• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义

    段东 郑常青 梁琛岳 宋志伟 陈龙 李冬雪 孙晓蕾 耿志忠

    段东, 郑常青, 梁琛岳, 宋志伟, 陈龙, 李冬雪, 孙晓蕾, 耿志忠, 2024. 辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义. 地球科学, 49(3): 868-892. doi: 10.3799/dqkx.2022.214
    引用本文: 段东, 郑常青, 梁琛岳, 宋志伟, 陈龙, 李冬雪, 孙晓蕾, 耿志忠, 2024. 辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义. 地球科学, 49(3): 868-892. doi: 10.3799/dqkx.2022.214
    Duan Dong, Zheng Changqing, Liang Chenyue, Song Zhiwei, Chen Long, Li Dongxue, Sun Xiaolei, Geng Zhizhong, 2024. Petrogeochemical Characteristics and Tectonic Significance of Middle Jurassic Intrusive Pluton in Xiajiabao Area, Qingyuan, Northern Liaoning. Earth Science, 49(3): 868-892. doi: 10.3799/dqkx.2022.214
    Citation: Duan Dong, Zheng Changqing, Liang Chenyue, Song Zhiwei, Chen Long, Li Dongxue, Sun Xiaolei, Geng Zhizhong, 2024. Petrogeochemical Characteristics and Tectonic Significance of Middle Jurassic Intrusive Pluton in Xiajiabao Area, Qingyuan, Northern Liaoning. Earth Science, 49(3): 868-892. doi: 10.3799/dqkx.2022.214

    辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义

    doi: 10.3799/dqkx.2022.214
    基金项目: 

    国家重点研发计划专题 2017YFC0601401

    国家自然科学基金项目 42172213

    详细信息
      作者简介:

      段东(1991-),男,硕士研究生,主要研究方向为岩石学. ORCID:0000-0003-0056-3607. E-mail:594572387@qq.com

      通讯作者:

      郑常青, ORCID: 0000-0002-9622-6922. E-mail: zhengchangqing@jlu.edu.cn

    • 中图分类号: P581;P597

    Petrogeochemical Characteristics and Tectonic Significance of Middle Jurassic Intrusive Pluton in Xiajiabao Area, Qingyuan, Northern Liaoning

    • 摘要: 辽北清原地区位于华北板块北缘东段,是研究古太平洋构造域的典型地区之一.研究区中生代岩浆岩的成因及构造背景对认识古太平洋构造域的演化具有重要意义.本次研究对清原夏家堡地区辉长苏长岩、石英闪长岩和花岗闪长岩进行了锆石U-Pb年代学和岩石地球化学分析.锆石U-Pb测年结果表明,辉长苏长岩形成于中侏罗世晚期((163.8±2.4)Ma),石英闪长岩形成于中侏罗世中期((169.9±2.2)Ma),花岗闪长岩形成于中侏罗世中期(169.9~167.3 Ma).岩石地球化学特征上,辉长苏长岩和石英闪长岩属于钙碱性系列岩石,具有低硅、富铝、高镁及较高的Mg#,弱富集轻稀土元素(LREEs),富集Rb、Ba、K、Sr等大离子亲石元素(LILEs),亏损Nb、Ta等高场强元素(HFSEs),Eu呈微弱的正异常或无异常;花岗闪长岩具有较高的硅、铝和全碱含量,具有高钾钙碱性I型花岗岩地球化学特征,Sr/Yb值较高,Eu具弱的负异常,富集LREEs和LILEs(Rb、K、Ba等),亏损HFSEs(Nb、Ta等).上述地球化学特征表明辉长苏长岩和石英闪长岩的原始岩浆应起源于受俯冲板片析出流体所交代的岩石圈地幔部分熔融;花岗闪长岩是俯冲背景下受流体交代的下地壳基性火成岩部分熔融的产物.结合区域构造演化史和区域岩浆活动时空分布规律,认为辽北清原夏家堡地区中侏罗世侵入体的形成与古太平洋板块的俯冲作用有关.

       

    • 图  1  研究区及周边地质简图

      底图据Gu et al.(2018)修改;年龄数据张晓晖等(2005)、Zhang et al.(200520092010)、陈跃军等(2006)、Wu et al.(2011)、曹花花(2013)、Zhang et al.(2016);顾承串等(2016)、Yuan et al.(2016)、刘锦(2017)、Gu et al.(2018

      Fig.  1.  Geological sketch of the study area

      图  2  清原夏家堡一带区域地质图及采样位置

      底图据辽宁省地质矿产调查院, 2017, 辽宁1∶5万夏家堡、猴石、北三家、清原县幅区域地质矿产调查报告修改

      Fig.  2.  Regional geological map of the Xiajiabao region, Qingyuan with sampling location

      图  3  清原夏家堡不同类型岩石野外照片和镜下照片

      a.辉长苏长岩野外露头;b和c.花岗闪长岩和石英闪长岩野外露头;d~g.辉长苏长岩镜下照片;e~h.石英闪长岩镜下照片;f~i.花岗闪长岩镜下照片. Pl.斜长石;Qz.石英;Bi.黑云母;Hy.紫苏辉石;Aug.普通辉石;Hb.角闪石;Chl.绿泥石;(+).正交偏光镜;(-).单偏光镜

      Fig.  3.  The outcrop photographs and photomicrographs of different types rock in Xiajiabao area, Qingyuan

      图  4  清原地区夏家堡侵入岩的锆石阴极发光(CL)图像

      Fig.  4.  Cathodoluminescence images (CL) of representative zircons for Xiajiabao intrusive rocks in Qingyuan

      图  5  清原地区夏家堡一带不同类型岩石的U-Pb年龄谐和图

      Fig.  5.  Zircon U-Pb concordia diagrams for different types rock in Xiajiabao aera, Qingyuan

      图  6  辽北清原地区夏家堡侵入体的岩石分类图解

      a. TAS图解;b. A/NK-A/CNK图解;c. SiO2-K2O图解;d. K2O-Na2O图解. 黄泥冷岩体数据王广伟等(2018);李家台岩体数据刘锦(2017

      Fig.  6.  Geochemical discrimination diagram of Xiajiapu intrusive pluton in Qingyuan area

      图  7  清原夏家堡侵入岩的球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)

      原始地幔标准化数据引自Boynton(1984),球粒陨石标准化数据引自Sun and McDonough(1989

      Fig.  7.  Chondrite normalized REE patterns and primitive mantle normalized trace element spider diagrams

      图  8  夏家堡地区中基性侵入岩成因判别图解及构造判别图解

      a. TFeO-MgO-Al2O3图解,据Pearce and Gale(1977)、Jia et al.(2022)修改;1.扩张性中央岛;2.岛弧及活动大陆边缘;3.洋中脊玄武岩;4.洋岛玄武岩;5.大陆玄武岩;b. K2O-TiO2-P2O5图解,据Pearce et al.(1975)修改;c. La/Nb-Ba/Nb图解,底图据张超等(2020);d. La/Yb-Nb/Y图解,底图据张超等(2020). MORB.洋中脊玄武岩;OIB.洋岛玄武岩;Dupal OIB. Doupal洋岛玄武岩

      Fig.  8.  Petrogenetic and Tectonic discrimination diagrams of intermediate-mafic intrusive rocks in Xiajiabao area.

      图  9  夏家堡地区花岗闪长岩成因判别图解

      a.(K2O+Na2O)/CaO-(Zr+Nb+Ce+Y)图解;b. TFeO/MgO-(Zr+Nb+Ce+Y)图解;c. Zr-10 000 Ga/Al图解;d. Nb-10 000 Ga/Al图解,据Whalen et al.(1987)修改;e. K2O-Na2O图解,底图据曹花花(2013)修改;f. Sr/Yb图解,据张旗等(2006)修改. FG.高分异I、S、M型花岗岩;OTG.未分异I、S、M型花岗岩. 黄泥冷岩体数据王广伟等(2018);李家台岩体数据刘锦(2017

      Fig.  9.  Petrogenetic discrimination diagrams of granodiorite in Xiajiabao area.

      图  10  华北克拉通北缘东段侏罗纪岩浆活动分布

      底图据关庆彬(2018)修改;年龄数据孙德有等(2005a, 2005b)、张艳斌等(2002)、Miao et al.(2005)、Gao et al.(2007)、Ge et al.(2007)、张春艳等(2007)许文良等(2008, 2013)、赵院冬等(2009)、Wu et al.(2011)、武鹏飞等(2013)张超等(2014)、Zhang et al.(2016)、顾承串等(2016)王超等(2016)刘锦(2017)王广伟等(2018)关庆彬(2018)任永健(2019)王聚胜等(2019)张笑鸣(2021)张立仕等(2021)

      Fig.  10.  Distribution of Jurassic magmatic rocks in the eastern part of the northern margin of the North China Craton

      图  11  清原夏家堡花岗闪长岩构造判别图解

      底图据Pearce et al.(1984)修改;VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋中脊花岗岩. 黄泥冷岩体数据据王广伟等(2018);李家台岩体数据据刘锦(2017)

      Fig.  11.  Tectonic discrimination diagrams of Xiajiabao grandiorite

      表  1  辽北清原地区夏家堡侵入体LA⁃IPC⁃MS锆石U⁃Pb同位素分析结果

      Table  1.   LA-ICP-MS zircon U-Pb dating results for the Xiajiabao pluton in the Qingyuan area, Northern Liaoning

      样品号 Th U Th/U 同位素比值 年龄(Ma)
      (10-6 207Pb/
      206Pb
      1σ 207Pb/
      235U
      1σ 206Pb/
      238U
      1σ 207Pb/
      206Pb
      1σ 207Pb/
      235Pb
      1σ 206Pb/
      238U
      1σ
      21QY01-01 70 117 0.60 0.049 5 0.004 8 0.180 6 0.017 0 0.026 5 0.000 9 170 146 169 15 169 6
      21QY01-02 87 158 0.55 0.049 8 0.006 2 0.205 2 0.024 7 0.029 9 0.001 2 186 194 190 21 190 8
      21QY01-03 89 164 0.54 0.050 7 0.006 5 0.198 2 0.024 8 0.028 4 0.001 2 227 201 184 21 180 8
      21QY01-04 40 80 0.50 0.050 2 0.006 8 0.175 7 0.023 0 0.025 4 0.001 1 205 213 164 20 162 7
      21QY01-05 74 145 0.51 0.052 6 0.005 7 0.187 1 0.019 6 0.025 8 0.001 0 311 167 174 17 164 6
      21QY01-06 300 847 0.35 0.049 4 0.002 5 0.171 4 0.008 7 0.025 2 0.000 7 166 68 161 8 160 4
      21QY01-07 14 69 0.20 0.049 7 0.008 5 0.200 6 0.033 2 0.029 2 0.001 5 183 266 186 28 186 9
      21QY01-08 72 160 0.45 0.048 3 0.004 9 0.175 1 0.017 4 0.026 3 0.000 9 116 156 164 15 167 6
      21QY01-09 92 143 0.65 0.048 7 0.004 7 0.180 0 0.017 1 0.026 8 0.000 9 134 148 168 15 170 6
      21QY01-10 92 196 0.47 0.049 2 0.004 3 0.168 8 0.014 4 0.024 9 0.000 8 158 132 158 13 158 5
      21QY01-11 68 157 0.44 0.049 8 0.004 7 0.179 3 0.016 4 0.026 1 0.000 9 184 142 167 14 166 6
      21QY01-12 37 85 0.43 0.053 0 0.006 3 0.187 7 0.021 8 0.025 7 0.001 0 327 189 175 19 164 6
      21QY01-13 102 156 0.66 0.049 2 0.004 8 0.179 4 0.017 0 0.026 4 0.000 9 159 148 168 15 168 6
      21QY01-14 71 128 0.56 0.049 0 0.005 5 0.176 7 0.019 3 0.026 2 0.001 0 147 174 165 17 166 6
      21QY01-15 32 73 0.44 0.049 3 0.006 3 0.181 6 0.022 8 0.026 7 0.001 0 163 211 169 20 170 6
      21QY01-16 81 171 0.47 0.049 6 0.004 3 0.174 9 0.014 9 0.025 5 0.000 8 178 133 164 13 163 5
      21QY01-17 138 214 0.65 0.049 1 0.005 0 0.168 1 0.016 7 0.024 8 0.000 9 153 156 158 15 158 6
      21QY01-18 42 100 0.42 0.049 0 0.005 6 0.174 7 0.019 6 0.025 8 0.000 9 148 183 163 17 164 6
      21QY01-19 308 738 0.42 0.051 4 0.002 3 0.184 2 0.008 3 0.026 0 0.000 7 260 57 172 7 165 4
      21QY01-20 76 119 0.64 0.050 7 0.009 4 0.171 7 0.031 1 0.024 6 0.000 9 228 350 161 27 156 6
      21QY01-21 158 211 0.75 0.050 3 0.006 6 0.171 8 0.022 0 0.024 8 0.000 8 209 281 161 19 158 5
      21QY01-22 77 120 0.64 0.049 5 0.007 4 0.180 2 0.026 0 0.026 4 0.001 2 173 237 168 22 168 7
      21QY01-23 33 82 0.340 0.049 9 0.008 5 0.178 8 0.029 6 0.026 0 0.001 2 191 267 167 26 165 8
      21QY01-24 264 436 0.61 0.049 8 0.003 0 0.180 3 0.010 6 0.026 3 0.000 7 187 86 168 9 167 5
      21QY01-25 39 79 0.50 0.049 9 0.008 8 0.203 2 0.034 8 0.029 5 0.001 5 191 272 188 29 188 9
      21QY02-01 549 291 1.89 0.049 1 0.002 6 0.184 3 0.009 8 0.027 2 0.000 8 152 71 172 8 173 5
      21QY02-02 620 374 1.67 0.049 8 0.002 4 0.186 5 0.009 2 0.027 1 0.000 8 187 64 174 8 173 5
      21QY02-03 290 217 1.33 0.049 4 0.003 4 0.177 1 0.012 2 0.026 0 0.000 8 165 100 166 11 166 5
      21QY02-04 89 82 1.09 0.047 9 0.005 8 0.173 7 0.020 5 0.026 3 0.001 0 96 190 163 18 167 6
      21QY02-05 158 130 1.22 0.048 6 0.005 4 0.182 0 0.019 9 0.027 2 0.001 1 127 172 170 17 173 7
      21QY02-06 154 130 1.19 0.049 0 0.004 4 0.182 0 0.016 1 0.026 9 0.000 9 147 135 170 14 171 6
      21QY02-07 159 138 1.15 0.049 1 0.005 5 0.183 1 0.020 0 0.027 1 0.001 0 151 174 171 17 172 7
      21QY02-08 184 135 1.35 0.049 4 0.003 8 0.186 6 0.014 3 0.027 4 0.000 9 167 114 174 12 174 6
      21QY02-09 88 121 0.73 0.049 1 0.004 2 0.179 0 0.015 1 0.026 5 0.000 9 151 128 167 13 168 6
      21QY02-10 224 127 1.75 0.048 9 0.006 0 0.181 9 0.022 0 0.027 0 0.001 1 142 196 170 19 172 7
      21QY02-11 389 212 1.82 0.049 5 0.004 1 0.187 6 0.015 2 0.027 5 0.000 9 170 122 175 13 175 6
      21QY02-12 1 054 425 2.50 0.049 2 0.002 2 0.181 0 0.008 4 0.026 7 0.000 7 159 59 169 7 170 5
      21QY02-13 355 218 1.61 0.049 5 0.003 1 0.178 1 0.011 3 0.026 1 0.000 8 170 90 166 10 166 5
      21QY02-14 1 362 692 1.96 0.054 1 0.002 1 0.199 8 0.008 2 0.026 8 0.000 7 376 46 185 7 170 5
      21QY02-15 282 188 1.49 0.049 6 0.003 6 0.184 7 0.013 2 0.027 0 0.000 9 174 105 172 11 172 5
      21QY02-16 169 153 1.11 0.049 7 0.003 4 0.179 9 0.012 3 0.026 3 0.000 8 180 101 168 11 167 5
      21QY02-17 198 138 1.43 0.048 9 0.004 7 0.176 0 0.016 7 0.026 1 0.000 9 144 147 165 14 166 6
      21QY02-18 30 43 0.69 0.049 6 0.008 7 0.186 9 0.031 9 0.027 3 0.001 3 178 273 174 27 174 8
      21QY02-19 895 408 2.17 0.049 6 0.002 6 0.182 0 0.009 8 0.026 6 0.000 8 177 73 170 8 169 5
      21QY02-20 292 209 1.39 0.045 0 0.002 7 0.165 2 0.009 9 0.026 6 0.000 8 ‒20 74 155 9 169 5
      21QY02-21 558 330 1.70 0.049 4 0.002 5 0.181 3 0.009 5 0.026 6 0.000 8 168 71 169 8 169 5
      21QY02-22 1 225 445 2.78 0.049 0 0.002 0 0.180 6 0.007 7 0.026 8 0.000 7 147 53 169 7 170 5
      21QY02-23 188 132 1.43 0.049 8 0.004 6 0.182 7 0.016 6 0.026 6 0.000 9 187 141 170 14 169 6
      21QY02-24 269 164 1.64 0.051 4 0.005 3 0.187 4 0.018 7 0.026 4 0.001 0 261 159 174 16 168 6
      21QY02-25 267 181 1.47 0.049 1 0.003 0 0.180 5 0.011 1 0.026 7 0.000 8 152 88 169 10 170 5
      21QY04-01 230 158 1.45 0.060 1 0.004 7 0.218 7 0.016 7 0.026 4 0.000 9 606 108 201 14 168 6
      21QY04-02 406 229 1.75 0.049 2 0.003 0 0.180 8 0.011 1 0.026 6 0.000 8 158 87 169 10 169 5
      21QY04-03 509 259 1.96 0.048 6 0.002 8 0.178 9 0.010 2 0.026 7 0.000 8 128 78 167 9 170 5
      21QY04-04 206 134 1.54 0.049 9 0.005 7 0.187 1 0.020 9 0.027 2 0.001 1 191 180 174 18 173 7
      21QY04-05 280 185 1.52 0.049 1 0.003 5 0.180 6 0.012 9 0.026 7 0.000 8 153 106 169 11 170 5
      21QY04-06 370 219 1.70 0.050 1 0.004 4 0.194 8 0.016 6 0.028 2 0.001 0 201 132 181 14 179 6
      21QY04-07 583 294 1.96 0.048 9 0.002 5 0.179 3 0.009 2 0.026 6 0.000 7 143 70 167 8 169 5
      21QY04-08 207 183 1.14 0.055 5 0.003 2 0.205 5 0.011 8 0.026 9 0.000 8 431 77 190 10 171 5
      21QY04-09 664 332 2.00 0.049 2 0.002 4 0.179 2 0.008 9 0.026 4 0.000 7 156 66 167 8 168 5
      21QY04-10 227 154 1.47 0.052 0 0.003 6 0.189 3 0.013 0 0.026 4 0.000 8 284 101 176 11 168 5
      21QY04-11 187 105 1.79 0.050 7 0.011 4 0.213 9 0.047 3 0.030 6 0.001 7 225 336 197 40 195 10
      21QY04-12 102 91 1.12 0.049 8 0.005 0 0.188 4 0.018 6 0.027 4 0.001 0 187 156 175 16 174 6
      21QY04-13 236 203 1.16 0.055 5 0.003 6 0.201 9 0.013 1 0.026 4 0.000 8 433 91 187 11 168 5
      21QY04-14 126 121 1.04 0.050 1 0.006 1 0.187 8 0.022 5 0.027 2 0.001 1 199 194 175 19 173 7
      21QY04-15 220 171 1.28 0.050 5 0.003 1 0.186 7 0.011 4 0.026 8 0.000 8 219 87 174 10 171 5
      21QY04-16 266 167 1.59 0.050 3 0.004 3 0.182 8 0.015 5 0.026 4 0.000 9 207 131 170 13 168 6
      21QY04-17 372 208 1.78 0.049 7 0.003 1 0.178 9 0.011 4 0.026 2 0.000 8 180 92 167 10 166 5
      21QY04-18 196 158 1.24 0.049 8 0.004 4 0.178 4 0.015 4 0.026 0 0.000 9 184 131 167 13 166 6
      21QY04-19 117 105 1.12 0.052 2 0.008 8 0.184 7 0.030 5 0.025 6 0.001 0 296 344 172 26 163 6
      21QY04-20 205 165 1.25 0.050 3 0.003 9 0.190 4 0.014 4 0.027 5 0.000 9 209 114 177 12 175 6
      21QY04-21 425 246 1.72 0.055 6 0.003 6 0.203 5 0.013 2 0.026 6 0.000 8 434 90 188 11 169 5
      21QY04-22 287 202 1.43 0.051 7 0.003 7 0.189 1 0.013 3 0.026 6 0.000 8 273 104 176 11 169 5
      21QY04-23 338 202 1.67 0.049 4 0.003 5 0.182 5 0.012 9 0.026 8 0.000 8 167 104 170 11 171 5
      21QY04-24 154 141 1.10 0.055 8 0.005 0 0.202 1 0.017 8 0.026 3 0.000 9 445 133 187 15 167 6
      21QY04-25 251 186 1.35 0.049 3 0.003 1 0.187 4 0.012 0 0.027 6 0.000 8 163 92 174 10 176 5
      21QY05-01 292 539 0.54 0.163 2 0.003 3 10.398 9 0.260 4 0.462 3 0.011 7 2 489 19 2 471 23 2 450 52
      21QY05-02 325 199 1.64 0.050 1 0.004 2 0.189 0 0.015 5 0.027 4 0.000 9 198 125 176 13 174 6
      21QY05-03 729 652 1.11 0.164 5 0.003 3 10.207 1 0.256 4 0.450 4 0.011 4 2 502 19 2 454 23 2 397 51
      21QY05-04 288 193 1.49 0.055 2 0.003 4 0.199 0 0.012 0 0.026 2 0.000 8 421 83 184 10 166 5
      21QY05-05 480 310 1.54 0.051 2 0.003 0 0.191 6 0.011 2 0.027 1 0.000 8 251 82 178 10 173 5
      21QY05-06 855 543 1.59 0.050 3 0.002 3 0.175 3 0.008 2 0.025 3 0.000 7 207 59 164 7 161 4
      21QY05-07 519 270 1.92 0.053 5 0.003 3 0.194 9 0.012 1 0.026 4 0.000 8 350 87 181 10 168 5
      21QY05-08 61 126 0.48 0.165 4 0.003 9 10.408 9 0.285 5 0.456 7 0.011 9 2 511 21 2 472 25 2 425 53
      21QY05-09 231 319 0.73 0.164 2 0.003 4 10.205 2 0.257 8 0.451 0 0.011 4 2 499 20 2 454 23 2 400 51
      21QY05-10 235 175 1.33 0.046 1 0.007 6 0.166 1 0.026 8 0.026 2 0.001 0 577 290 156 23 166 6
      21QY05-11 15 310 0.05 0.164 5 0.003 5 9.952 2 0.256 4 0.438 9 0.011 2 2 503 20 2 430 24 2 346 50
      21QY05-12 226 200 1.12 0.165 3 0.003 5 10.803 0 0.276 0 0.474 1 0.012 1 2 511 20 2 506 24 2 502 53
      21QY05-13 425 221 1.92 0.049 6 0.002 9 0.179 5 0.010 6 0.026 3 0.000 8 176 84 168 9 167 5
      21QY05-14 238 372 0.64 0.160 3 0.007 2 9.709 4 0.348 0 0.439 3 0.011 8 2 459 77 2 408 33 2 347 53
      21QY05-15 157 311 0.51 0.164 2 0.003 7 7.177 4 0.190 0 0.317 1 0.008 1 2 500 20 2 134 24 1 775 40
      21QY05-16 417 252 1.67 0.049 8 0.003 7 0.175 9 0.012 8 0.025 6 0.000 8 184 108 165 11 163 5
      21QY05-17 140 317 0.44 0.164 3 0.003 4 9.857 1 0.251 9 0.435 1 0.011 0 2 501 20 2 422 24 2 329 50
      21QY05-18 258 269 0.96 0.165 1 0.003 6 10.972 5 0.288 1 0.482 0 0.012 4 2 509 20 2 521 24 2 536 54
      21QY05-19 282 149 1.89 0.050 3 0.003 4 0.182 0 0.012 1 0.026 3 0.000 8 207 98 170 10 167 5
      21QY05-20 607 348 1.75 0.051 3 0.003 0 0.191 7 0.011 3 0.027 1 0.000 8 252 83 178 10 173 5
      21QY05-21 241 224 1.08 0.164 8 0.003 6 10.253 0 0.267 7 0.451 2 0.011 5 2 506 20 2 458 24 2 401 51
      21QY05-22 259 164 1.59 0.050 7 0.003 3 0.183 7 0.011 8 0.026 3 0.000 8 227 93 171 10 167 5
      21QY05-23 151 278 0.54 0.164 2 0.003 4 10.230 0 0.259 9 0.452 1 0.011 4 2 499 20 2 456 23 2 404 51
      21QY05-24 319 307 1.04 0.165 0 0.003 4 10.096 5 0.255 9 0.443 8 0.011 2 2 508 19 2 444 23 2 368 50
      21QY05-25 352 353 1.00 0.164 6 0.003 5 9.997 6 0.258 3 0.440 6 0.011 2 2 504 20 2 435 24 2 353 50
      下载: 导出CSV

      表  2  中侏罗世侵入体主量元素(%)和微量元素(10-6)分析结果

      Table  2.   Major elements (%) and trace elements (10-6) data for the Middle Jurassic pluton

      样品号 21QY01 21QY02 21QY03 21QY04 21QY05 21QY06
      SiO2 52.50 64.10 52.89 53.55 68.02 53.22
      TiO2 0.87 0.51 1.01 0.98 0.41 0.65
      Al2O3 15.74 16.54 18.99 18.79 14.93 17.73
      Fe2O3 4.87 1.14 4.36 4.06 1.34 4.59
      FeO 5.20 2.60 4.52 4.60 1.16 4.51
      MnO 0.16 0.04 0.15 0.14 0.04 0.12
      MgO 6.13 1.14 3.64 3.56 0.74 5.26
      CaO 8.53 2.77 7.46 7.20 2.16 6.83
      Na2O 3.01 4.58 4.47 4.31 3.83 3.86
      K2O 0.83 3.40 0.79 1.06 4.30 0.83
      P2O5 0.29 0.20 0.33 0.33 0.11 0.14
      LOI 1.43 2.71 1.15 0.95 2.61 2.11
      Total 99.55 99.72 99.75 99.51 99.64 99.86
      A/CNK 0.74 1.02 0.87 0.88 1.00 0.90
      A/NK 2.69 1.47 3.99 3.64 1.36 2.44
      Mg# 56 38 47 47 38 55
      La 18.12 38.19 17.26 19.10 22.71 12.48
      Ce 38.45 78.15 38.87 44.19 44.08 26.70
      Pr 4.85 8.68 5.08 5.71 4.69 3.30
      Nd 18.27 30.13 21.07 23.40 15.59 13.04
      Sm 4.11 5.41 4.69 5.14 2.68 2.86
      Eu 1.34 1.46 1.66 1.69 0.69 1.03
      Gd 3.87 4.84 4.57 4.88 2.39 2.68
      Tb 0.52 0.67 0.65 0.72 0.30 0.39
      Dy 2.66 3.17 3.28 3.65 1.51 1.97
      Ho 0.56 0.69 0.69 0.78 0.32 0.42
      Er 1.47 1.89 1.76 1.99 0.91 1.14
      Tm 0.24 0.32 0.28 0.33 0.15 0.19
      Yb 1.28 1.75 1.47 1.69 0.88 1.02
      Lu 0.24 0.36 0.26 0.31 0.20 0.19
      Y 18.52 20.95 17.95 19.98 8.99 10.98
      LREE 85.14 162.02 88.63 99.22 90.44 59.41
      HREE 10.83 13.69 12.97 14.34 6.67 7.99
      LREE/HRE 7.86 11.83 6.84 6.92 13.57 7.44
      REE 95.97 175.71 101.59 113.57 97.11 67.40
      (La/Yb)N 9.54 14.68 7.89 7.64 17.37 8.27
      (La/Sm)N 2.77 4.44 2.32 2.34 5.32 2.74
      (Ce/Yb)N 7.77 11.52 6.82 6.78 12.93 6.78
      δEu 1.01 0.86 1.09 1.02 0.82 1.12
      δCe 0.97 1.00 0.99 1.01 0.98 0.98
      Rb 78.36 74.88 13.79 17.19 67.02 27.29
      Ba 361.90 887.50 457.20 530.30 538.60 346.80
      Th 0.45 2.30 0.41 0.51 2.31 0.59
      U 0.11 0.45 0.07 0.12 0.26 0.24
      Nb 5.87 10.96 4.35 5.07 6.51 3.00
      Ta 0.72 0.74 0.42 0.43 0.55 0.46
      La 18.12 38.19 17.26 19.10 22.71 12.48
      Ce 38.45 78.15 38.87 44.19 44.08 26.70
      Sr 536.00 458.80 760.90 720.00 104.90 363.50
      Nd 18.27 30.13 21.07 23.40 15.59 13.04
      Sm 4.11 5.41 4.69 5.14 2.68 2.86
      Zr 116.60 240.90 75.65 97.95 170.90 71.69
      Hf 2.04 5.49 1.80 2.40 4.20 1.82
      Tb 0.52 0.67 0.65 0.72 0.30 0.39
      Y 18.52 20.95 17.95 19.98 8.99 10.98
      P 1 263.14 859.03 1 453.10 1 419.49 459.43 615.27
      Ti 5 227.94 3 033.33 6 075.81 5 883.54 2 463.62 3 898.72
      K 6 909.28 28 197.70 6 519.65 8 773.21 35 667.59 6 902.51
      Al 83 277.56 87 518.70 100 512.14 99 419.70 79 039.80 93 844.80
      下载: 导出CSV
    • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256. https://doi.org/10.1007/BF00402114
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, R., ed., Rare Earth Element Geochemistry, Elsevier Amsterdam. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Cao, H. H., 2013. Geochronology and Geochemistry of the Late Paleozoic-Early Mesozoic Igneous Rocks in the Eastern Segment of the Northern Margin of the North China Block (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Chen, J. L., Guo, Y. S., Fu, S. M., 2004. The Research Headway to Granitiod-Classification Review and Synthesis of Isma Granitiod. Acta Geologica Gansu, 13(1): 67-73 (in Chinese with English abstract).
      Chen, L., Liang, C. Y., Liu, Y. J., et al., 2022. Geochronology and Provenance Analysis of the Xiufeng Formation in Mohe Basin: Implications for the Evolution of the Eastern Mongol-Okhotsk Ocean. Earth Science, 47(9): 3334-3353 (in Chinese with English abstract).
      Chen, Y. J., Peng, Y. J., Liu, Y. W., et al., 2006. Progress in the Study of Chronostratigraphy of the "Qinghezhen Group". Geological Review, 52(2): 170-177 (in Chinese with English abstract).
      Gao, F. H., Xu, W. L., Yang, D. B., et al., 2007. LA-ICP-MS Zircon U-Pb Dating from Granitoids in Southern Basement of Songliao Basin: Constraints on Ages of the Basin Basement. Science in China: Earth Sciences, 50(7): 995-1004. https://doi.org/10.1007/s11430-007-0019-7
      Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/S0016-7037(98)00121-5
      Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2007. Porphyry Cu-Mo Deposits in the Eastern Xing'an-Mongolian Orogenic Belt: Mineralization Ages and Their Geodynamic Implications. Chinese Science Bulletin, 52(24): 3416-3427. https://doi.org/10.1007/s11434-007-0466-8
      Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-X
      Gu, C. C., Zhu, G., Li, Y. J., et al., 2018. Timing of Deformation and Location of the Eastern Liaoyuan Terrane, NE China: Constraints on the Final Closure Time of the Paleo-Asian Ocean. Gondwana Research, 60: 194-212. https://doi.org/10.1016/j.gr.2018.04.012
      Gu, C. C., Zhu, G., Zhai, M. J., et al., 2016. Features and Origin Time of Mesozoic Strike-Slip Structures in the Yilan-Yitong Fault Zone. Science in China (Series D), 46(12): 1579-1601 (in Chinese with English abstract).
      Guan, Q. B., 2018. Permian-Early Jurassic Tectonic Evolution of Kaiyuan-Yanji Area in the Eastern Segment of the Northern Margin of the North China Block (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Guo, F., 2016. Geological Records of the Pacific Plate Subduction in the Northeast Asian Continental Margin: an Overview. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1082-1089, 1071 (in Chinese with English abstract).
      Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3-4): 144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018
      Hu, P. Y., Liang, C. Y., Zheng, C. Q., et al., 2019. Tectonic Transformation and Metallogenesis of the Yanshan Movement during the Late Jurassic Period: Evidence from Geochemistry and Zircon U-Pb Geochronology of the Adamellites in Xingcheng, Western Liaoning, China. Minerals, 9(9): 518. https://doi.org/10.3390/min9090518
      Jia, S. J., Zheng, C. Q., Liang, C. Y., et al., 2022. Metamorphism of the Yilan Amphibolites from the Heilongjiang Complex and Deformation of the Granodioritic Mylonites from the Jiamusi Massif, Northeastern China. Geological Journal, 57(8): 3368-3394. https://doi.org/10.1002/gj.4481
      Jiang, N., Liu, Y. S., Zhou, W. G., et al., 2007. Derivation of Mesozoic Adakitic Magmas from Ancient Lower Crust in the North China Craton. Geochimica et Cosmochimica Acta, 71(10): 2591-2608. https://doi.org/10.1016/j.gca.2007.02.018
      Li, D. X., Zheng, C. Q., Liang, C. Y., et al., 2022. Genesis and Geological Significance of Granitic Mylonites in Southern Zhalantun, Central Xing'an Range. Earth Science, 47(9): 3354-3370 (in Chinese with English abstract).
      Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2019. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137. https://doi.org/10.1016/j.earscirev.2019.03.003
      Liang, C. Y., Liu, Y. J., Zheng, C. Q., et al., 2019. Deformation Patterns and Timing of the Thrust-Nappe Structures in the Mohe Formation in Mohe Basin, Northeast China: Implication of the Closure Timing of Mongol-Okhotsk Ocean. Geological Journal, 54(2): 746-769. https://doi.org/10.1002/gj.3502
      Liu, H. T., Zhai, M. G., Liu, J. M., et al., 2002. The Mesozoic Granitoids in the Northern Marginal Region of North China Craton: Evolution from Post-Collisional to Ano Rogenic Settings. Acta Petrologica Sinica, 18(4): 433-448 (in Chinese with English abstract).
      Liu, J., 2017. The Mesozoic Tectonic Evolution of Kaiyuan Area in the Eastern Segment of Northern Margin of the North China Block (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Liu, J., Liu, Z. H., Li, S. C., et al., 2016. Geochronology and Geochemistry of Triassic Intrusive Rocks in Kaiyuan Area of the Eastern Section of the Northern Margin of North China. Acta Petrologica Sinica, 32(9): 2739-2756 (in Chinese with English abstract).
      Liu, Y. J., Feng, Z. Q., Jiang, L. W., et al., 2019. Ophiolite in the Eastern Central Asian Orogenic Belt, NE China. Acta Petrologica Sinica, 35(10): 3017-3047 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05
      Lu, X. P., Wu, F. Y., Zhao, C. B., et al., 2003. Zircon U-Pb Ages of the Indosinian Granites in the Tonghua Region, and Response of Liaoji Region to the Dabie-Sulu Ultrahigh-Pressure Collisional Orogenesis. Chinese Science Bulletin, 48 (8): 843-849 (in Chinese). doi: 10.1360/csb2003-48-8-843
      Luo, Z. K., Qiu, Y. S., Guan, K., et al., 2001. SHRIMP U-Pb Dating on Zircon from Yu'erya and Niuxinshan Granite Intrusions in Eastern Hebei Provence. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 278-285 (in Chinese with English abstract).
      Ma, Q., Zheng, J. P., Xu, Y. G., et al., 2015. Are Continental "Adakites" Derived from Thickened or Foundered Lower Crust? Earth and Planetary Science Letters, 419: 125-133. https://doi.org/10.1016/j.epsl.2015.02.036
      Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      Miao, L. C., Qiu, Y. M., Fan, W. M., et al., 2005. Geology, Geochronology, and Tectonic Setting of the Jiapigou Gold Deposits, Southern Jilin Province, China. Ore Geology Reviews, 26(1-2): 137-165. https://doi.org/10.1016/j.oregeorev.2004.10.004
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. https://doi.org/10.1130/0091-7613(2003)0310529: hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
      Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
      Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publications, Nantwich.
      Pearce, J. A., Gale, G. H., 1977. Identification of Ore-Deposition Environment from Trace-Element Geochemistry of Associated Igneous Host Rocks. Geological Society, London, Special Publications, 7(1): 14-24. https://doi.org/10.1144/gsl.sp.1977.007.01.03
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Pearce, T. H., Gorman, B. E., Birkett, T. C., 1975. The TiO2-K2O-P2O5 Diagram: a Method of Discriminating between Oceanic and Non-Oceanic Basalts. Earth and Planetary Science Letters, 24(3): 419-426. https://doi.org/10.1016/0012-821X(75)90149-1
      Peng, Y. J., Qi, C. D., Zhou, X. D., et al., 2012. Transition from Paleo-Asian Ocean Domain to Circum-Pacific Ocean Domain for the Ji-Hei Composite Orogenic Belt: Time Mark and Relationship to Global Tectonics. Geology and Resources, 21(3): 261-265 (in Chinese with English abstract).
      Qu, C. X., 2015. The Cause Evolution and Tectonic Implications of the Late Carboniferous-Early Permian Intermediate-Mafic Magmatic Rocks in the East Tianshan and Its Adjacent Area, Xinjiang (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Ren, Y. J., 2019. Early-Middle Jurassic Granitic Magmatism and Tectonic Evolution in the Southern Part of Zhangguangcailing. Acta Geologica Sinica, 93(11): 2813-2831 (in Chinese with English abstract).
      Song, Z. W., Zheng, C. Q., Liang, C. Y., et al., 2021. Identification and Geological Significance of Early Jurassic Adakitic Volcanic Rocks in Xintaimen Area, Western Liaoning. Minerals, 11(3): 331. https://doi.org/10.3390/min11030331
      Song, Z. W., Zheng, C. Q., Lin, B., et al., 2023. Geological Characteristics of Late Jurassic Volcanic Rocks in Sierbao-Baita Basin, West Liaoning Province and Its Response to Yanshan Movement. Earth Science, 48(10): 3689-3706 (in Chinese with English abstract).
      Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 1012. https://doi.org/10.1029/2001rg000108
      Sui, Z. M., Chen, Y. J., 2011. Zircon Saturation Temperatures of Granites in Eastern Great Xing'an Range, and Its Geological Signification. Global Geology, 30(2): 162-172 (in Chinese with English abstract).
      Sui, Z. M., Ge, W. C., Wu, F. Y., et al., 2007. Zircon U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan-Mts. Acta Petrologica Sinica, 23(2): 461-480 (in Chinese with English abstract).
      Sun, D. Y., SUZUKI, K., Wu, F. Y., et al., 2005b. CHIME Dating and Its Application for Mesozoic Granites of Huanggoushan, Jilin Province. Geochimica, 34(4): 305-314 (in Chinese with English abstract).
      Sun, D. Y., Wu, F. Y., Gao, S., et al., 2005a. Confirmation of Two Episodes of A-Type Granite Emplacement during Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China. Earth Science Frontiers, 12 (2): 263-275 (in Chinese with English abstract).
      Sun, M. D., Xu, Y. G., Wilde, S. A., et al., 2015. The Permian Dongfanghong Island-Arc Gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific Subduction. Tectonophysics, 659: 122-136. https://doi.org/10.1016/j.tecto.2015.07.034
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, X. M., Wang, S. Q., Wang, Y. D., et al., 2010. The Structural Feature and Evolutionary Series in the Northern Segment of Tancheng-Lujiang Fault Zone. Acta Petrologica Sinica, 26(1): 165-176 (in Chinese with English abstract).
      Tang, J., Xu, W. L., Wang, F., 2016. Rock Associations and Their Spatial-Temporal Variations of the Early Mesozoic Igneous Rocks in the NE Asia: Constraints on the Initial Subduction Timing of the Paleo-Pacific Plate. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1181-1194 (in Chinese with English abstract).
      Tang, K. D., Shao, J. A., Li, J. C., et al., 2004. Nature of Yanbian Suture Zone in Jilin Province and Northeast Asia Structure. Geological Bulletin of China, 23(S2): 885-891 (in Chinese with English abstract).
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
      Wan, Y. S., Song, B., Yang, C., et al., 2005. Zircon SHRIMP U-Pb Geochronology of Archaean Rocks from the Fushun-Qingyuan Area, Liaoning Province and Its Geological Significance. Acta Geologica Sinica, 79(1): 78-87 (in Chinese with English abstract).
      Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract).
      Wang, C., Liu, Z. H., Song, J., et al., 2016. Chronology, Geochemical Characteristics of Granodiorite-Quartz Diorite Pluton in Kaishantun, Yanbian Area and Its Constrains to the Beginning of Paleo-Pacific Plate Subduction. Acta Petrologica Sinica, 32(9): 2856-2866 (in Chinese with English abstract).
      Wang, G. W., Sun, G. S., Yu, C., et al., 2018. Zircon U- Pb Geochronology, Petrogeochemistry and Petrogenesis of Adamellite in Huangniling Area, Eastern Liaoning. Global Geology, 37(4): 1033-1046 (in Chinese with English abstract).
      Wang, J. S., Sun, Y. G., Zhao, C. J., et al., 2019. U-Pb Geochronology, Geochemical Feature and Tectonic Evolution of Monzonitic Granites from Daxi Mountain, Central Jilin Province. Journal of Heilongjiang University of Science and Technology, 29(6): 653-662 (in Chinese with English abstract).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wilde, S. A., Zhou, J. B., 2015. The Late Paleozoic to Mesozoic Evolution of the Eastern Margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113: 909-921. https://doi.org/10.1016/j.jseaes.2015.05.005
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract).
      Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010
      Wu, M. L., Lin, S. F., Wan, Y. S., et al., 2016. Crustal Evolution of the Eastern Block in the North China Craton: Constraints from Zircon U-Pb Geochronology and Lu-Hf Isotopes of the Northern Liaoning Complex. Precambrian Research, 275: 35-47. https://doi.org/10.1016/j.precamres.2015.12.013
      Wu, P. F., Sun, D. Y., Wang, T. H., et al., 2013. Chronology, Geochemical Characteristic and Petrogenesis Analysis of Diorite in Helong of Yanbian Area, NE China. Geological Journal of China Universities, 19(4): 600-610 (in Chinese with English abstract).
      Xu, W. L., Pei, F. P., Gao, F. H., et al., 2008. Zircon U-Pb Age from Basement Granites in Yishu Graben and Its Tectonic Implications. Earth Science, 33(2): 145-150 (in Chinese with English abstract).
      Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract).
      Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2017. Adakitic Rocks Resulting from Partial Melting of Metabasite at High-Pressure Granulite-Facies Condition during Continental Collision. Acta Geologica Sinica, 91(3): 1157-1158. https://doi.org/10.1111/1755-6724.13341
      Yuan, L. L., Zhang, X. H., Xue, F. H., et al., 2016. Late Permian High-Mg Andesite and Basalt Association from Northern Liaoning, North China: Insights into the Final Closure of the Paleo-Asian Ocean and the Orogen- Craton Boundary. Lithos, 258-259: 58-76. https://doi.org/10.1016/j.lithos.2016.04.024
      Zhang, C., Guo, W., Xu, Z. Y., et al., 2014. Study on Geochronology, Petrogenesis and Tectonic Implications of Monzogranite from the Yanbian Area, Eastern Jilin Province. Acta Petrologica Sinica, 30(2): 512-526 (in Chinese with English abstract).
      Zhang, C., Wang, L. Y., Geng, R., et al., 2020. Paleo- Pacific Subduction in Early Jurassic: Geochronological and Geochemical Evidences of Gabbros in Helong Area of Yanbian, Jilin, China. Journal of Earth Sciences and Environment, 42(6): 819-832 (in Chinese with English abstract).
      Zhang, C. Y., Zhang, X. Z., Qiu, D. M., 2007. Zircon U-Pb Isotopic Ages of Amphibolite of Qinglongcun Group in Yanbian Area and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 37(4): 672-677 (in Chinese with English abstract).
      Zhang, H. H., Wang, F., Xu, W. L., et al., 2016. Petrogenesis of Early-Middle Jurassic Intrusive Rocks in Northern Liaoning and Central Jilin Provinces, Northeast China: Implications for the Extent of Spatial- Temporal Overprinting of the Mongol-Okhotsk and Paleo-Pacific Tectonic Regimes. Lithos, 256/257: 132-147. https://doi.org/10.1016/j.lithos.2016.04.004
      Zhang, L. S., Sun, F. Y., Qian, Y., et al., 2021. Petrogenesis of Middle Jurassic Granitoids in Houdaomu, Central Jilin Province: Implications for the Growth of Proterozoic Continental Crust in the Eastern CAOB. Acta Petrologica Sinica, 37(7): 2051-2072 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.06
      Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
      Zhang, Q., Wang, Y., Li, C. D., et al., 2006. Granite Classification on the Basis of Sr and Yb contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).
      Zhang, Q., Wang, Y., Liu, W., et al., 2002. Adakite: Its Characteristics and Implications. Regional Geology of China, 21(7): 431-435 (in Chinese with English abstract).
      Zhang, X. H., Su, W. J., Wang, H., 2005. Zircon SHRIMP Geochronology of the Faku Tectonites in the Northern Liaoning Province: Implications for the Northern Boundary of the North China Craton. Acta Petrologica Sinica, 21(1): 135-142 (in Chinese with English abstract).
      Zhang, X. H., Wang, H., Li, T. S., 2005. 40Ar/39Ar Geochronology of the Faku Tectonites: Implications for the Tectonothermal Evolution of the Faku Block, Northern Liaoning. Science China: Earth Sciences, 48(5): 601-612. https://doi.org/10.1360/03yd0208
      Zhang, X. H., Zhang, H. F., Wilde, S. A., et al., 2010. Late Permian to Early Triassic Mafic to Felsic Intrusive Rocks from North Liaoning, North China: Petrogenesis and Implications for Phanerozoic Continental Crustal Growth. Lithos, 117(1-4): 283-306. https://doi.org/10.1016/j.lithos.2010.03.005
      Zhang, X. H., Zhang, H. F., Zhai, M. G., et al., 2009. Geochemistry of Middle Triassic Gabbros from Northern Liaoning, North China: Origin and Tectonic Implications. Geological Magazine, 146(4): 540-551. https://doi.org/10.1017/s0016756808005530
      Zhang, X. M., 2021. Mesozoic Magmatic Events in the Northeastern Margin of the North China Craton: Constraints on the Evolution of the Multiple Tectonic Regimes (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Zhang, Y. B., Wu, F. Y., Li, H. M., et al., 2002. Single Grain Zircon U-Pb Ages of the Huangniling Granite in Jilin Province. Acta Petrologica Sinica, 18(4): 475-481 (in Chinese with English abstract).
      Zhang, Y. L., Ge, W. C., Gao, Y., et al., 2010. Zircon U-Pb Ages and Hf Isotopes of Granites in Longzhen Area and Their Geological Implications. Acta Petrologica Sinica, 26(4): 1059-1073 (in Chinese with English abstract).
      Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
      Zhao, Y. D., Chi, X. G., Che, J. Y., et al., 2009. Geochemical Characteristics and Tectonic Setting of Late Triassic Granites in Yanbian-Dongning Area. Journal of Jilin University (Earth Science Edition), 39(3): 425-434 (in Chinese with English abstract).
      Zhou, S., Meng, F. X., Xie, S. W., 2021. Genesis of Jurassic Granites in Jiaobei Terrane and Its Tectonic Implications. Acta Petrologica et Mineralogica, 40(5): 874-896 (in Chinese with English abstract).
      Zhu, D. C., Pan, G. T., Duan, L. P., et al., 2003. Some Problems in the Research of Adakite. Northwestern Geology, 36(2): 13-19 (in Chinese with English abstract).
      曹花花, 2013. 华北板块北缘东段晚古生代‒早中生代火成岩的年代学与地球化学研究(博士学位论文). 长春: 吉林大学.
      陈建林, 郭原生, 付善明, 2004. 花岗岩研究进展: ISMA花岗岩类分类综述. 甘肃地质学报, 13(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200401008.htm
      陈龙, 梁琛岳, 刘永江, 等, 2022. 漠河盆地绣峰组形成时代及物源分析: 对蒙古‒鄂霍茨克洋东段演化的启示. 地球科学, 47(9): 3334-3353. doi: 10.3799/dqkx.2021.159
      陈跃军, 彭玉鲸, 刘跃文, 等, 2006. "清河镇群" 年代地层学研究进展. 地质论评, 52(2): 170-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200606005.htm
      顾承串, 朱光, 翟明见, 等, 2016. 依兰‒伊通断裂带中生代走滑构造特征与起源时代. 中国科学(D辑), 46(12): 1579-1601. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201612003.htm
      关庆彬, 2018. 华北板块北缘东段开原‒延吉地区二叠纪‒早侏罗世构造演化(博士学位论文). 长春: 吉林大学.
      郭锋, 2016. 太平洋板块俯冲作用在东北亚大陆边缘的地质记录述评. 矿物岩石地球化学通报, 35(6): 1082-1089, 1071. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201606004.htm
      李冬雪, 郑常青, 梁琛岳, 等, 2022. 大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义. 地球科学, 47(9): 3354-3370. doi: 10.3799/dqkx.2021.189
      刘红涛, 翟明国, 刘建明, 等, 2002. 华北克拉通北缘中生代花岗岩: 从碰撞后到非造山. 岩石学报, 18(4): 433-448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200204000.htm
      刘锦, 2017. 华北板块北缘东段开原地区中生代构造演化(博士学位论文). 长春: 吉林大学.
      刘锦, 刘正宏, 李世超, 等, 2016. 华北陆块北缘东段开原地区三叠纪岩浆岩年代学及岩石地球化学研究. 岩石学报, 32 (9): 2739-2756.
      刘永江, 冯志强, 蒋立伟, 等, 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3017-3047. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910006.htm
      路孝平, 吴福元, 赵成弼, 等, 2003. 通化地区印支期花岗岩锆石U-Pb年龄及其与大别‒苏鲁超高压带碰撞造山作用之间的关系. 科学通报, 48 (8): 843-849. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200308019.htm
      罗镇宽, 裘有守, 关康, 等, 2001. 冀东峪耳崖和牛心山花岗岩体SHRIMP锆石U-Pb定年及其意义. 矿物岩石地球化学通报, 20(4): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200104020.htm
      彭玉鲸, 齐成栋, 周晓东, 等, 2012. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换: 时间标志与全球构造的联系. 地质与资源, 21(3): 261-265. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201203000.htm
      屈翠侠, 2015. 新疆东天山及邻区石炭‒二叠纪中基性岩浆岩成因演化及构造意义(博士学位论文). 西安: 长安大学.
      任永健, 2019. 张广才岭南部早‒中侏罗世花岗质岩浆作用及构造演化. 地质学报, 93(11): 2813-2831. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911008.htm
      宋志伟, 郑常青, 林波, 等, 2023. 辽西寺儿堡‒白塔盆地晚侏罗世火山岩地质特征及其对燕山运动的响应. 地球科学, 48(10): 3689-3706. doi: 10.3799/dqkx.2021.185
      隋振民, 陈跃军, 2011. 大兴安岭东部花岗岩类锆石饱和温度及其地质意义. 世界地质, 30(2): 162-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201102002.htm
      隋振民, 葛文春, 吴福元, 等, 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm
      孙德有, 铃木和博, 吴福元, 等, 2005b. 吉林省南部荒沟山地区中生代花岗岩CHIME定年. 地球化学, 34(4): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200504001.htm
      孙德有, 吴福元, 高山, 等, 2005a. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约. 地学前缘, 12(2): 263-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY20050200Z.htm
      孙晓猛, 王书琴, 王英德, 等, 2010. 郯庐断裂带北段构造特征及构造演化序列. 岩石学报, 26(1): 165-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001021.htm
      唐杰, 许文良, 王枫, 2016. 东北亚早中生代火成岩组合的时空变异: 对古太平洋板块俯冲开始时间的制约. 矿物岩石地球化学通报, 35(6): 1181-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201606014.htm
      唐克东, 邵济安, 李景春, 等, 2004. 吉林延边缝合带的性质与东北亚构造. 地质通报, 23(S2): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2008.htm
      万渝生, 宋彪, 杨淳, 等, 2005. 辽宁抚顺‒清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义. 地质学报, 79(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501009.htm
      万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160. doi: 10.3799/dqkx.2020.121
      王超, 刘志宏, 宋健, 等, 2016. 延边开山屯花岗闪长岩‒石英闪长岩体年代学、地球化学特征及对古太平洋板块俯冲作用时限的制约. 岩石学报, 32(9): 2856-2866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609018.htm
      王广伟, 孙国胜, 余超, 等, 2018. 辽东黄泥岭石英二长岩锆石U-Pb年代学、岩石地球化学及其成因. 世界地质, 37(4): 1033-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201804004.htm
      王聚胜, 孙永刚, 赵昌吉, 等, 2019. 吉林中部大西山二长花岗岩U-Pb年代学和岩石地球化学特征构造. 黑龙江科技大学学报, 29(6): 653-662. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201906004.htm
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
      武鹏飞, 孙德有, 王天豪, 等, 2013. 延边和龙地区闪长岩的年代学、地球化学特征及岩石成因研究. 高校地质学报, 19(4): 600-610. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201304006.htm
      许文良, 裴福萍, 高福红, 等, 2008. 伊舒地堑基底花岗岩的锆石U-Pb年代学及其构造意义. 地球科学, 32(2): 145-150. http://www.earth-science.net/article/id/1745
      许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412008.htm
      张超, 郭巍, 徐仲元, 等, 2014. 吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究. 岩石学报, 30(2): 512-526. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402015.htm
      张超, 王路远, 耿瑞, 等, 2020. 古太平洋板块早侏罗世俯冲作用: 来自吉林延边和龙地区辉长岩年代学和地球化学记录. 地球科学与环境学报, 42(6): 819-832. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006013.htm
      张春艳, 张兴洲, 邱殿明, 2007. 延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义. 吉林大学学报(地球科学版), 37(4): 672-677. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200704005.htm
      张立仕, 孙丰月, 钱烨, 等, 2021. 吉林中部后倒木中侏罗世花岗质岩石的成因: 对中亚造山带东部元古宙大陆地壳生长的启示. 岩石学报, 37(7): 2051-2072. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202107006.htm
      张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201302014.htm
      张旗, 王焰, 李承东, 等, 2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm
      张旗, 王焰, 刘伟, 等, 2002. 埃达克岩的特征及其意义. 地质通报, 21(7): 431-435. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200207013.htm
      张晓晖, 宿文姬, 王辉, 2005. 辽北法库构造岩系的锆石SHRIMP年代学研究与华北地台北缘边界. 岩石学报, 21(1): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501014.htm
      张笑鸣, 2021. 华北克拉通东北缘中生代岩浆事件: 对多构造体系演化的制约(博士学位论文). 长春: 吉林大学.
      张艳斌, 吴福元, 李惠民, 等, 2002. 吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄. 岩石学报, 18(4): 475-481. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200204004.htm
      张彦龙, 葛文春, 高妍, 等, 2010. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义. 岩石学报, 26(4): 1059-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004006.htm
      赵院冬, 迟效国, 车继英, 等, 2009. 延边‒东宁地区晚三叠世花岗岩地球化学特征及其大地构造背景. 吉林大学学报(地球科学版), 39(3): 425-434. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903010.htm
      周珊, 孟凡雪, 谢士稳, 2021. 胶北地体侏罗纪花岗岩的成因及其构造意义. 岩石矿物学杂志, 40(5): 874-896. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202105003.htm
      朱弟成, 潘桂棠, 段丽萍, 等, 2003. 埃达克岩研究的几个问题. 西北地质, 36(2): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200302002.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  380
    • HTML全文浏览量:  126
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-18
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回