2004. The Organic Carbon Cycle in the Arctic Ocean. Springer­Verlag, Berlin.
      Striegl, R. G., Aiken, G. R., Dornblaser, M. M., et al., 2005. A Decrease in Discharge­Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32(21): L21413. https://doi.org/10.1029/2005gl024413
      Walvoord, M. A., Voss, C. I., Wellman, T. P., 2012. Influence of Permafrost Distribution on Groundwater Flow in the Context of Climate­Driven Permafrost Thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resources Research, 48(7): W07524. https://doi.org/10.1029/2011wr011595
      Wan, H. L., Bian, J. M., Zhang, H., et al., 2021. Assessment of Future Climate Change Impacts on Water­Heat­Salt Migration in Unsaturated Frozen Soil Using CoupModel. Frontiers of Environmental Science & Engineering, 15(1): 10. https://doi.org/10.1007/s11783­020­1302­5
      Wang, D., Wu, T. H., Zhao, L., et al., 2021a. A 1 km Resolution Soil Organic Carbon Dataset for Frozen Ground in the Third Pole. Earth System Science Data, 13(7): 3453-3465. https://doi.org/10.5194/essd­13­3453­2021
      Wang, S., Sun, Z. Y., Hu, Y. L., et al., 2017. Intra­Annual Variation of Dissolved Organic Carbon Export through Stream from an Typical Alpine Catchment in Qinghai­Tibet Plateau: Patterns and Hydrological Controls. Safety and Environmental Engineering, 24(2): 1-7, 15 (in Chinese with English abstract).
      Wang, X., Liu, T., Wang, L., et al., 2021b. Spatial­Temporal Variations in Riverine Carbon Strongly Influenced by Local Hydrological Events in an Alpine Catchment. Biogeosciences, 18(10): 3015-3028. https://doi.org/10.5194/bg­18­3015­2021
      Wild, B., Andersson, A., Bröder, L., et al., 2019. Rivers across the Siberian Arctic Unearth the Patterns of Carbon Release from Thawing Permafrost. Proceedings of the National Academy of Sciences of the United States of America, 116(21): 10280-10285. https://doi.org/10.1073/pnas.1811797116
      Woo, M. K., Kane, D. L., Carey, S. K., et al., 2008. Progress in Permafrost Hydrology in the New Millennium. Permafrost and Periglacial Processes, 19(2): 237-254. https://doi.org/10.1002/ppp.613
      You, X. N., Li, X. Y., 2021. Seasonal Variations in Dissolved Organic Carbon in the Source Region of the Yellow River on the Tibetan Plateau. Water, 13(20): 2901. https://doi.org/10.3390/w13202901
      Zhang, D. F., Zheng, Q. H., Dong, Z. Y., 2005. Mechanism of Soil Salt­Moisture Transfer under Freeze­ Thawing Condition. Bulletin of Soil and Water Conservation, 25(6): 14-18 (in Chinese with English abstract).
      Zhang, F., Jin, Z. D., Li, F. C., et al., 2013. Controls on Seasonal Variations of Silicate Weathering and CO2 Consumption in Two River Catchments on the NE Tibetan Plateau. Journal of Asian Earth Sciences, 62: 547-560. https://doi.org/10.1016/j.jseaes.2012.11.004
      Zhang, S. X., Sun, Z. Y., Pan, Y. X., et al., 2023. Using Temperature to Trace River­Groundwater Interactions in Alpine Regions: A Case Study in the Upper Reaches of the Heihe River. Bulletin of Geological Science and Technology, 42(4): 95-106 (in Chinese with English abstract).
      Zhang, T., Barry, R. G., Knowles, K., et al., 2003. Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere. In: Guglielmin, M., Balks, M., Paetzold, R., eds., Proceedings of the 8th International Conference on Permafrost. A.A. Balkema Publishers, Amsterdam.
      Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc­11­2527­2017
      安志宏, 孙自永, 胡雅璐, 等, 2018. 多年冻土区河流溶解性有机碳输出的研究进展. 地质科技情报, 37(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801028.htm
      程国栋, 金会军, 2013. 青藏高原多年冻土区地下水及其变化. 水文地质工程地质, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201301007.htm
      刘章文, 陈仁升, 宋耀选, 等, 2012. 祁连山典型灌丛降雨截留特征. 生态学报, 32(4): 333-342. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201204036.htm
      毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      牟翠翠, 张廷军, 曹斌, 等, 2013. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究. 冰川冻土, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301002.htm
      潘钊, 孙自永, 马瑞, 等, 2018. 黑河上游高寒山区降雨‒径流形成过程的同位素示踪. 地球科学, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552
      王烁, 孙自永, 胡雅璐, 等, 2017. 高寒山区典型小流域河流溶解性有机碳输出的年内变化及其成因. 安全与环境工程, 24(2): 1-7, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201702001.htm
      张殿发, 郑琦宏, 董志颖, 2005. 冻融条件下土壤中水盐运移机理探讨. 水土保持通报, 25(6): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200506004.htm
      张淑勋, 孙自永, 潘艳喜, 等, 2023. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例. 地质科技通报, 42(4): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202304010.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  99
    • HTML全文浏览量:  30
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-06
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回