• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    干湿循环作用下云母石英片岩抗剪性能劣化规律及机理

    李志刚 叶宏林 代云云 徐光黎 盛逸凡 马郧

    李志刚, 叶宏林, 代云云, 徐光黎, 盛逸凡, 马郧, 2024. 干湿循环作用下云母石英片岩抗剪性能劣化规律及机理. 地球科学, 49(3): 1028-1038. doi: 10.3799/dqkx.2022.211
    引用本文: 李志刚, 叶宏林, 代云云, 徐光黎, 盛逸凡, 马郧, 2024. 干湿循环作用下云母石英片岩抗剪性能劣化规律及机理. 地球科学, 49(3): 1028-1038. doi: 10.3799/dqkx.2022.211
    Li Zhigang, Ye Honglin, Dai Yunyun, Xu Guangli, Sheng Yifan, Ma Yun, 2024. Law and Mechanism of Shear Degradation of Mica Quartz Schist under Dry-Wet Cycles. Earth Science, 49(3): 1028-1038. doi: 10.3799/dqkx.2022.211
    Citation: Li Zhigang, Ye Honglin, Dai Yunyun, Xu Guangli, Sheng Yifan, Ma Yun, 2024. Law and Mechanism of Shear Degradation of Mica Quartz Schist under Dry-Wet Cycles. Earth Science, 49(3): 1028-1038. doi: 10.3799/dqkx.2022.211

    干湿循环作用下云母石英片岩抗剪性能劣化规律及机理

    doi: 10.3799/dqkx.2022.211
    基金项目: 

    国家自然科学基金项目 41772314

    江苏省高等学校自然科学研究项目 20KJB170020

    江苏省高等学校自然科学研究项目 21KJB570010

    湖北省科技厅重点研发项目 2021BCA219

    湖北省自然资源厅科技项目 ZRZY2022KJ17

    详细信息
      作者简介:

      李志刚(1988-),男,讲师,主要从事岩土力学方面的研究工作.ORCID:0000-0001-5631-8219. E-mail:lzgdyy@yzu.edu.cn

      通讯作者:

      徐光黎,E-mail: xu1963@cug.edu.cn

    • 中图分类号: P642.3

    Law and Mechanism of Shear Degradation of Mica Quartz Schist under Dry-Wet Cycles

    • 摘要: 在干湿循环作用下,片岩的抗剪性能劣化对片岩边坡长期稳定性具有重要影响.以鄂西北广泛分布的云母石英片岩为研究对象,通过开展一系列室内试验,揭示其抗剪性能劣化规律及机理.吸水性试验及直剪试验结果表明,云母石英片岩的吸水率随着干湿循环次数增加呈逐渐上升的趋势,抗剪强度及残余抗剪强度随干湿循环次数的增加呈逐渐下降的趋势,抗剪性能劣化效应明显.结合扫描电镜测试所得云母石英片岩微观结构变化规律,揭示其抗剪性能劣化机理:干湿循环作用下,云母石英片岩片理面逐渐扩展开裂,内部矿物颗粒强度软化,颗粒间胶结弱化,岩石骨架变得松散;粘聚力主要受矿物颗粒之间的胶结程度影响,劣化速率较快;内摩擦角主要受矿物颗粒嵌固程度和颗粒本身强度的影响,劣化速度相对较慢.

       

    • 图  1  云母石英片岩试样

      Fig.  1.  Mica quartz schist samples

      图  2  云母石英片岩直剪试验示意

      Fig.  2.  Schematic diagram of direct shear test of mica quartz schist

      图  3  干湿循环作用下云母石英片岩吸水率变化规律

      Fig.  3.  Water absorption variation of mica quartz schist under different dry-wet cycles

      图  4  干湿循环作用下云母石英片岩峰值剪应力变化规律

      Fig.  4.  Peak shear stress variation of mica quartz schist under dry-wet cycles

      图  5  内摩擦角和粘聚力劣化曲线

      Fig.  5.  Deterioration curve of internal friction angle and cohesion

      图  6  内摩擦角和粘聚力总劣化曲线

      Fig.  6.  Total deterioration curve of internal friction angle and cohesion

      图  7  干湿循环作用下不同岩石粘聚力劣化度变化规律

      Fig.  7.  Variation of cohesion deterioration of different rocks under dry-wet cycles

      图  8  干湿循环作用下不同岩石内摩擦角劣化度变化规律

      Fig.  8.  Variation of friction angle deterioration of different rocks under dry-wet cycles

      图  9  直剪试验前后试样破坏面灰度值分布直方图

      Fig.  9.  Histogram of the gray value distribution of the failure surface before and after the direct shear test

      图  10  试样剪切破坏面分割方法处理前后对比

      Fig.  10.  Comparison of shear failure surface segmentation method of schist sample before and after treatment

      图  11  干湿循环作用下试样剪切面摩擦损伤度变化曲线

      Fig.  11.  Variation curves of shear surface friction damage of shear surface under dry-wet cycles

      图  12  不同干湿循环作用下垂直片理SEM照片(×1 200倍)

      Fig.  12.  SEM pictures of vertical foliation under different dry-wet cycles(×1 200 times)

      图  13  不同干湿循环作用下平行片理SEM照片(×1 200倍)

      Fig.  13.  SEM pictures of parallel foliation under different dry-wet cycles(×1 200 times)

      图  14  干湿循环作用下云母石英片岩劣化过程

      Fig.  14.  Diagram of mica quartz schist deterioration mechanism under wet-dry cycles

      表  1  干湿循环作用下云母石英片岩直剪试验结果

      Table  1.   Direct shear test results of mica quartz schist under wet-dry cycles

      岩样编号 干湿循环次数 法向应力$ {\sigma }_{n} $(MPa) 峰值剪应力$ {\tau }_{\mathrm{m}\mathrm{a}\mathrm{x}} $(MPa) 残余剪应力$ {\tau }^{\text{'}} $(MPa) 粘聚力c(MPa) 内摩擦角$ \varphi $ (°) 残余粘聚力$ {c}^{\text{'}} $(MPa) 残余内摩擦角$ {\varphi }^{\mathrm{\text{'}}} $ (°)
      S1-0-1 0 3.00 18.81 11.16 16.89 39.01 8.77 39.35
      S1-0-2 6.00 22.64 14.03
      S1-0-3 9.00 24.23 15.63
      S1-0-4 12.00 26.46 18.81
      S1-0-5 15.00 27.42 21.05
      S1-1-1 1 3.00 18.18 10.2 16.07 36.65 8.36 37.81
      S1-1-2 6.00 20.09 12.76
      S1-1-3 9.00 22.00 13.71
      S1-1-4 12.00 24.55 17.54
      S1-1-5 15.00 26.15 19.45
      S1-2-1 3 3.00 17.80 9.89 15.25 35.45 8.13 36.24
      S1-2-2 6.00 18.54 12.75
      S1-2-3 9.00 21.68 13.39
      S1-2-4 12.00 23.28 15.94
      S1-2-5 15.00 25.66 17.54
      S1-3-1 5 3.00 16.58 9.57 13.81 34.29 7.75 35.45
      S1-3-2 6.00 17.54 12.43
      S1-3-3 9.00 19.45 13.07
      S1-3-4 12.00 22.96 15.64
      S1-3-5 15.00 24.55 16.90
      S1-4-1 10 3.00 15.94 8.85 13.17 34.21 7.13 31.63
      S1-4-2 6.00 16.58 10.84
      S1-4-3 9.00 18.18 13.07
      S1-4-4 12.00 22.32 15.63
      S1-4-5 15.00 24.23 16.58
      S1-5-1 15 3.00 15.63 8.44 12.76 33.82 6.47 31.17
      S1-5-2 6.00 16.43 10.84
      S1-5-3 9.00 17.86 12.12
      S1-5-4 12.00 21.36 12.27
      S1-5-5 15.00 23.28 15.31
      S1-6-1 20 3.00 15.31 8.29 12.40 33.02 6.29 30.86
      S1-6-2 6.00 15.94 10.65
      S1-6-3 9.00 17.22 12.12
      S1-6-4 12.00 20.73 12.27
      S1-6-5 15.00 22.96 15.31
      下载: 导出CSV
    • An, R., Kong, L. W., Li, C. S., et al., 2020. Strength Attenuation and Microstructure Damage of Granite Residual Soils under Hot and Rainy Weather. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1902-1911 (in Chinese with English abstract).
      Chen, N., Cai, X. M., Xia, J. W., et al., 2021. Intelligent Interpretation of Rock Mass Discontinuity Based on Three⁃Dimensional Laser Point Cloud. Earth Science, 46(7): 2351-2361 (in Chinese with English abstract).
      Chen, X. X., Gong, Y. P., 2019. Features of Shear Strength Parameters Reflecting Damage to Rock Caused by Water Invasion⁃Loss Cycles. Geotechnical and Geological Engineering, 37(3): 1919-1929. https://doi.org/10.1007/s10706⁃018⁃0733⁃2
      Deng, H. F., Zhou, M. L., Li, J. L., et al., 2016. Mechanical Properties Deteriorating Change Rule Research of Red⁃Layer Soft Rock under Water⁃Rock Interaction. Chinese Journal of Rock Mechanics and Engineering, 35(S2): 3481-3491 (in Chinese with English abstract).
      Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract).
      Li, C. D., Meng, J., Xiang, L. Y., et al., 2023. Multi⁃Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667 (in Chinese with English abstract).
      Li, X. S., Peng, K., Peng, J., et al., 2021. Effect of Cyclic Wetting⁃Drying Treatment on Strength and Failure Behavior of Two Quartz⁃Rich Sandstones under Direct Shear. Rock Mechanics and Rock Engineering, 54(11): 5953-5960. https://doi.org/10.1007/s00603⁃021⁃02583⁃z
      Liu, T., 2015. Experimental Study on Mechanical Properties of Mica Schist under the Action of Wetting⁃Drying Cycle. Subgrade Engineering, (4): 67-71 (in Chinese with English abstract).
      Liu, X., Tang, Z. C., Li, L., et al., 2020. Experimental Study on Shear Properties of Red Sandstone Joints after Cyclic Wetting⁃Drying Treatment. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3316-3325 (in Chinese with English abstract).
      Liu, X. R., Jin, M. H., Li, D. L., et al., 2018. Strength Deterioration of a Shaly Sandstone under Dry⁃Wet Cycles: A Case Study from the Three Gorges Reservoir in China. Bulletin of Engineering Geology and the Environment, 77(4): 1607-1621. https://doi.org/10.1007/s10064⁃017⁃1107⁃3
      Liu, X. R., Wang, Z. J., Fu, Y., et al., 2016. Research on Nondestructive Testing Parameters' Scale Effect of Sandstone of Different Moisture Contents. Rock and Soil Mechanics, 37(S1): 192-200 (in Chinese with English abstract).
      Liu, X. R., Wang, Z. J., Fu, Y., et al., 2017. Strength and Failure Criterion of Argillaceous Sandstone under Dry⁃Wet Cycles. Rock and Soil Mechanics, 38(12): 3395-3401 (in Chinese with English abstract).
      Liu, X. X., Li, Y., Wang, W. W., et al., 2022. Research on Mechanical Properties and Strength Criterion of Carbonaceous Shale with Pre⁃Existing Fissures under Drying⁃Wetting Cycles. Chinese Journal of Rock Mechanics and Engineering, 41(2): 228-239 (in Chinese with English abstract).
      Nouailletas, O., Perlot, C., Rivard, P., et al., 2017. Impact of Acid Attack on the Shear Behaviour of a Carbonate Rock Joint. Rock Mechanics and Rock Engineering, 50(6): 1439-1451. https://doi.org/10.1007/s00603⁃017⁃1182⁃6
      Özbek, A., 2014. Investigation of the Effects of Wetting⁃Drying and Freezing⁃Thawing Cycles on Some Physical and Mechanical Properties of Selected Ignimbrites. Bulletin of Engineering Geology and the Environment, 73(2): 595-609. https://doi.org/10.1007/s10064⁃013⁃0519⁃y
      Qin, Z., Chen, X. X., Fu, H. L., 2018. Damage Features of Altered Rock Subjected to Drying⁃Wetting Cycles. Advances in Civil Engineering, 2018: 1-10. https://doi.org/10.1155/2018/5170832
      Wang, C., Pei, W. S., Zhang, M. Y., et al., 2021. Multi⁃Scale Experimental Investigations on the Deterioration Mechanism of Sandstone under Wetting⁃Drying Cycles. Rock Mechanics and Rock Engineering, 54(1): 429-441. https://doi.org/10.1007/s00603⁃020⁃02257⁃2
      Xie, K. N., Jiang, D. Y., Sun, Z. G., et al., 2018. NMR, MRI and AE Statistical Study of Damage Due to a Low Number of Wetting⁃Drying Cycles in Sandstone from the Three Gorges Reservoir Area. Rock Mechanics and Rock Engineering, 51(11): 3625-3634. https://doi.org/10.1007/s00603⁃018⁃1562⁃6
      Yao, W. M., Li, C. D., Zhan, H. B., et al., 2020. Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting⁃Drying of Yangtze River Water. Rock Mechanics and Rock Engineering, 53(5): 2215-2231. https://doi.org/10.1007/s00603⁃019⁃02037⁃7
      Yin, X. M., Yan, E. C., Wang, L. N., et al., 2020. Anisotropy of Quartz Mica Schist Based on Quantitative Extraction of Fabric Information. Bulletin of Engineering Geology and the Environment, 79(5): 2439-2456. https://doi.org/10.1007/s10064⁃019⁃01699⁃5
      Yuan, W., Liu, X. R., Fu, Y., 2019. Chemical Thermodynamics and Chemical Kinetics Analysis of Sandstone Dissolution under the Action of Dry⁃Wet Cycles in Acid and Alkaline Environments. Bulletin of Engineering Geology and the Environment, 78(2): 793-801. https://doi.org/10.1007/s10064⁃017⁃1162⁃9
      Zhang, Z. H., Huang, X., Cui, Q., 2017. Experimental Study on Deterioration of the Tensile Strength of Red Sandstone during the Operation of Reservoir. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2731-2740 (in Chinese with English abstract).
      Zhao, Z. H., Yang, J., Zhang, D. F., et al., 2017. Effects of Wetting and Cyclic Wetting⁃Drying on Tensile Strength of Sandstone with a Low Clay Mineral Content. Rock Mechanics and Rock Engineering, 50(2): 485-491. https://doi.org/10.1007/s00603⁃016⁃1087⁃9
      Zhou, D. H., Zhai, Q. L., Liu, T., et al., 2013. Study on Deformation Mode and Failure Mechanism of Schist Slope along Highway in Northwest Hubei. Subgrade Engineering, (4): 29-33 (in Chinese with English abstract).
      安然, 孔令伟, 黎澄生, 等, 2020. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律. 岩石力学与工程学报, 39(9): 1902-1911. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm
      陈娜, 蔡小明, 夏金梧, 等, 2021. 基于三维激光点云技术的岩体结构面智能解译. 地球科学, 46(7): 2351-2361. doi: 10.3799/dqkx.2020.282
      邓华锋, 周美玲, 李建林, 等, 2016. 水‒岩作用下红层软岩力学特性劣化规律研究. 岩石力学与工程学报, 35(S2): 3481-3491. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2005.htm
      亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
      李长冬, 孟杰, 项林语, 等, 2023. 白鹤滩库首区砂岩结构多尺度演变机制. 地球科学, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
      刘廷, 2015. 干湿循环作用下云母片岩力学特性试验研究. 路基工程, (4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201504016.htm
      刘星, 唐志成, 李璐, 等, 2020. 循环干湿处理后红砂岩节理的剪切性质试验研究. 岩石力学与工程学报, 39(S2): 3316-3325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2011.htm
      刘新荣, 王子娟, 傅晏, 等, 2016. 不同含水率砂岩无损检测参数的尺度效应研究. 岩土力学, 37(S1): 192-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1025.htm
      刘新荣, 王子娟, 傅晏, 等, 2017. 考虑干湿循环作用泥质砂岩的强度与破坏准则研究. 岩土力学, 38(12): 3395-3401. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712001.htm
      刘新喜, 李玉, 王玮玮, 等, 2022. 干湿循环作用下预制裂隙炭质页岩力学特性及强度准则研究. 岩石力学与工程学报, 41(2): 228-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202002.htm
      张振华, 黄翔, 崔强, 2017. 水库运行期岸坡消落带红砂岩抗拉强度劣化机制. 岩石力学与工程学报, 36(11): 2731-2740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711012.htm
      周大华, 翟全礼, 刘廷, 等, 2013. 鄂西北地区公路片岩边坡变形破坏模式及失稳机制研究. 路基工程, (4): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201304008.htm
    • 加载中
    图(14) / 表(1)
    计量
    • 文章访问数:  88
    • HTML全文浏览量:  40
    • PDF下载量:  17
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-04
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回