• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川盆地含裂缝海相页岩储层正交各向异性岩石物理建模

    程绩伟 张峰 李向阳

    程绩伟, 张峰, 李向阳, 2024. 四川盆地含裂缝海相页岩储层正交各向异性岩石物理建模. 地球科学, 49(1): 299-312. doi: 10.3799/dqkx.2022.229
    引用本文: 程绩伟, 张峰, 李向阳, 2024. 四川盆地含裂缝海相页岩储层正交各向异性岩石物理建模. 地球科学, 49(1): 299-312. doi: 10.3799/dqkx.2022.229
    Cheng Jiwei, Zhang Feng, Li Xiangyang, 2024. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin. Earth Science, 49(1): 299-312. doi: 10.3799/dqkx.2022.229
    Citation: Cheng Jiwei, Zhang Feng, Li Xiangyang, 2024. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin. Earth Science, 49(1): 299-312. doi: 10.3799/dqkx.2022.229

    四川盆地含裂缝海相页岩储层正交各向异性岩石物理建模

    doi: 10.3799/dqkx.2022.229
    基金项目: 

    国家自然科学基金项目 U19B6003

    国家自然科学基金项目 42122029

    中国石油天然气集团有限公司重点实验室项目 2022DQ0604-02

    详细信息
      作者简介:

      程绩伟(1995-),男,博士,主要从事页岩气储层岩石物理理论和地震反演理论和方法研究. ORCID:0000-0001-5626-0520. E-mail:chjw101@sina.com

      通讯作者:

      张峰, ORCID: 0000-0002-4664-4392. E-mail: zhangfeng@cup.edu.cn

    • 中图分类号: P618.13

    Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin

    • 摘要: 含裂缝页岩具有复杂的各向异性,建立合理的岩石物理模型有助于裂缝参数的准确预测. 针对四川威荣含裂缝五峰-龙马溪组页岩,在准确表征其固有各向异性(VTI)的基础上,建立了具有裂缝倾角分布特征的正交各向异性岩石物理模型. 分析表明:页岩中高角度裂缝的倾角平均值、倾角标准差、倾角变化范围对方位各向异性有显著的影响;横波各向异性参数$ {\gamma }^{\left(2\right)} $和$ {\gamma }^{\left(3\right)} $仅对裂缝密度敏感,可用于裂缝密度的预测;纵波各向异性参数$ {\varepsilon }^{\left(2\right)} $、$ {\delta }^{\left(2\right)} $、$ {\delta }^{\left(3\right)} $、$ {\varepsilon }^{\left(3\right)} $受到裂缝密度和填充流体的影响,与横波各向异性参数相结合可用于裂缝流体的检测.将提出的岩石物理模型应用于实际测井数据,实现了井中各向异性参数的估测,为裂缝性五峰-龙马溪组页岩的地震裂缝预测提供了重要的理论依据.

       

    • 图  1  无裂缝VTI页岩(a)和含裂缝ORT页岩(b)的岩石物理建模流程

      Fig.  1.  Rock physics modeling of VTI shale (a) and ORT fractured shale (b)

      图  2  含不同特征裂缝的页岩模型

      a.具有垂直裂缝的页岩模型;b.具有考虑裂缝倾角分布特性的页岩模型,其中φ代表裂缝的方位角;c.裂缝倾角直方图. 裂缝倾角平均值$ {\theta }_{0}=\pi /2 $,蓝色条状及黄色实线表示裂缝倾角标准差为1的裂缝分布情况,红色条状及紫色实线表示裂缝倾角标准差为4的裂缝分布情况

      Fig.  2.  Shale models with different fractures

      图  3  正交各向异性页岩的弹性刚度系数随裂缝参数(裂缝密度和裂缝填充流体)的变化

      a.气饱和裂缝情况;b.水饱和裂缝情况

      Fig.  3.  Modulus of stiffness of orthorhombic shale varies with fracture parameters (crack density and filled fluid type)

      图  4  正交各向异性页岩的各向异性参数随裂缝密度变化

      Fig.  4.  Anisotropy parameters of orthorhombic shale vary with fracture density

      图  5  正交各向异性页岩的弹性刚度系数(a)和各向异性参数(b)随裂缝走向的变化

      Fig.  5.  Stiffness modulus (a) and anisotropy parameters (b) of orthorhombic shale variation with crack orientation

      图  6  正交各向异性页岩的弹性刚度系数和各向异性参数随裂缝倾角平均值的变化

      裂缝倾角标准差为1;裂缝倾角变化范围为$ \pi /2 $

      Fig.  6.  Variation of stiffness modulus and anisotropy parameters of orthorhombic shale with the average inclination angle

      图  7  正交各向异性页岩的弹性刚度系数和各向异性参数随裂缝倾角标准差的变化

      裂缝倾角平均值为$ 2\pi /9 $;裂缝倾角变化范围为$ \pi /2 $

      Fig.  7.  Variation of stiffness modulus and anisotropy parameters of orthorhombic shale with standard deviation

      图  8  正交各向异性页岩的弹性刚度系数和各向异性参数随裂缝倾角变化范围的变化

      裂缝倾角平均值为$ 2\pi /9 $;裂缝倾角标准差为1

      Fig.  8.  Variation of stiffness modulus and anisotropy parameters of orthorhombic shale with the integration interval of crack inclination

      图  9  研究区地质概况及裂缝特征分析

      a.研究区位置概况;b.五峰组‒龙马溪组页岩储层测井数据;c.页岩矿物三角图;d.根据井数据统计的裂缝倾角直方图

      Fig.  9.  Geological background of the study area and fracture properties

      图  10  基于岩石物理模型的预测测井(灰色曲线)和真实测井(黑色曲线)对比

      Fig.  10.  Comparison between predicted log data (grey curve) based on rock physics modeling and real log data (black curve)

      图  11  方位各向异性参数与裂缝密度的交会图

      Fig.  11.  Cross-plot of azimuthal anisotropy parameters and fracture density

    • Bakulin, A., Grechka, V., Tsvankin, I., 2000. Estimation of Fracture Parameters from Reflection Seismic Data-Part II: Fractured Models with Orthorhombic Symmetry. Geophysics, 65(6): 1803-1817. https://doi.org/10.1190/1.1444864
      Batzle, M. L., Wang, Z. J., 1992. Seismic Properties of Pore Fluids. Geophysics, 57(11): 1396-1408. https://doi.org/10.1190/1.1443207
      Carcione, J. M., Helle, H. B., Avseth, P., 2011. Source-Rock Seismic-Velocity Models: Gassmann versus Backus. Geophysics, 76(5): N37-N45. https://doi.org/10.1190/geo2010-0258.1
      Cholach, P. Y., Schmitt, D. R., 2006. Intrinsic Elasticity of a Textured Transversely Isotropic Muscovite Aggregate: Comparisons to the Seismic Anisotropy of Schists and Shales. Journal of Geophysical Research, 111(B9): B09410. https://doi.org/10.1029/2005jb004158
      Deng, J. X., Wang, H., Zhou, H., et al., 2015. Microtexture, Seismic Rock Physical Properties and Modeling of Longmaxi Formation Shale. Chinese Journal of Geophysics, 58(6): 2123-2136 (in Chinese with English abstract).
      Feng, Q. H., Xu, S. Q., Wang, S., et al., 2017. A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model. Earth Science, 42(8): 1301-1313 (in Chinese with English abstract).
      Gui, J. C., Chen, P., Ma, T. S., 2019. The Spatial Distribution of Elastic Parameters of Orthotropic Rocks. Journal of Southwest Petroleum University (Science & Technology Edition), 41(3): 13-28 (in Chinese with English abstract).
      Gui, J. C., Ma, T. S., Chen, P., 2020. Rock Physics Modeling of Transversely Isotropic Shale: An Example of the Longmaxi Formation in the Sichuan Basin. Chinese Journal of Geophysics, 63(11): 4188-4204 (in Chinese with English abstract). doi: 10.6038/cjg2020N0294
      Guo, W., Feng, Q. L., Khan, M. Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng- Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582 (in Chinese with English abstract).
      Guo, X. S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science, 42(7): 1069-1082 (in Chinese with English abstract).
      Hornby, B. E., Schwartz, L. M., Hudson, J. A., 1994. Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales. Geophysics, 59(10): 1570-1583. https://doi.org/10.1190/1.1443546
      Hudson, J. A., 1980. Overall Properties of a Cracked Solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88(2): 371-384. https://doi.org/10.1017/S0305004100057674
      Hudson, J. A., 1981. Wave Speeds and Attenuation of Elastic Waves in Material Containing Cracks. Geophysical Journal International, 64(1): 133-150. https://doi.org/10.1111/j.1365-246X.1981.tb02662.x
      Jones, L. E. A., Wang, H. F., 1981. Ultrasonic Velocities in Cretaceous Shales from the Williston Basin. Geophysics, 46(3): 288-297. https://doi.org/10.1190/1.1441199
      Kaarsberg, E. A., 1959. Introductory Studies of Natural and Artificial Argillaceous Aggregates by Sound- Propagation and X-Ray Diffraction Methods. The Journal of Geology, 67(4): 447-472. https://doi.org/10.1086/626597
      Li, S. G., Xu, T. J., Lü, Q. B., et al., 2019. Deep Shale Gas Dual "Sweet Spot" Parameter Seismic Prediction Technology. Natural Gas Industry, 39(S1): 311-317 (in Chinese).
      Li, X. Y., Wang, J. S., 2016. Recent Advances in Multicomponent Seismic and Fractured Reservoir Characterization. Petroleum Science Bulletin, 1(1): 45-60 (in Chinese with English abstract).
      Liu, Z. C., Zhang, F., Li, X. Y., 2019. Elastic Anisotropy and Its Influencing Factors in Organic-Rich Marine Shale of Southern China. Scientia Sinica Terrae, 49(11): 1801-1816 (in Chinese).
      Lonardelli, I., Wenk, H. R., Ren, Y., 2007. Preferred Orientation and Elastic Anisotropy in Shales. Geophysics, 72(2): D33-D40. https://doi.org/10.1190/1.2435966
      Ma, Y. S., Cai, X. Y., Zhao, P. R., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574 (in Chinese with English abstract).
      Qian, K. R., Zhang, F., Chen, S. Q., et al., 2016. A Rock Physics Model for Analysis of Anisotropic Parameters in a Shale Reservoir in Southwest China. Journal of Geophysics and Engineering, 13(1): 19-34. https://doi.org/10.1088/1742-2132/13/1/19
      Rüger, A., 1997. P-Wave Reflection Coefficients for Transversely Isotropic Models with Vertical and Horizontal Axis of Symmetry. Geophysics, 62(3): 713-722. https://doi.org/10.1190/1.1444181
      Sarout, J., Guéguen, Y., 2008. Anisotropy of Elastic Wave Velocities in Deformed Shales: Part 2-Modeling Results. Geophysics, 73(5): D91-D103. https://doi.org/10.1190/1.2952745
      Sayers, C. M., 1994. The Elastic Anisotrophy of Shales. Journal of Geophysical Research: Solid Earth, 99(B1): 767-774. https://doi.org/10.1029/93jb02579
      Sayers, C. M., 2013. The Effect of Kerogen on the Elastic Anisotropy of Organic-Rich Shales. Geophysics, 78(2): D65-D74. https://doi.org/10.1190/geo2012-0309.1
      Schoenberg, M., 1980. Elastic Wave Behavior across Linear Slip Interfaces. The Journal of the Acoustical Society of America, 68(5): 1516-1521. https://doi.org/10.1121/1.385077
      Schoenberg, M., Douma, J., 1988. Elastic Wave Propagation in Media with Parallel Fractures and Aligned Cracks. Geophysical Prospecting, 36(6): 571-590. https://doi.org/10.1111/j.1365-2478.1988.tb02181.x
      Schoenberg, M., Helbig, K., 1997. Orthorhombic Media: Modeling Elastic Wave Behavior in a Vertically Fractured Earth. Geophysics, 62(6): 1954-1974. https://doi.org/10.1190/1.1444297
      Schoenberg, M., Sayers, C. M., 1995. Seismic Anisotropy of Fractured Rock. Geophysics, 60(1): 204-211. https://doi.org/10.1190/1.1443748
      Shao, C. R., Yin, X. Y., Zhang, F. M., et al., 2009. Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis. Earth Science, 34(4): 699-707 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.04.017
      Shi, S. Z., Liu, Z. Y., Feng, J. A., et al., 2020. Using 3D Seismic Exploration to Detect Ground Fissure. Advances in Geo-Energy Research, 4(1): 13-19. https://doi.org/10.26804/ager.2020.01.02
      Thomsen, L., 1986. Weak Elastic Anisotropy. Geophysics, 51(10): 1954-1966. https://doi.org/10.1190/1.1442051
      Tsvankin, I., 1997. Anisotropic Parameters and P-Wave Velocity for Orthorhombic Media. Geophysics, 62(4): 1292-1309. https://doi.org/10.1190/1.1444231
      Vernik, L., Nur, A., 1992. Ultrasonic Velocity and Anisotropy of Hydrocarbon Source Rocks. Geophysics, 57(5): 727-735. https://doi.org/10.1190/1.1443286
      Vernik, L., Liu, X. Z., 1997. Velocity Anisotropy in Shales: A Petrophysical Study. Geophysics, 62(2): 521-532. https://doi.org/10.1190/1.1444162
      Wang, Z. J., 2002. Seismic Anisotropy in Sedimentary Rocks, Part 2: Laboratory Data. Geophysics, 67(5): 1423-1440. https://doi.org/10.1190/1.1512743
      Wei, L. M., Wang, Y., Zhang, T. C., et al., 2019. Establishment of Geological Model of Deep Shale Reservoir in Southern Sichuan Basin. Natural Gas Industry, 39(S1): 66-70 (in Chinese with English abstract).
      Wei, Q. Q., Wang, Y., Han, D. H., et al., 2021. Combined Effects of Permeability and fluid Saturation on Seismic Wave Dispersion and Attenuation in Partially-Saturated Sandstone. Advances in Geo-Energy Research, 5(2): 181-190. https://doi.org/10.46690/ager.2021.02.07
      Wenk, H. R., Lonardelli, I., Franz, H., et al., 2007. Preferred Orientation and Elastic Anisotropy of Illite-Rich Shale. Geophysics, 72(2): E69-E75. https://doi.org/10.1190/1.2432263
      Winterstein, D. F., 1990. Velocity Anisotropy Terminology for Geophysicists. Geophysics, 55(8): 1070-1088. https://doi.org/10.1190/1.1442919
      Xiao, B., Liu, S. G., Ran, B., et al., 2021. Study on Sedimentary Tectonic Pattern of Wufeng Formation and Longmaxi Formation in the Northern Margin of Sichuan Basin, South China. Earth Science, 46(7): 2449-2465 (in Chinese with English abstract).
      Yu, W. H., Zhang, L. Q., Wang, J. Y., et al., 2003. Constitutive Problem for Seismic Wave Propagation in Discrete Media. Earth Science, 28(3): 315-322 (in Chinese with English abstract).
      Zhang, F., 2017. Estimation of Anisotropy Parameters for Shales Based on an Improved Rock Physics Model, Part 2: Case Study. Journal of Geophysics and Engineering, 14(2): 238-254. https://doi.org/10.1088/1742-2140/aa5afa
      Zhang, F., 2019. A Modified Rock Physics Model of Overmature Organic-Rich Shale: Application to Anisotropy Parameter Prediction from Well Logs. Journal of Geophysics and Engineering, 16(1): 92-104. https://doi.org/10.1093/jge/gxy008
      Zhang, F., Li, X. Y., Qian, K. R., 2017. Estimation of Anisotropy Parameters for Shale Based on an Improved Rock Physics Model, Part 1: Theory. Journal of Geophysics and Engineering, 14(1): 143-158. https://doi.org/10.1088/1742-2140/14/1/143
      邓继新, 王欢, 周浩, 等, 2015. 龙马溪组页岩微观结构、地震岩石物理特征与建模. 地球物理学报, 58(6): 2123-2136.
      冯其红, 徐世乾, 王森, 等, 2017. 基于嵌入离散裂缝的页岩气藏视渗透率模型. 地球科学, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551
      桂俊川, 陈平, 马天寿, 2019. 正交各向异性岩石弹性参数的空间展布. 西南石油大学学报(自然科学版), 41(3): 13-28.
      桂俊川, 马天寿, 陈平, 2020. 横观各向同性页岩岩石物理模型建立——以龙马溪组页岩为例. 地球物理学报, 63(11): 4188-4204. doi: 10.6038/cjg2020N0294
      郭伟, 冯庆来, Khan, M. Z., 2021. 重庆焦页143-5井五峰组-龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572-582. doi: 10.3799/dqkx.2020.049
      郭旭升, 2017. 上扬子地区五峰组-龙马溪组页岩层序地层及演化模式. 地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086
      李曙光, 徐天吉, 吕其彪, 等, 2019. 深层页岩气双"甜点"参数地震预测技术. 天然气工业, 39(增刊1): 113-117.
      李向阳, 王九拴, 2016. 多波地震勘探及裂缝储层预测研究进展. 石油科学通报, 1(1): 45-60.
      刘子淳, 张峰, 李向阳, 2019. 中国南方富有机质海相页岩弹性各向异性特征和影响因素. 中国科学: 地球科学, 49(11): 1801-1816.
      马永生, 蔡勋育, 赵培荣, 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561-574.
      邵才瑞, 印兴耀, 张福明, 等, 2009. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度. 地球科学, 34(4): 699-707. http://www.earth-science.net/article/id/1876
      魏力民, 王岩, 张天操, 等, 2019. 四川盆地南部深层页岩储层地质模型的建立. 天然气工业, 39(S1): 66-70.
      肖斌, 刘树根, 冉波, 等, 2021. 四川盆地北缘五峰组和龙马溪组沉积构造格局研究. 地球科学, 46(7): 2449-2465. doi: 10.3799/dqkx.2020.208
      於文辉, 张丽琴, 王家映, 等, 2003. 离散介质中地震波传播的本构问题. 地球科学, 28(3): 315-322. http://www.earth-science.net/article/id/1260
    • dqkxzx-49-1-299-附录.docx
    • 加载中
    图(11)
    计量
    • 文章访问数:  438
    • HTML全文浏览量:  522
    • PDF下载量:  278
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-18
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回