Progress in Study of Boron Geochemistry in High Temperature Geothermal Fluids
-
摘要: 硼是高温地热流体中典型的特征元素之一,探讨其物质来源和富集规律,对认识地热系统的形成与演化以及地热资源的合理开发具有重要的指导意义.同时,硼也是一种典型的有害元素,伴随地热流体排放到地表后,会对地热区及周边环境造成严重的负面效应.近年来,在高温地热资源正在被大规模开发利用的背景下,高温地热流中硼的地球化学起源及其环境效应研究已引起国内外相关学者的广泛关注.本文综述了高温地热流体中硼的地球化学特征、物质来源以及环境地质效应,在此基础上总结了后期需要进一步加强的方向,以期为地热资源的合理开采、地热田周边地区的环境保护提供借鉴思路和指导作用.Abstract: Boron is one of the typical characteristic elements in high temperature geothermal fluids. Its origin and enrichment in geothermal fluids are of great significance to understanding the formation and evolution of geothermal system and the rational development of geothermal resources. At the same time, boron is one of the harmful elements, and will cause serious negative effects on the geothermal area and its surrounding environment as geothermal fluids discharged to the surface. In recent years, under the background of large-scale exploitation and utilization of high temperature geothermal resources, the origin of boron in high temperature geothermal fluids and its environmental effects have attracted extensive attention. In this paper, the geochemistry characteristics, sources and environmental geological effects of boron in geothermal fluids are reviewed, aiming to provide insights for the rational exploitation of geothermal resources and the environmental protection near the geothermal areas.
-
Key words:
- geochemistry /
- boron /
- environmental effect /
- geothermal system /
- high temperature geothermal fluid
-
图 1 世界范围内典型高温地热系统地热水中B含量与δ11B值关系
数据来源于Oi et al.(1996)、Aggarwal et al.(2000)、Vengosh et al.(2002, 1991)、Leeman et al.(2005)、Millot et al.(2007, 2012)、Bernard et al.(2011)、吕苑苑等(2014)、Yuan et al.(2014)、Zhang et al.(2015)、Battistel et al.(2016)、Wu et al.(2016)
Fig. 1. Plot of B concentration vs. δ11B value of geothermal waters in typical high temperature geothermal systems worldwide
图 2 西藏地热水中硼富集机制(改自Liu et al., 2019)
Fig. 2. Boron enrichment mechanisms of geothermal waters in Tibet (modified from Liu et al., 2019)
表 1 世界范围内典型高温地热系统地热水中B含量和B同位素特征
Table 1. Boron concentrations and δ11B values of geothermal waters in typical high temperature geothermal systems worldwide
典型地热区 采样温度(℃) B(mg/L) δ11B(‰) 数据来源 新西兰Negwha地热田 38~180 259.2~1 101.6 ‒3.8~‒3.2 Aggarwal et al., 2003 新西兰Taupo火山地热区 205~320 17.5~82.1 ‒6.7~‒1.9 Bégué et al., 2017 法国Limagne盆地 12~73 0.6~6.9 ‒6.3~12.6 Millot et al., 2007 日本Kagoshimadi地热区 29~102 0.6~24.8 2.1~39.4 Oi et al., 1996 意大利Vulcano地热田 21~99 3.0~9.1 ‒7~1 Leeman et al., 2005 意大利Cimino‒Vico火山区 25~62 0.1~1.6 ‒8.4~‒4.1 Battistel et al., 2016 墨西哥Los Humeros地热田 ‒ 214.0~725.0 ‒1.7~0.3 Bernard et al., 2011 以色列Dead Sea地热区 15~39 20.5~31.3 51.7~54.9 Vengosh et al., 1991 土耳其Menderes Massif地热区 35~224 1.1~54.2 ‒2.3~18.7 Vengosh et al., 2002 希腊Milos Island地热区 63~116 1.7~99.0 2.1~40.5 Wu et al., 2016 美国黄石国家公园 32~140 0.4~28.5 ‒9.3~4.4 Palmer et al., 1990 印度尼西亚Java地热区 33.2~102.0 2.7~93.2 ‒2.4~28.7 Purnomo et al., 2016 中国西藏羊八井地热田 86~87 10.2~165.4 ‒13.8~‒8.4 Yuan et al., 2014;Zhang et al., 2015 中国西藏羊易地热田 79~89 38.5~45.7 ‒9.7~‒5.0 Yuan et al., 2014 中国西藏搭格架地热田 37~86 1.1~106.9 ‒16.3~‒11.7 吕苑苑等,2014;Liu et al., 2019 中国西藏曲卓木地热田 57~77 21.9~44.6 ‒11.3~‒7.1 Liu et al., 2019 中国云南热海地热田 56~96 4.6~10.5 ‒6.3~‒4.5 吕苑苑等,2014 中国吉林长白山火山地热区 21~82 0.2~4.4 ‒13.3~35.9 Zhao et al., 2019 -
Aggarwal, J. K., Palmer, M. R., Bullen, T. D., et al., 2000. The Boron Isotope Systematics of Icelandic Geothermal Waters: 1. Meteoric Water Charged Systems. Geochimica et Cosmochimica Acta, 64(4): 579-585. https://doi.org/10.1016/S0016-7037(99)00300-2 Aggarwal, J. K., Sheppard, D., Mezger, K., et al., 2003. Precise and Accurate Determination of Boron Isotope Ratios by Multiple Collector ICP-MS: Origin of Boron in the Ngawha Geothermal System, New Zealand. Chemical Geology, 199(3-4): 331-342. https://doi.org/10.1016/S0009-2541(03)00127-X Al-Ammar, A., ReitznerovÁ, E., Barnes, R. M., 2000. Improving Boron Isotope Ratio Measurement Precision with Quadrupole Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 55(12): 1861-1867. https://doi.org/10.1016/S0584-8547(00)00282-2 Arnórsson, S., 1985. The Use of Mixing Models and Chemical Geothermometers for Estimating Underground Temperatures in Geothermal Systems. Journal of Volcanology and Geothermal Research, 23(3-4): 299-335. https://doi.org/10.1016/0377-0273(85)90039-3 Arnórsson, S., Andrésdóttir, A., 1995. Processes Controlling the Distribution of Boron and Chlorine in Natural Waters in Iceland. Geochimica et Cosmochimica Acta, 59(20): 4125-4146. https://doi.org/10.1016/0016-7037(95)00278-8 Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. The Inference of Magmatic Heat Source Beneath the Rehai (Hot Sea) Field of Tengchong from the Result of Magnetotelluric Sounding. Chinese Science Bulletin, 39(4): 344-347 (in Chinese). doi: 10.1360/csb1994-39-4-344 Barnes, J. D., Cullen, J., Barker, S., et al., 2019. The Role of the Upper Plate in Controlling Fluid-Mobile Element (Cl, Li, B) Cycling through Subduction Zones: Hikurangi Forearc, New Zealand. Geosphere, 15(3): 642-658. https://doi.org/10.1130/ges02057.1 Barth, S., 1993. Boron Isotope Variations in Nature: A Synthesis. Geologische Rundschau, 82(4): 640-651. https://doi.org/10.1007/BF00191491 Battistel, M., Hurwitz, S., Evans, W. C., et al., 2016. The Chemistry and Isotopic Composition of Waters in the Low-Enthalpy Geothermal System of Cimino-Vico Volcanic District, Italy. Journal of Volcanology and Geothermal Research, 328: 222-229. https://doi.org/10.1016/j.jvolgeores.2016.11.005 Bégué, F., Deering, C. D., Gravley, D. M., et al., 2017. From Source to Surface: Tracking Magmatic Boron and Chlorine Input into the Geothermal Systems of the Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 346: 141-150. https://doi.org/10.1016/j.jvolgeores.2017.03.008 Bernard, R., Taran, Y., Pennisi, M., et al., 2011. Chloride and Boron Behavior in Fluids of Los Humeros Geothermal Field (Mexico): A Model Based on the Existence of Deep Acid Brine. Applied Geochemistry, 26(12): 2064-2073. https://doi.org/10.1016/j.apgeochem.2011.07.004 Brown, L. D., Zhao, W. J., Nelson, K. D., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293): 1688-1690. https://doi.org/10.1126/science.274.5293.1688 Chen, L. S., Booker, J. R., Jones, A. G., et al., 1996. Electrically Conductive Crust in Southern Tibet from INDEPTH Magnetotelluric Surveying. Science, 274(5293): 1694-1696. https://doi.org/10.1126/science.274.5293.1694 Chen, W. T., Ho, S. B., Lee, D. Y., 2009. Effect of pH on Boron Adsorption-Desorption Hysteresis of Soils. Soil Science, 174(6): 330-338. https://doi.org/10.1097/ss.0b013e3181a7e72e Çöl, M., Çöl, C., 2003. Environmental Boron Contamination in Waters of Hisarcik Area in the Kutahya Province of Turkey. Food and Chemical Toxicology, 41(10): 1417-1420. https://doi.org/10.1016/s0278-6915(03)00160-1 Cullen, J. T., Hurwitz, S., Barnes, J. D., et al., 2021. The Systematics of Chlorine, Lithium, and Boron and δ37Cl, δ7Li, and δ11B in the Hydrothermal System of the Yellowstone Plateau Volcanic Field. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009589. https://doi.org/10.1029/2020GC009589 Ellis, A. J., 1970. Quantitative Interpretation of Chemical Characteristics of Hydrothermal Systems. Geothermics, 2: 516-528. https://doi.org/10.1016/0375-6505(70)90050-7 Fan, Q. S., Ma, Y. Q., Cheng, H. D., et al., 2015. Boron Occurrence in Halite and Boron Isotope Geochemistry of Halite in the Qarhan Salt Lake, Western China. Sedimentary Geology, 322: 34-42. https://doi.org/10.1016/j.sedgeo.2015.03.012 Farmer, J. R., Branson, O., Uchikawa, J., et al., 2019. Boric Acid and Borate Incorporation in Inorganic Calcite Inferred from B/Ca, Boron Isotopes and Surface Kinetic Modeling. Geochimica et Cosmochimica Acta, 244: 229-247. https://doi.org/10.1016/j.gca.2018.10.008 Foster, G. L., Lear, C. H., Rae, J. W. B., et al., 2012. The Evolution of pCO2, Ice Volume and Climate during the Middle Miocene. Earth and Planetary Science Letters, 341/342/343/344: 243-254. https://doi.org/10.1016/j.epsl.2012.06.007 Guinoiseau, D., Louvat, P., Paris, G., et al., 2018. Are Boron Isotopes a Reliable Tracer of Anthropogenic Inputs to Rivers over Time? Science of the Total Environment, 626: 1057-1068. https://doi.org/10.1016/j.scitotenv.2018.01.159 Guo, Q. H., 2020. Magma-Heated Geothermal Systems and Hydrogeochemical Evidence of Their Occurrence. Acta Geologica Sinica, 94(12): 3544-3554 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.12.002 Guo, Q. H., 2022. Environmental Effects of Harmful Constituents Derived from Geothermal Systems and Their Treatments. Acta Geologica Sinica, 96(5): 1767-1773 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.016 Guo, Q. H., Li, Y. M., Luo, L., 2019a. Tungsten from Typical Magmatic Hydrothermal Systems in China and Its Environmental Transport. Science of the Total Environment, 657: 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146 Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10): 1-12. https://doi.org/10.1007/s00445-014-0868-9 Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010 Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019b. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008 Guo, Q. H., Planer-Friedrich, B., Luo, L., et al., 2020. Speciation of Antimony in Representative Sulfidic Hot Springs in the YST Geothermal Province (China) and Its Immobilization by Spring Sediments. Environmental Pollution, 266: 115221. https://doi.org/10.1016/j.envpol.2020.115221 Guo, Q. H., Planer-Friedrich, B., Yan, K., 2021. Tungstate Thiolation Promoting the Formation of High-Tungsten Geothermal Waters and Its Environmental Implications. Journal of Hydrology, 603: 127016. https://doi.org/10.1016/j.jhydrol.2021.127016 Guo, Q. H., Wang, Y. X., Liu, W., 2008. B, As, and F Contamination of River Water Due to Wastewater Discharge of the Yangbajing Geothermal Power Plant, Tibet, China. Environmental Geology, 56(1): 197-205. https://doi.org/10.1007/s00254-007-1155-2 Guo, Q. H., Wang, Y., Liu, W., 2009. Hydrogeochemistry and Environmental Impact of Geothermal Waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180(1): 9-20. https://doi.org/10.1016/j.jvolgeores.2008.11.034 Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract). Hemming, N. G., Hanson, G. N., 1992a. Boron Isotopic Composition and Concentration in Modern Marine Carbonates. Geochimica et Cosmochimica Acta, 56(1): 537-543. https://doi.org/10.1016/0016-7037(92)90151-8 Hemming, N. G., Hanson, G. N., 1992b. Boron Isotopic Composition and Concentration in Modern Marine Carbonates. Geochimica et Cosmochimica Acta, 56(1): 537-543. https://doi.org/10.1016/0016-7037(92)90151-8 Hemming, N. G., Reeder, R. J., Hanson, G. N., 1995. Mineral-Fluid Partitioning and Isotopic Fractionation of Boron in Synthetic Calcium Carbonate. Geochimica et Cosmochimica Acta, 59(2): 371-379. https://doi.org/10.1016/0016-7037(95)00288-B Hogan, J. F., Blum, J. D., 2003. Boron and Lithium Isotopes as Groundwater Tracers: A Study at the Fresh Kills Landfill, Staten Island, New York, USA. Applied Geochemistry, 18(4): 615-627. https://doi.org/10.1016/S0883-2927(02)00153-1 Hoke, L., Lamb, S., Hilton, D. R., et al., 2000. Southern Limit of Mantle-Derived Geothermal Helium Emissions in Tibet: Implications for Lithospheric Structure. Earth and Planetary Science Letters, 180(3-4): 297-308. https://doi.org/10.1016/S0012-821X(00)00174-6 Hönisch, B., Hemming, N. G., 2005. Surface Ocean pH Response to Variations in pCO2 through Two Full Glacial Cycles. Earth and Planetary Science Letters, 236(1-2): 305-314. https://doi.org/10.1016/j.epsl.2005.04.027 Hou, Z. Q., Li, Z. Q., 2004. Possible Location for Underthrusting Front of the Indus Continent: Constraints from Helium Isotope of the Geothermal Gas in Southern Tibet and Eastern Tibet. Acta Geologica Sinica, 78(4): 482-493 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2004.04.007 Hu, G. Y., Li, Y. H., Fan, C. F., et al., 2015. In Situ LA-MC-ICP-MS Boron Isotope and Zircon U-Pb Age Determinations of Paleoproterozoic Borate Deposits in Liaoning Province, Northeastern China. Ore Geology Reviews, 65: 1127-1141. https://doi.org/10.1016/j.oregeorev.2014.09.005 Jiang, S. Y., Palmer, M. R., Slack, J. F., et al., 1999. Boron Isotope Systematics of Tourmaline Formation in the Sullivan Pb-Zn-Ag Deposit, British Columbia, Canada. Chemical Geology, 158(1-2): 131-144. https://doi.org/10.1016/S0009-2541(99)00023-6 Kaasalainen, H., Stefánsson, A., 2012. The Chemistry of Trace Elements in Surface Geothermal Waters and Steam, Iceland. Chemical Geology, 330-331: 60-85. https://doi.org/10.1016/j.chemgeo.2012.08.019 Kaasalainen, H., Stefánsson, A., Giroud, N., et al., 2015. The Geochemistry of Trace Elements in Geothermal Fluids, Iceland. Applied Geochemistry, 62: 207-223. https://doi.org/10.1016/j.apgeochem.2015.02.003 Katagiri, J., Yoshioka, T., Mizoguchi, T., et al., 2006. Basic Study on the Determination of Total Boron by Conversion to Tetrafluoroborate Ion (BF4-) Followed by Ion Chromatography. Analytica Chimica Acta, 570(1): 65-72. https://doi.org/10.1016/j.aca.2006.03.084 Kind, R., Ni, J., Zhao, W., et al., 1996. Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 274(5293): 1692-1694. https://doi.org/10.1126/science.274.5293.1692 Leeman, W. P., Tonarini, S., Pennisi, M., et al., 2005. Boron Isotopic Variations in Fumarolic Condensates and Thermal Waters from Vulcano Island, Italy: Implications for Evolution of Volcanic Fluids. Geochimica et Cosmochimica Acta, 69(1): 143-163. https://doi.org/10.1016/j.gca.2004.04.004 Lei, J. S., Zhao, D. P., Su, Y. J., 2009. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research: Solid Earth, 114(B5): B05302. https://doi.org/10.1029/2008JB005881 Liao, Z. J., Zhao, P., 1999. Yunnan Tibet Geothermal Zone: Geothermal Resources and Typical Geothermal System. Science Press, Beijing (in Chinese). Liebscher, A., Meixner, A., Romer, R., et al., 2005. Liquid-Vapor Fractionation of Boron and Boron Isotopes: Experimental Calibration at 400 ℃/23 MPa to 450 ℃/42 MPa. Geochimica et Cosmochimica Acta, 69(24): 5693-5704. https://doi.org/10.1016/j.gca.2005.07.019 Liu, M. L., 2018. Boron Geochemistry of the Geothermal Waters from Typical Hydrothermal Systems in Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Liu, M. L., Guo, Q. H., Luo, L., et al., 2020. Environmental Impacts of Geothermal Waters with Extremely High Boron Concentrations: Insight from a Case Study in Tibet, China. Journal of Volcanology and Geothermal Research, 397: 106887. https://doi.org/10.1016/j.jvolgeores.2020.106887 Liu, M. L., Guo, Q. H., Wu, G., et al., 2019. Boron Geochemistry of the Geothermal Waters from Two Typical Hydrothermal Systems in Southern Tibet (China): Daggyai and Quzhuomu. Geothermics, 82: 190-202. https://doi.org/10.1016/j.geothermics.2019.06.009 Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract). Liu, W. G., Xiao, Y. K., Peng, Z. C., et al., 2000. Boron Concentration and Isotopic Composition of Halite from Experiments and Salt Lakes in the Qaidam Basin. Geochimica et Cosmochimica Acta, 64(13): 2177-2183. https://doi.org/10.1016/S0016-7037(00)00363-X Lü, Y. Y., Xu, R. H., Zhao, P., et al., 2008. Determination of Boron Isotope Ratios in Aqueous Samples by Multiple Collector ICP-MS. Geochimica, 37(1): 1-8 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2008.01.001 Lü, Y. Y., Zheng, M. P., Zhao, P., et al., 2014. Geochemical Processes and Origin of Boron Isotopes in Geothermal Water in the Yunnan-Tibet Geothermal Zone. Science in China (Series D), 44(9): 1968-1979 (in Chinese). Mavromatis, V., Montouillout, V., Noireaux, J., et al., 2015. Characterization of Boron Incorporation and Speciation in Calcite and Aragonite from Co-Precipitation Experiments under Controlled pH, Temperature and Precipitation Rate. Geochimica et Cosmochimica Acta, 150: 299-313. https://doi.org/10.1016/j.gca.2014.10.024 Millot, R., Hegan, A., Négrel, P., 2012. Geothermal Waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr Isotopes Characterization. Applied Geochemistry, 27(3): 677-688. https://doi.org/10.1016/j.apgeochem.2011.12.015 Millot, R., Négrel, P., Petelet-Giraud, E., 2007. Multi-Isotopic (Li, B, Sr, Nd) Approach for Geothermal Reservoir Characterization in the Limagne Basin (Massif Central, France). Applied Geochemistry, 22(11): 2307-2325. https://doi.org/10.1016/j.apgeochem.2007.04.022 Moore, J. N., Norman, D. I., Kennedy, B. M., 2001. Fluid Inclusion Gas Compositions from an Active Magmatic-Hydrothermal System: a Case Study of the Geysers Geothermal Field, USA. Chemical Geology, 173(1-3): 3-30. https://doi.org/10.1016/S0009-2541(00)00265-5 Mu, Z. G., Tong, W., Curtis, G. H., 1987. Times of Volcanic Activity and Origin of Magma in Tengchong Geothermal Area, West Yunnan Province. Chinese Journal of Geophysics, 30(3): 261-270 (in Chinese with English abstract). Nigro, A., Sappa, G., Barbieri, M., 2018. Boron Isotopes and Rare Earth Elements in the Groundwater of a Landfill Site. Journal of Geochemical Exploration, 190: 200-206. https://doi.org/10.1016/j.gexplo.2018.02.019 Oi, T., Ikeda, K., Nakano, M., et al., 1996. Boron Isotope Geochemistry of Hot Spring Waters in Ibusuki and Adjacent Areas, Kagoshima, Japan. Geochemical Journal, 30(5): 273-287. https://doi.org/10.2343/geochemj.30.273 Oi, T., Nomura, M., Musashi, M., et al., 1989. Boron Isotopic Compositions of Some Boron Minerals. Geochimica et Cosmochimica Acta, 53(12): 3189-3195. https://doi.org/10.1016/0016-7037(89)90099-9 Pagani, M., Lemarchand, D., Spivack, A., et al., 2005. A Critical Evaluation of the Boron Isotope-pH Proxy: The Accuracy of Ancient Ocean pH Estimates. Geochimica et Cosmochimica Acta, 69(4): 953-961. https://doi.org/10.1016/j.gca.2004.07.029 Palmer, M. R., Spivack, A. J., Edmond, J. M., 1987. Temperature and pH Controls over Isotopic Fractionation during Adsorption of Boron on Marine Clay. Geochimica et Cosmochimica Acta, 51(9): 2319-2323. https://doi.org/10.1016/0016-7037(87)90285-7 Palmer, M. R., Sturchio, N. C., 1990. The Boron Isotope Systematics of the Yellowstone National Park (Wyoming) Hydrothermal System: A Reconnaissance. Geochimica et Cosmochimica Acta, 54(10): 2811-2815. https://doi.org/10.1016/0016-7037(90)90015-D Pearson, P. N., Foster, G. L., Wade, B. S., 2009. Atmospheric Carbon Dioxide through the Eocene-Oligocene Climate Transition. Nature, 461(7267): 1110-1113. https://doi.org/10.1038/nature08447 Pennisi, M., Gonfiantini, R., Grassi, S., et al., 2006. The Utilization of Boron and Strontium Isotopes for the Assessment of Boron Contamination of the Cecina River Alluvial Aquifer (Central-Western Tuscany, Italy). Applied Geochemistry, 21(4): 643-655. https://doi.org/10.1016/j.apgeochem.2005.11.005 Planer-Friedrich, B., Franke, D., Merkel, B., et al., 2008. Acute Toxicity of Thioarsenates to Vibrio Fischeri. Environmental Toxicology and Chemistry, 27(10): 2027-2035. https://doi.org/10.1897/07-633.1 Purnomo, B. J., Pichler, T., You, C. F., 2016. Boron Isotope Variations in Geothermal Systems on Java, Indonesia. Journal of Volcanology and Geothermal Research, 311: 1-8. https://doi.org/10.1016/j.jvolgeores.2015.12.014 Qing, D. L., Ma, H. Z., Li, B. K., 2012. Boron Concentration and Isotopic Fractionation Research in BangkogCo Intercrystal Brine Evaporation Process. Journal of Salt Lake Research, 20(3): 15-20 (in Chinese with English abstract). Ren, F. H., Zeng, J. H., Liu, W. S., et al., 1996. Hydrogeochemical Environment of High Fluorine Groundwater and the Relation between the Speciation of Fluorine and the Diseased Ratio of Endemic Fluorosis─A Case Study of the North China Plain. Acta Geoscientia Sinica, 17(1): 85-97 (in Chinese with English abstract). Ruiz-Agudo, E., Putnis, C. V., Kowacz, M., et al., 2012. Boron Incorporation into Calcite during Growth: Implications for the Use of Boron in Carbonates as a pH Proxy. Earth and Planetary Science Letters, 345-348: 9-17. https://doi.org/10.1016/j.epsl.2012.06.032 Sanyal, A., Nugent, M., Reeder, R. J., et al., 2000. Seawater pH Control on the Boron Isotopic Composition of Calcite: Evidence from Inorganic Calcite Precipitation Experiments. Geochimica et Cosmochimica Acta, 64(9): 1551-1555. https://doi.org/10.1016/S0016-7037(99)00437-8 Schmidt, C., Thomas, R., Heinrich, W., 2005. Boron Speciation in Aqueous Fluids at 22 to 600℃ and 0.1 MPa to 2 GPa. Geochimica et Cosmochimica Acta, 69(2): 275-281. https://doi.org/10.1016/j.gca.2004.06.018 Shangguan, Z. G., Bai, C. H., Sun, M. L., 2000. Mantle-Derived Magmatic Gas Releasing Features at the Rehai Area, Tengchong County, Yunnan Province, China. Science in China (Series D), 30(4): 407-414 (in Chinese). Sofyan, Y., Daud, Y., Nishijima, J., et al., 2015. The First Repeated Absolute Gravity Measurement for Geothermal Monitoring in the Kamojang Geothermal Field, Indonesia. Geothermics, 53: 114-124. https://doi.org/10.1016/j.geothermics.2014.05.002 Song, Y. Y., Wang, X. K., Zhu, L., et al., 2014. Study on Influence of Temperature and pH on Existing Forms of Polyborate Anions in Water Solution. Inorganic Chemicals Industry, 46(7): 39-42 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4990.2014.07.011 Song, Z., Li, H. M., Li, L. X., et al., 2021. Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan, NW China: New Insights into the Mineralization Processes. Journal of Earth Science, 32(1): 219-234. https://doi.org/10.1007/s12583-020-1060-0 Spivack, A. J., Berndt, M. E., Seyfried, W. E., 1990. Boron Isotope Fractionation during Supercritical Phase Separation. Geochimica et Cosmochimica Acta, 54(8): 2337-2339. https://doi.org/10.1016/0016-7037(90)90060-X Spivack, A. J., Edmond, J. M., 1986. Determination of Boron Isotope Ratios by Thermal Ionization Mass Spectrometry of the Dicesium Metaborate Cation. Analytical Chemistry, 58(1): 31-35. https://doi.org/10.1021/ac00292a010 Spivack, A. J., Edmond, J. M., 1987. Boron Isotope Exchange between Seawater and the Oceanic Crust. Geochimica et Cosmochimica Acta, 51(5): 1033-1043. https://doi.org/10.1016/0016-7037(87)90198-0 Spivack, A. J., Palmer, M. R., Edmond, J. M., 1987. The Sedimentary Cycle of the Boron Isotopes. Geochimica et Cosmochimica Acta, 51(7): 1939-1949. https://doi.org/10.1016/0016-7037(87)90183-9 Su, Z. K., Zhao, X. F., Li, X. C., et al., 2016. Using Elemental and Boron Isotopic Compositions of Tourmaline to Trace Fluid Evolutions of IOCG Systems: The Worldclass Dahongshan Fe-Cu Deposit in SW China. Chemical Geology, 441: 265-279. https://doi.org/10.1016/j.chemgeo.2016.08.030 Swihart, G. H., Moore, P. B., Callis, E. L., 1986. Boron Isotopic Composition of Marine and Nonmarine Evaporite Borates. Geochimica et Cosmochimica Acta, 50(6): 1297-1301. https://doi.org/10.1016/0016-7037(86)90413-8 Tabelin, C. B., Hashimoto, A., Igarashi, T., et al., 2014. Leaching of Boron, Arsenic and Selenium from Sedimentary Rocks: I. Effects of Contact Time, Mixing Speed and Liquid-to-Solid Ratio. The Science of the Total Environment, 472: 620-629. https://doi.org/10.1016/j.scitotenv.2013.11.006 Tong, W., Liao, Z. J., Liu, S. B., et al., 2000. Wenquanzhi of Tibet. Science Press, Beijing (in Chinese). Trotter, J., Montagna, P., Mcculloch, M., et al., 2011. Quantifying the pH 'Vital Effect' in the Temperate Zooxanthellate Coral Cladocora Caespitosa: Validation of the Boron Seawater pH Proxy. Earth and Planetary Science Letters, 303(3-4): 163-173. https://doi.org/10.1016/j.epsl.2011.01.030 Türker, O. C., Vymazal, J., Türe, C., 2014. Constructed Wetlands for Boron Removal: A Review. Ecological Engineering, 64: 350-359. https://doi.org/10.1016/j.ecoleng.2014.01.007 Vengosh, A., Helvacı, C., Karamanderesi, İ. H., 2002. Geochemical Constraints for the Origin of Thermal Waters from Western Turkey. Applied Geochemistry, 17(3): 163-183. https://doi.org/10.1016/S0883-2927(01)00062-2 Vengosh, A., Starinsky, A., Kolodny, Y., et al., 1991. Boron Isotope Geochemistry as a Tracer for the Evolution of Brines and Associated Hot Springs from the Dead Sea, Israel. Geochimica et Cosmochimica Acta, 55(6): 1689-1695. https://doi.org/10.1016/0016-7037(91)90139-V Wang, M. D., Guo, Q. H., Guo, W., et al., 2016. Synthesis, Identification and Quantitative Analysis of Aqueous Thioarsenates. Chinese Journal of Analytical Chemistry, 44(11): 1715-1720 (in Chinese with English abstract). Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract). Wei, H. Z., Jiang, S. Y., Tan, H. B., et al., 2014. Boron Isotope Geochemistry of Salt Sediments from the Dongtai Salt Lake in Qaidam Basin: Boron Budget and Sources. Chemical Geology, 380: 74-83. https://doi.org/10.1016/j.chemgeo.2014.04.026 World Health Organization, 2008. Guidelines for Dringking-Water Quality, 3rd Ed., World Health Organization, Geneva. Wu, S. F., You, C. F., Lin, Y. P., et al., 2016. New Boron Isotopic Evidence for Sedimentary and Magmatic Fluid Influence in the Shallow Hydrothermal Vent System of Milos Island (Aegean Sea, Greece). Journal of Volcanology and Geothermal Research, 310: 58-71. https://doi.org/10.1016/j.jvolgeores.2015.11.013 Xiao, J., Xiao, Y. K., Liu, C. Q., et al., 2012. The Incorporation Species and Mechanism of Boron into Mg(OH)2. Earth Science Frontiers, 19(4): 173-182 (in Chinese with English abstract). Xiao, Y. K., Beary, E. S., Fassett, J. D., 1988. An Improved Method for the High-Precision Isotopic Measurement of Boron by Thermal Ionization Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 85(2): 203-213. https://doi.org/10.1016/0168-1176(88)83016-7 Xiao, Y. K., Li, H. L., Liu, W. G., et al., 2008. Boron Isotopic Fractionation in Laboratory Inorganic Carbonate Precipitation: Evidence for the Incorpora-Tion of B(OH)3 into Carbonate. Science in China (Series D), 38(10): 1309-1317 (in Chinese). doi: 10.3321/j.issn:1006-9267.2008.10.013 Xiao, Y. K., Li, S. Z., Wei, H. Z., et al., 2006. An Unusual Isotopic Fractionation of Boron in Synthetic Calcium Carbonate Precipitated from Seawater and Saline Water. Science in China (Series B), 36(3): 263-272 (in Chinese). Yamaoka, K., Hong, E., Ishikawa, T., et al., 2015. Boron Isotope Geochemistry of Vent Fluids from Arc/Back-Arc Seafloor Hydrothermal Systems in the Western Pacific. Chemical Geology, 392: 9-18. https://doi.org/10.1016/j.chemgeo.2014.11.009 Yang, H. Y., Hu, J. F., Hu, Y. L., et al., 2013. Crustal Structure in the Tengchong Volcanic Area and Position of the Magma Chambers. Journal of Asian Earth Sciences, 73: 48-56. https://doi.org/10.1016/j.jseaes.2013.04.027 Yokoyama, T., Nakai, S., Wakita, H., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1/2): 99-107. https://doi.org/10.1016/S0377-0273(98)00108-5 Yuan, J. F., Guo, Q. H., Wang, Y. X., 2014. Geochemical Behaviors of Boron and Its Isotopes in Aqueous Environment of the Yangbajing and Yangyi Geothermal Fields, Tibet, China. Journal of Geochemical Exploration, 140: 11-22. https://doi.org/10.1016/j.gexplo.2014.01.006 Yuan, X. H., Ni, J., Kind, R., et al., 1997. Lithospheric and Upper Mantle Structure of Southern Tibet from a Seismological Passive Source Experiment. Journal of Geophysical Research: Solid Earth, 102(B12): 27491-27500. https://doi.org/10.1029/97jb02379 Zhang, A. Y., Yao, Y., 2007. The Polyborate Present in Aqueous Solutions Containing Boron and the Affection Factors. Journal of Salt Lake Research, 15(2): 50-56 (in Chinese with English abstract). Zhang, L. J., Ye, X. C., 2008. The Existing Forms and Influencing Factors of the Polyborate Anions in Aqueous Solution. Norganic Chemicals Ndustry, 40(2): 4-8 (in Chinese with English abstract). Zhang, Q., Tan, H. B., Qu, T., et al., 2014. Impacts of Typical Harmful Elements in Geothermal Water on River Water Quality in Tibet. Water Resources Protection, 30(4): 23-29, 77 (in Chinese with English abstract). Zhang, Q., Tan, H. B., Zhang, W. J., et al., 2015. Water Environmental Effects of Kawu Geothermal Water in Sajia County, Tibet. Water Resources Protection, 31(2): 45-49, 54 (in Chinese with English abstract). Zhang, W. J., Tan, H. B., Zhang, Y. F., et al., 2015. Boron Geochemistry from Some Typical Tibetan Hydrothermal Systems: Origin and Isotopic Fractionation. Applied Geochemistry, 63: 436-445. https://doi.org/10.1016/j.apgeochem.2015.10.006 Zhang, Z. F., Zhu, M. X., Liu, S. B., et al., 1982. Preliminary Studies of Hydrothermal Geochemistry of Xizang. Acta Scicentiarum Naturalum Universitis Pekinesis, 18(3): 88-96 (in Chinese with English abstract). Zhang, Z. J., Deng, Y. F., Teng, J. W., et al., 2011. An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 40(4): 977-989. https://doi.org/10.1016/j.jseaes.2010.03.010 Zhao, R. S., Shan, X. L., Wu, C. Z., et al., 2019. Formation and Evolution of the Changbaishan Volcanic Geothermal System in a Convergent Plate Boundary Back-Arc Region Constrained by Boron Isotope and Gas Data. Journal of Hydrology, 569: 188-202. https://doi.org/10.1016/j.jhydrol.2018.11.040 Zhao, W., Mechie, J., Brown, L. D., et al., 2001. Crustal Structure of Central Tibet as Derived from Project INDEPTH Wide-Angle Seismic Data. Geophysical Journal International, 145(2): 486-498. https://doi.org/10.1046/j.0956-540x.2001.01402.x Zheng, M. P., Xiang, J., Wei, X. J., 1989. Qinghai Tibet Plateau Salt Lake. Science and Technology Press, Beijing (in Chinese). Zhou, Y. Q., 2014. Proprieties, Structure and Electrochemical Reduction of Aqueous Sodium Metaborate Borate Solution (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xi'ning (in Chinese with English abstract). Zhu, B. Q., Mao, C. X., 1983. Nd-Sr Isotope and Trace Element Study on Tengchong Volcanic Rocks from the Indo-Eurasian Collisional Margin. Geochimica, 12(1): 1-14 (in Chinese with English abstract). Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain- Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608 (in Chinese with English abstract). 白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm 郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544-3554. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202012002.htm 郭清海, 2022. 地热系统来源有害组分的环境效应及其处理. 地质学报, 96(5): 1767-1773. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202205016.htm 郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287 侯增谦, 李振清, 2004. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He同位素约束. 地质学报, 78(4): 482-493. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200404006.htm 廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社. 刘明亮, 2018. 西藏典型高温水热系统中硼的地球化学研究(博士学位论文). 武汉: 中国地质大学. 刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270 吕苑苑, 许荣华, 赵平, 等, 2008. 利用MC-ICPMS对水样中硼同位素比值的测定. 地球化学, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801001.htm 吕苑苑, 郑绵平, 赵平, 等, 2014. 滇藏地热带地热水硼同位素地球化学过程及其物源示踪. 中国科学(D辑), 44(9): 1968-1979. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409009.htm 穆治国, 佟伟, Curtis, G. H., 1987. 腾冲火山活动的时代和岩浆来源问题. 地球物理学报, 30(3): 261-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198703004.htm 卿德林, 马海州, 李斌凯, 2012. 班戈错Ⅱ湖晶间卤水蒸发硼浓度及硼同位素分馏研究. 盐湖研究, 20(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201203005.htm 任福弘, 曾溅辉, 刘文生, 等, 1996. 高氟地下水的水文地球化学环境及氟的赋存形式与地氟病患病率的关系──以华北平原为例. 地球学报, 17(1): 85-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB601.008.htm 上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩浆气体释放特征. 中国科学(D辑), 30(4): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004009.htm 宋月月, 王学魁, 朱亮, 等, 2014. 温度和pH对硼在水溶液中聚合形式影响的研究. 无机盐工业, 46(7): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201407011.htm 佟伟, 廖志杰, 刘时彬, 等, 2000. 西藏温泉志. 北京: 科学出版社. 王敏黛, 郭清海, 郭伟, 等, 2016. 硫代砷化物的合成、鉴定和定量分析方法研究. 分析化学, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm 汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059 肖军, 肖应凯, 刘丛强, 等, 2012. 硼掺入Mg(OH)2形式及机理. 地学前缘, 19(4): 173-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204020.htm 肖应凯, 李华玲, 刘卫国, 等, 2008. 无机碳酸盐沉积的硼同位素分馏: B(OH)3掺入碳酸盐的证据. 中国科学(D辑), 38(10): 1309-1317. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810014.htm 肖应凯, 李世珍, 魏海珍, 等, 2006. 从海/咸水中沉积碳酸钙时异常的硼同位素分馏. 中国科学(B辑), 36(3): 263-272. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200603011.htm 张爱芸, 姚燕, 2007. 硼酸盐水溶液中硼物种的存在形式及影响因素. 盐湖研究, 15(2): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200702010.htm 张林进, 叶旭初, 2008. 水溶液中硼氧配阴离子的存在形式及影响因素. 无机盐工业, 40(2): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG200802003.htm 张庆, 谭红兵, 渠涛, 等, 2014. 西藏地热水中典型有害元素对河流水质的影响. 水资源保护, 30(4): 23-29, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201404007.htm 张庆, 谭红兵, 张文杰, 等, 2015. 西藏萨迦县卡乌地热水的水环境效应. 水资源保护, 31(2): 45-49, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201502009.htm 张知非, 朱梅湘, 刘时彬, 等, 1982. 西藏水热地球化学的初步研究. 北京大学学报(自然科学版), 18(3): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198203009.htm 郑绵平, 向军, 魏新俊, 1989. 青藏高原盐湖. 北京: 科学技术出版社. 周永全, 2014. 偏硼酸钠溶液性质、结构及电化学还原(博士学位论文). 西宁: 中国科学院青海盐湖研究所. 朱炳泉, 毛存孝, 1983. 印度与欧亚板块东部碰撞边界: 腾冲火山岩的Nd-Sr同位素与微量元素研究. 地球化学, 12(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198301000.htm 朱喜, 王贵玲, 马峰, 等, 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207 -