• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海南岛东海岸官塘地区地热水水化学特征及其循环演化过程识别

    张彦鹏 黎清华 余绍文

    张彦鹏, 黎清华, 余绍文, 2024. 海南岛东海岸官塘地区地热水水化学特征及其循环演化过程识别. 地球科学, 49(3): 952-964. doi: 10.3799/dqkx.2022.225
    引用本文: 张彦鹏, 黎清华, 余绍文, 2024. 海南岛东海岸官塘地区地热水水化学特征及其循环演化过程识别. 地球科学, 49(3): 952-964. doi: 10.3799/dqkx.2022.225
    Zhang Yanpeng, Li Qinghua, Yu Shaowen, 2024. Hydrochemical Characteristics Constraints on Evolution of Geothermal Water in Guantang Area on the East Coast of Hainan Island. Earth Science, 49(3): 952-964. doi: 10.3799/dqkx.2022.225
    Citation: Zhang Yanpeng, Li Qinghua, Yu Shaowen, 2024. Hydrochemical Characteristics Constraints on Evolution of Geothermal Water in Guantang Area on the East Coast of Hainan Island. Earth Science, 49(3): 952-964. doi: 10.3799/dqkx.2022.225

    海南岛东海岸官塘地区地热水水化学特征及其循环演化过程识别

    doi: 10.3799/dqkx.2022.225
    基金项目: 

    中国地质调查局项目 DD20190304

    中国地质调查局项目 DD20160259

    国家自然科学基金项目 42077180

    详细信息
      作者简介:

      张彦鹏(1985-),男,博士,高级工程师,主要从事环境水文地质方面研究. ORCID:0000-0002-1563-268X. E-mail:yanpeng1028@126.com

      通讯作者:

      黎清华,E-mail: tsinghua_li@126.com

    • 中图分类号: P641.3

    Hydrochemical Characteristics Constraints on Evolution of Geothermal Water in Guantang Area on the East Coast of Hainan Island

    • 摘要: 地热水资源的形成与演化过程认识是区域地热资源科学合理开发利用的重要基础.运用水化学及同位素分析方法,结合区域地质构造特征,系统揭示了海南东海岸官塘地区地热水水化学特征、地热储温度以及补给来源,构建了官塘地区地热水循环演化概念模型.研究结果表明:该区地热水水化学类型主要为HCO3·SO4-Na型,其组分主要来源于硅酸盐矿物溶解及深部CO2等气体;地热水主要受到大气降水补给,补给海拔约为1 122.2~1 569.4 m,并且地热水上升过程中与浅部地下水之间存在较为显著的混合作用.在考虑混合和蒸汽损失的条件下,深部地热水与冷水混合前蒸汽损失的质量百分比约为18.2%~25.2%,地热水温度为190.4~217.8 ℃,冷水混合比例可达到66.8%~80.8%.该地区地热水开发程度逐年提高,导致地热水水位大幅下降,使得浅部冷水补给量增大,这可能是造成该地区开采地热水温度下降的关键影响因素.

       

    • 图  1  官塘地热田位置、区域地质条件及采样点分布

      Fig.  1.  Location of Guantang geothermal field, regional geological conditions, and distribution of sampling sites

      图  2  地表水、地下水及地热水水化学统计特征

      Fig.  2.  Hydrochemical statistical characteristics of the surface water, groundwater, and geothermal water

      图  3  官塘地区地表水、地下水及地热水水化学Piper三线图

      Fig.  3.  Piper triangle diagram of the surface water, groundwater, and geothermal water in Guantang area

      图  4  地表水、地下水与地热水HCO3-/Na+比值与Ca2+/Na+比值关系

      Fig.  4.  Relationship between HCO3-/Na+and Ca2+/ Na+ in the surface water, groundwater, and geothermal water

      图  5  地表水、地下水与地热水中潜在阳离子交换过程分析

      Fig.  5.  Analysis of cation exchange processes in the surface water, groundwater, and geothermal water

      图  6  地表水、地下水与地热水中氢氧同位素组成关系

      Fig.  6.  Plot of the stable oxygen (δ18O) vs stable hydrogen (δ2H) isotopic composition for the surface water, groundwater, and geothermal water

      图  7  不同类型水样在25 ℃时硅酸盐矿物稳定性

      Fig.  7.  Stability diagrams of slicate minerals for water samples at 25 ℃

      图  8  琼海官塘地区不同类型水样K-Na-Mg三线图

      Fig.  8.  K-Na-Mg trilinear equilibrium diagram of water samples in Guantang area

      图  9  官塘地区不同温泉水样品的硅焓方程混合曲线模型

      Fig.  9.  Silica-enthalpy mixing curve model of the geothermal waters in Guantang area

      图  10  考虑最大蒸汽损失的官塘地区地热水硅焓图

      Fig.  10.  Silica-enthalpy mixing curve model of the geothermal waters considering the maximum steam loss in Guantang area

      图  11  海南岛东海岸官塘地区地热水循环演化过程概念模型

      Fig.  11.  Schematic hydrogeological section showing the proposed circulation model of thermal groundwater in Guantang area on the east coastal area of Hainan Island

      表  1  官塘地区地热水、地下水及地表水水化学及同位素组成

      Table  1.   Hydrochemistry and isotopic composition of geothermal water, groundwater, and surface water in Guantang area

      编号 样号 类型 温度(℃) pH TDS HCO3 K+ Na+ Ca2+ Mg2+ Cl F SO42‒ NO3 H2SiO3 δ18O δ2H 水化学类型
      (mg/L) (‰)
      1 QHW01 地热水 48.5 8.4 585.0 188.0 6.2 155.0 4.6 0.0 26.6 22.2 124.0 0.1 134.0 ‒7.8 ‒47.1 HCO3·SO4‒Na
      2 QHW02 49.5 8.3 517.9 126.0 5.9 140.0 5.1 0.1 22.4 19.3 99.3 0.2 145.0 ‒7.5 ‒47.3 HCO3·SO4‒Na
      3 QHW03 40.4 8.6 571.3 164.0 6.0 154.0 5.0 0.2 67.5 20.7 84.0 0.2 135.0 ‒6.3 ‒43.3 HCO3·SO4·Cl‒Na
      4 QGW01 地下水 29.4 5.6 140.1 15.0 7.7 14.6 15.8 3.0 19.6 0.1 17.7 17.3 16.1 ‒6.7 ‒42.6 Cl·SO4‒Na·Ca
      5 QGW02 31.7 6.3 265.9 134.0 19.6 15.9 42.4 7.8 8.9 0.2 38.1 31.0 38.5 ‒6.0 ‒37.6 HCO3·SO4‒Ca
      6 QGW03 31.0 6.4 293.2 15.0 8.2 24.3 48.7 7.4 21.8 0.2 31.6 41.3 25.2 ‒6.1 ‒37.8 SO4·Cl‒Ca·Na
      7 QGW04 28.7 6.5 512.6 48.0 12.5 55.1 51.9 32.4 72.2 0.4 62.1 3.4 42.8 ‒5.4 ‒33.6 Cl·SO4‒Na·Ca·Mg
      8 QGW05 27.0 4.1 170.4 63.0 9.8 8.1 14.5 6.2 14.1 0.3 10.1 80.1 10.0 ‒6.5 ‒47.2 HCO3·Cl‒Ca·Na·Mg
      9 QGW06 28.8 6.0 338.5 16.0 11.0 28.8 52.0 5.6 51.6 0.1 22.0 74.2 34.9 ‒7.2 ‒46.0 Cl‒Ca·Na
      10 QSW01 地表水 27.5 7.7 57.7 18.0 5.3 6.9 4.1 1.7 9.0 0.2 1.5 2.2 18.2 ‒4.2 ‒29.3 HCO3·Cl‒Na·Ca
      11 QSW02 28.3 6.4 36.6 17.0 2.0 5.8 2.9 1.0 4.2 0.1 1.3 0.4 21.8 ‒5.6 ‒37.8 HCO3·Cl‒Na·Ca
      12 QSW03 22.2 7.4 56.7 21.0 1.5 5.9 5.1 3.1 8.0 0.0 5.3 0.0 0.5 ‒4.7 ‒33.6 HCO3·Cl‒Na·Ca·Mg
      下载: 导出CSV

      表  2  地热水14C年龄计算校正结果

      Table  2.   Correction 14C dating results of geothermal water

      样品编号 14CpMC δ13C(‰) 表观年龄(a) Vogel(a) Pearson(a) Tamers(a) Gonfiantinie(a) Mook(a) 平均值(a)
      1 1.85±0.04 ‒9.2 32 050 31 140 24 721 26 813 25 747 27 222 27 129
      2 8.19±0.07 ‒8.9 20 100 18 841 12 148 14 231 13 189 14 938 14 669
      3 7.25±0.06 ‒8.1 21 694 19 849 12 478 14 581 13 519 15 944 15 274
      注:14CpMC为现代碳元素百分比.
      下载: 导出CSV

      表  3  琼海官塘地区不同水体中不同矿物的饱和指数

      Table  3.   Saturation Indices of minerals in the water samples in Guantang area

      样号 方解石 白云石 硬石膏 石膏 玉髓 石英 滑石 萤石 盐岩
      QHW01 0.10 ‒1.45 ‒2.76 ‒2.68 0.21 0.57 0.32 0.2 ‒7.02
      QHW02 ‒0.06 ‒1.21 ‒2.75 ‒2.68 0.24 0.6 1.99 0.16 ‒7.13
      QHW03 0.25 ‒0.57 ‒2.94 ‒2.80 0.28 0.66 3.14 0.27 ‒6.60
      QGW01 ‒3.23 ‒6.79 ‒3.00 ‒2.80 ‒0.48 ‒0.06 ‒15.17 ‒4.40 ‒8.10
      QGW02 ‒1.20 ‒2.71 ‒2.36 ‒2.17 ‒0.13 0.28 ‒8.15 ‒2.87 ‒8.43
      QGW03 ‒2.03 ‒4.47 ‒2.37 ‒2.18 ‒0.30 0.11 ‒8.68 ‒2.78 ‒7.86
      QGW04 ‒1.44 ‒2.71 ‒2.16 ‒1.96 ‒0.05 0.37 ‒5.40 ‒1.96 ‒6.99
      QGW05 ‒4.18 ‒8.37 ‒3.36 ‒3.15 ‒0.66 ‒0.23 ‒24.35 ‒2.94 ‒8.51
      QGW06 ‒2.35 ‒5.28 ‒2.54 ‒2.33 ‒0.14 0.28 ‒10.73 ‒3.39 ‒7.41
      QSW01 ‒1.64 ‒3.29 ‒4.55 ‒4.34 ‒0.41 0.01 ‒3.36 ‒3.57 ‒8.74
      QSW02 ‒3.09 ‒6.24 ‒4.76 ‒4.55 ‒0.34 0.08 ‒11.36 ‒4.33 ‒9.14
      QSW03 ‒1.81 ‒3.53 ‒3.95 ‒3.72 ‒1.90 ‒1.46 ‒10.91 ‒4.72 ‒8.84
      下载: 导出CSV
    • Awaleh, M. O., Hoch, F. B., Boschetti, T., et al., 2015. The Geothermal Resources of the Republic of Djibouti—Ⅱ: Geochemical Study of the Lake Abhe Geothermal Field. Journal of Geochemical Exploration, 159: 129-147. https://doi.org/10.1016/j.gexplo.2015.08.011
      Chen, L. Z., Ma, T., Du, Y., et al., 2016. Hydrochemical and Isotopic (2H, 18O and 37Cl) Constraints on Evolution of Geothermal Water in Coastal Plain of Southwestern Guangdong Province, China. Journal of Volcanology and Geothermal Research, 318: 45-54. https://doi.org/10.1016/j.jvolgeores.2016.03.003
      Chen, Y. M., 2008. Present Situation of Geothermal Resource in Hainan Island and Suggestions for Development and Exploitation. Scientific and Technological Management of Land and Resources, 25(6): 61-65 (in Chinese with English abstract).
      Clark, I. D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. CRC Press, Boca Raton.
      Dotsika, E., Poutoukis, D., Raco, B., 2010. Fluid Geochemistry of the Methana Peninsula and Loutraki Geothermal Area, Greece. Journal of Geochemical Exploration, 104(3): 97-104. https://doi.org/10.1016/j.gexplo.2010.01.001
      Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
      Fournier, R. O., Truesdell, A. H., 1974. Geochemical Indicators of Subsurface Temperature; Part Ⅱ, Estimate of Temperature and Fractions of Hot Water Mixed with Cold Water. Journal of Research of the U. S. Geological Survey, 2(3): 263-270.
      Fournier, R. O., White, D. E., Truesdell, A. H., 1974. Geochemical Indicators of Subsurface Temperature; Part Ⅰ, Basic assumptions. Journal of Research of the U. S. Geological Survey, 2(3): 259-262.
      Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
      Guo, J., Mao, X. M., Tong, S., et al., 2016. Using Hydrochemical Geothermometers Calculate Exchange Temperature of Deep Geothermal System in West Coastal Area of Guangdong Province. Earth Science, 41(12): 2075-2087 (in Chinese with English abstract).
      Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887-1898. https://doi.org/10.1016/j.apgeochem.2012.07.006
      Gurav, T., Singh, H. K., Chandrasekharam, D., 2015. Major and Trace Element Concentrations in the Geothermal Springs along the West Coast of Maharashtra, India. Arabian Journal of Geosciences, 9(1): 1-15. https://doi.org/10.1007/s12517-015-2139-2
      Jiang, Y., Li, J., Xing, Y. F., et al., 2023. Evaluation of Geochemical Geothermometers with Borehole Geothermal Measurements: A Case Study of the Xiong'an New Area. Earth Science, 48(3): 958-972 (in Chinese with English abstract).
      Kaown, D., Koh, D. C., Mayer, B., et al., 2009. Identification of Nitrate and Sulfate Sources in Groundwater Using Dual Stable Isotope Approaches for an Agricultural Area with Different Land Use (Chuncheon, Mid-Eastern Korea). Agriculture, Ecosystems & Environment, 132(3-4): 223-231. https://doi.org/10.1016/j.agee.2009.04.004
      Li, C. S., Wu, X. C., Sun, B., et al., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(S1): 313-325 (in Chinese with English abstract).
      Li, J. L., Gao, B., Dong, Y. H., et al., 2017. Sources of Geothermal Water in Jiangxi Province, SE-China: Evidences from Hydrochemistry and Isotopic Composition. Procedia Earth and Planetary Science, 17: 837-840. https://doi.org/10.1016/j.proeps.2017.01.057
      Li, Q. H., Zhang, Y. P., Chen, W., et al., 2018. The Integrated Impacts of Natural Processes and Human Activities on Groundwater Salinization in the Coastal Aquifers of Beihai, Southern China. Hydrogeology Journal, 26(5): 1513-1526. https://doi.org/10.1007/s10040-018-1756-8
      Lund, J. W., Toth, A. N., 2021. Direct Utilization of Geothermal Energy 2020 Worldwide Review. Geothermics, 90: 101915. https://doi.org/10.1016/j.geothermics.2020.101915
      Luo, J., Li, Y. M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323
      Merkel, B. J., Planer-Friedrich, B., 2008. Groundwater Geochemistry. In: Nordstrom, D. K., ed., A Practical Guide to Modelling of Natural and Contaminated Aquatic Systems (2nd Edition). Springer, New York.
      Najafi, G., Ghobadian, B., 2011. Geothermal Resources in Iran: The Sustainable Future. Renewable and Sustainable Energy Reviews, 15(8): 3946-3951. https://doi.org/10.1016/j.rser.2011.07.032
      Song, X. F., Liu, X. C., Xia, J., et al., 2007. Study on the Transformation Relationship between Surface Water and Groundwater in Huaisha River Basin Based on Environmental Isotope Technology. Science in China (Series D), 37(1): 102-110 (in Chinese).
      Stefánsson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., et al., 2019. Isotope (δD, δ18O, 3H, δ13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water-Rock Interaction and Age of Low-Temperature Geothermal Water. Applied Geochemistry, 108: 104380. https://doi.org/10.1016/j.apgeochem.2019.104380
      Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
      Truesdell, A. H., Fournier, R. O., 1977. Procedure for Estimating the Temperature of a Hot-Water Component in a Mixed Water by Using a Plot of Dissolved Silica Versus Enthalpy. Journal of Research of the U. S. Geological Survey, 5: 49-52.
      Wang, J. Y., Pang, Z. H., Hu, S. B., et al., 2015. Geothermics and Its Applications. Science Press, Beijing (in Chinese).
      Wang, X. A., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018: 1-24. https://doi.org/10.1155/2018/8715080
      Wang, X. C., Zhou, X., 2019. Geothermometry and Circulation Behavior of the Hot Springs in Yunlong County of Yunnan in Southwest China. Geofluids, 2019: 1-16. https://doi.org/10.1155/2019/8432496
      Wang, X. L., Zeng, W. T., Yang, Y. P., et al., 2018. Geological and Hydrochemical Characteristics of Longmuwan Geothermal Field in Ledong, Hainan. West-China Exploration Engineering, 30(9): 111-112, 117 (in Chinese with English abstract).
      Wu, C., Wu, X., Mu, W. P., et al., 2020. Using Isotopes (H, O, and Sr) and Major Ions to Identify Hydrogeochemical Characteristics of Groundwater in the Hongjiannao Lake Basin, Northwest China. Water, 12(5): 1467. https://doi.org/10.3390/w12051467
      Wu, G. W., Wang, P., Wang, X. F., et al., 2015. Hydro-Geochemical Type and Main Components Origin Analysis of the Geothermal Water in Tongren. Ground Water, 37(4): 4-7 (in Chinese with English abstract).
      Wu, Y. J., Chen, C. X., Yuan, F., 2021. Temporal-Spatial Distribution Regularities of Kaolin Deposits in China. Acta Geoscientica Sinica, 42(5): 628-640 (in Chinese with English abstract).
      Wu, Y., Wang, Y. X., 2014. Geochemical Evolution of Groundwater Salinity at Basin Scale: A Case Study from Datong Basin, Northern China. Environmental Science Processes & Impacts, 16(6): 1469-1479. https://doi.org/10.1039/c4em00019f
      Yang, F., Ruan, M., Zhang, D. Q., et al., 2018. Study on the Geochemical Characteristics of Hot Mineral Water Isotope in Haipo District, Sanya City, Hainan Province. Ground Water, 40(4): 15-17 (in Chinese with English abstract).
      Yokochi, R., Purtschert, R., Suda, Y., et al., 2021. Chemical and Isotopic Constraints on Hydrological Processes in Unzen Volcanic Geothermal System. Journal of Volcanology and Geothermal Research, 419: 107353. https://doi.org/10.1016/j.jvolgeores.2021.107353
      Yuan, J. F., Xu, F., Zheng, T. L., 2022. The Genesis of Saline Geothermal Groundwater in the Coastal Area of Guangdong Province: Insight from Hydrochemical and Isotopic Analysis. Journal of Hydrology, 605: 127345. https://doi.org/10.1016/j.jhydrol.2021.127345
      Zeng, T. R., 2019. Research on Basic Characteristics of 2H, 18O and 14C in Geothermal Fluid in Guangdong Province, China. Journal of Groundwater Science and Engineering, 7(1): 42-52. https://doi.org/10.19637/j.cnki.2305-7068.2019.01.004
      Zhang, J. Y., 2012. Geochemical Studies of the Mineralization by Weathering of Cenozoic Volcanic Rocks in North Hainan Island (Dissertation). China University of Geoscience, Wuhan (in Chinese with English abstract).
      Zhang, X. B., Guo, Q. H., Zhang, M. Z., et al., 2023. Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System. Earth Science, 48(3): 908-922 (in Chinese with English abstract).
      Zhang, Y. H., Xu, M., Li, X. A., et al., 2018. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water, 10(1): 80. https://doi.org/10.3390/w10010080
      Zhang, Y., 2019. A Study of the Characteristics and Formation of the Hot Springs in Hainan Island (Dissertation). China University of Geoscience, Beijing (in Chinese with English abstract).
      Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1
      陈颖民, 2008. 海南岛地热资源现状及勘查开发利用建议. 国土资源科技管理, 25(6): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKG200806014.htm
      郭静, 毛绪美, 童晟, 等, 2016. 水化学温度计估算粤西沿海深部地热系统热交换温度. 地球科学, 41(12): 2075-2087. doi: 10.3799/dqkx.2016.144
      姜颖, 李捷, 邢一飞, 等, 2023. 基于钻孔测温的地球化学温度计适宜性评价: 以雄安新区为例. 地球科学, 48(3): 958-972. doi: 10.3799/dqkx.2022.385
      李常锁, 武显仓, 孙斌, 等, 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(S1): 313-325. doi: 10.3799/dqkx.2018.206
      宋献方, 刘相超, 夏军, 等, 2007. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究. 中国科学(D辑), 37(1): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701011.htm
      汪集暘, 庞中和, 胡圣标, 等, 2015. 地热学及其应用. 北京: 科学出版社.
      王晓林, 曾维特, 杨永鹏, 等, 2018. 海南乐东龙沐湾地热田地质及水化学特征分析. 西部探矿工程, 30(9): 111-112, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201809038.htm
      吴桂武, 王鹏, 王晓峰, 等, 2015. 铜仁市地热水水化学类型及主要组分成因分析. 地下水, 37(4): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201504003.htm
      吴宇杰, 陈从喜, 袁峰, 2021. 中国高岭土矿床时空分布规律. 地球学报, 42(5): 628-640. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202105005.htm
      杨峰, 阮明, 张东强, 等, 2018. 海南省三亚市海坡地区热矿水同位素地球化学特征研究. 地下水, 40(4): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201804004.htm
      张家友, 2012. 海南岛北部新生代火山岩风化成矿作用地球化学研究(博士学位论文). 武汉: 中国地质大学.
      张晓博, 郭清海, 张梦昭, 等, 2023. 碳酸盐岩热储中稀土元素的地球化学行为及其指示意义: 以施甸地热系统为例. 地球科学, 48(3): 908-922. doi: 10.3799/dqkx.2022.323
      张颖, 2019. 海南岛温泉特征及成因研究(硕士学位论文). 北京: 中国地质大学.
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  96
    • HTML全文浏览量:  51
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-11
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回