• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义

    贺昕宇 方同辉 杨自安 杜海超 刘海鹏 王京 贾润幸 郑文皓

    贺昕宇, 方同辉, 杨自安, 杜海超, 刘海鹏, 王京, 贾润幸, 郑文皓, 2024. 东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义. 地球科学, 49(9): 3089-3105. doi: 10.3799/dqkx.2022.241
    引用本文: 贺昕宇, 方同辉, 杨自安, 杜海超, 刘海鹏, 王京, 贾润幸, 郑文皓, 2024. 东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义. 地球科学, 49(9): 3089-3105. doi: 10.3799/dqkx.2022.241
    He Xinyu, Fang Tonghui, Yang Zi'an, Du Haichao, Liu Haipeng, Wang Jing, Jia Runxing, Zheng Wenhao, 2024. Petrogenesis and Tectonic Implications of A-Type Granitoids in the Xingxingxia-Hongliujing Area, Eastern Tianshan. Earth Science, 49(9): 3089-3105. doi: 10.3799/dqkx.2022.241
    Citation: He Xinyu, Fang Tonghui, Yang Zi'an, Du Haichao, Liu Haipeng, Wang Jing, Jia Runxing, Zheng Wenhao, 2024. Petrogenesis and Tectonic Implications of A-Type Granitoids in the Xingxingxia-Hongliujing Area, Eastern Tianshan. Earth Science, 49(9): 3089-3105. doi: 10.3799/dqkx.2022.241

    东天山星星峡‒红柳井地区二叠纪A型花岗质岩石成因及构造意义

    doi: 10.3799/dqkx.2022.241
    基金项目: 

    中国地质调查局花岗岩成岩成矿地质研究中心开放基金 PM202306

    河北省地震动力学重点实验室开放基金 FZ246101

    国务院国有资产监督管理委员会项目 295031001000210001

    中国地质调查局项目 DD20160011

    详细信息
      作者简介:

      贺昕宇(1989-),男,高级工程师,博士,主要从事地质勘查工作.ORCID:0000-0002-4015-2178. E-mail:xinyuhe2@hotmail.com

    • 中图分类号: P581

    Petrogenesis and Tectonic Implications of A-Type Granitoids in the Xingxingxia-Hongliujing Area, Eastern Tianshan

    • 摘要: 中亚造山带南缘的最终缝合时间目前还存在多种不同认识,而A型花岗岩能够为增生造山作用的终止时限提供关键约束.目前东天山南缘的A型花岗岩研究较为薄弱,本文以东天山星星峡‒红柳井地区新识别出的二长花岗岩、石英闪长岩和正长花岗岩3种二叠纪A型花岗质岩石为研究对象,进行了锆石U-Pb年代学、微量元素和岩石地球化学分析.所有二叠纪花岗质岩石都具有高硅(71.32%~76.35%)、富碱(Na2O+K2O=5.67%~9.18%)、弱过铝质(A/CNK=0.85~0.98)和铁质(FeOT/MgO=5.52~21.28)的特征.较为富集Pb、Hf、Zr、Sm,亏损P、Ti、Nb,Ga含量较高(18.2×10‒6~31.1×10‒6),Ga/Al > 2.6.稀土元素总量较低(∑REE=77.67×10‒6~271.82×10‒6),轻稀土较重稀土富集(LREE/HREE=2.82~16.26),其中二长花岗岩、正长花岗岩呈现出较明显的Eu负异常(δEu=0.16~0.84),石英闪长岩呈弱Eu负异常或正异常(δEu=0.85~1.20).二长花岗岩LA-ICP-MS锆石U-Pb年龄为(273.3±1.9)Ma和(273.4±3.4)Ma. A型花岗质岩石成岩物质主要来源于星星峡岩群,有少量的地幔物质贡献,二长花岗岩与正长花岗岩经历了斜长石分离结晶作用,而石英闪长岩斜长石分离结晶较弱.与正长花岗岩、石英闪长岩共生的二长花岗岩还经历了锆石分离结晶作用,锆石δEu负异常受氧逸度影响较大,独立产出的二长花岗岩还经历了榍石、磷灰石的分离结晶作用.在东天山地区307~284 Ma和273 Ma两期A型花岗岩分别形成于前缘挤压而后缘滞后拉张的背景以及后碰撞拉张环境.中亚造山带南缘的东段于~273 Ma已进入后碰撞伸展阶段,最终碰撞作用应早于273 Ma.

       

    • 图  1  中亚造山带地质简图(a; 据Xiao et al., 2010a修改)和东天山地质简图(b; 据Zhang et al., 2016a修改)

      断裂名称:1.卡拉麦里断裂;2.阿齐克库都克‒沙泉子断裂;3.库米什断裂;4.卡瓦布拉克断裂;5.星星峡断裂;6.红柳河‒牛圈子断裂

      Fig.  1.  Tectonic sketch of the Central Asian Orogenic Belt (CAOB) (a; modified after Xiao et al., 2010a) and eastern Tianshan area (b; modified after Zhang et al., 2016a)

      图  2  星星峡‒红柳井地区地质简图

      Fig.  2.  Geological map of the Xingxingxia-Hongliujing area

      图  3  二叠纪花岗质岩石野外照片

      a.二叠纪二长花岗岩中天湖岩群黑云斜长片麻岩残留体;b.二叠纪二长花岗岩侵入天湖岩群黑云斜长片麻岩;c.二叠纪石英闪长岩中镁铁质包体;d.二叠纪正长花岗岩沿天湖岩群和星星峡岩群接触界面侵入

      Fig.  3.  Field photographs of Permian granitoids in the Xingxingxia-Hongliujing area

      图  4  二叠纪花岗质岩石野外露头和镜下照片

      a.二长花岗岩野外露头;b.二长花岗岩镜下照片;c.石英闪长岩野外露头;d.石英闪长岩镜下照片;e.正长花岗岩野外露头;f.正长花岗岩镜下照片. 矿物缩写:Bt.黑云母;Kfs.钾长石;Pl.斜长石;Q.石英

      Fig.  4.  Field outcrops and microphotographs of Permian granitoids in the Xingxingxia-Hongliujing area

      图  5  二叠纪花岗质岩石主量元素判别图解

      a.(Na2O+K2O‒CaO)-SiO2图解;b. FeO/(FeO+MgO)-SiO2图解,底图据Frost et al.(2001)

      Fig.  5.  Geochemical classification diagrams for Permian granitoids in the Xingxingxia-Hongliujing area

      图  6  二叠纪花岗质岩石岩性判别图解

      a.火山岩Ce-Zr/TiO2判别图解,据Winchester and Floyd(1977);b.火成岩R1-R2判别图解,据Roche et al.(1980). 1.碱性辉长岩(碱性玄武岩);2.橄榄辉长岩(橄榄玄武岩);3.辉长苏长岩(拉斑玄武岩);4.正长辉长岩(粗石玄武岩);5.二长辉长岩(粗安玄武岩);6.辉长岩(玄武岩);7.闪长正长岩(橄榄安粗岩);8.二长岩(安粗岩);9.二长闪长岩(粗安岩);10.闪长岩(安山岩);11.霞石正长岩(粗石质响岩);12.正长岩(粗石岩);13.石英正长岩(石英粗石岩);14.石英二长岩(石英安粗岩);15.英云闪长岩(英安岩);16.碱性花岗岩(碱性流纹岩);17.钾长花岗岩(流纹岩);18.二长花岗岩(英安流纹岩);19.花岗闪长岩(流纹英安岩);20.霓辉二长岩(碱玄岩);21.橄榄岩(苦橄岩);22.霞霓岩(苦橄霞玄岩);23.企猎岩(碧玄岩);24.霓霞岩(霞石岩);25.厄赛岩(响岩质碱玄岩);26.霞石正长岩(响岩).R1=4Si‒11(Na+K)‒2(Fe+Ti);R2=6Ca+2Mg+Al

      Fig.  6.  Classification diagrams for Permian granitoids in the Xingxingxia-Hongliujing area

      图  7  二叠纪花岗质岩石蛛网图

      a.微量元素蛛网图,原始地幔数据来自Sun and Mc Donough(1989);b.稀土元素蛛网图,球粒陨石数据来自Boynton(1984)

      Fig.  7.  Primitive mantle-normalized spider diagrams (a) and chondrite-normalized REE patterns (b) for Permian granitoids in the Xingxingxia-Hongliujing area

      图  8  二叠纪花岗质岩石锆石微量元素图解

      a. 锆石稀土元素蛛网图,球粒陨石数据来自Boynton(1984);b. δEu-Hf图解;c. δEu-δCe图解;d. δEu-Y/Dy图解;e. δEu-Sm/Yb图解;f. δEu-Zf/Hf图解

      Fig.  8.  Binary plot for Permian granitoids in the Xingxingxia-Hongliujing area

      图  9  二叠纪花岗质岩石锆石阴极发光图像

      Fig.  9.  Cathodoluminescene (CL) images of zircons of Permian granitoids from the Xingxingxia-Hongliujing area

      图  10  二叠纪花岗质岩石LA-ICP-MS锆石U-Pb年龄谐和图

      Fig.  10.  Concordia diagrams for LA-ICP-MS zircon U-Pb ages of Permian granitoids from the Xingxingxia-Hongliujing area

      图  11  二叠纪花岗质岩石A/I型花岗岩判别图解(底图据Whalen et al., 1987

      Fig.  11.  Classification diagrams of A-type and I-type granite for Permian granitoids in the Xingxingxia-Hongliujing area (after Whalen et al., 1987)

      图  12  二叠纪花岗质岩石CaO/(MgO+TFeO)-Al2O3/(MgO+TFeO)图解

      底图据Altherr et al.(2000)修改;星星峡岩群数据来自卞翔等(2016)贺昕宇等(2021);新元古代(Pt3)花岗岩数据来自贺昕宇,未发表;红土堡花岗岩数据来自杜龙(2018)

      Fig.  12.  CaO/(MgO+TFeO) versus Al2O3/(MgO+TFeO) diagram for Permian granitoids in the Xingxingxia-Hongliujing area

      图  13  二叠纪花岗质岩石构造环境判别图解

      红土堡花岗岩数据据杜龙(2018);红柳井北花岗岩数据据温定军(2019). a. Rb/Zr-SiO2图解,底图据Harris et al.(1986);b. Rb-(Y+Nb)图解,底图据Pearce(1996);c. TFeO/(TFeO+MgO)-SiO2图解,底图据Maniar and Piccoli(1989);d. Rb/Nb-Y/Nb图解,底图据Eby(1992).图中缩写:IAG. 岛弧;CAG. 大陆弧;CCG. 大陆碰撞;POG. 造山后;RRG. 与裂谷有关;CEUG. 造陆抬升

      Fig.  13.  Tectonic setting discrimination diagrams for Permian granitoids in the Xingxingxia-Hongliujing Area

    • Abuduxun, N., Windley, B. F., Xiao, W. J., et al., 2022. Carboniferous Tectonic Incorporation of a Devonian Seamount and Oceanic Crust into the South Tianshan Accretionary Orogen in the Southern Altaids. International Journal of Earth Sciences, 111(8): 2535-2553. https://doi.org/10.1007/s00531-021-02109-6
      Alexeiev, D. V., Biske, Y. S., Djenchuraeva, A. V., et al., 2019. Late Carboniferous (Kasimovian) Closure of the South Tianshan Ocean: No Triassic Subduction. Journal of Asian Earth Sciences, 173: 54-60. https://doi.org/10.1016/J.JSEAES.2019.01.021
      Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9
      Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3
      Bagas, L., Bierlein, F. P., Anderson, J. A. C., et al., 2010. Collision-Related Granitic Magmatism in the Granites-Tanami Orogen, Western Australia. Precambrian Research, 177(1-2): 212-226. https://doi.org/10.1016/j.precamres.2009.12.002
      Bian, X., Yi, Q. A., Yang, S., et al., 2016. The Geochemical Characteristics, Zircon U-Pb Dating and Protolith Restoration of Xingxingxia Rock Group in Baluntai District, Xinjiang. Xinjiang Geology, 34(1): 76-83 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2016.01.013
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Charvet, J., Shu, L. S., Laurent-Charvet, S., 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30(3): 162-186
      Charvet, J., Shu, L. S., Laurent-Charvet, S., et al., 2011. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Science China Earth Sciences, 54(2): 166-184. https://doi.org/10.1007/s11430-010-4138-1
      Chen, Z. Y., Xiao, W. J., Windley, B. F., et al., 2019. Composition, Provenance, and Tectonic Setting of the Southern Kangurtag Accretionary Complex in the Eastern Tianshan, NW China: Implications for the Late Paleozoic Evolution of the North Tianshan Ocean. Tectonics, 38(8): 2779-2802. https://doi.org/10.1029/2018TC005385
      Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216-266. https://doi.org/10.1016/j.gr.2017.02.005
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2-3): 568-581. https://doi.org/10.1016/j.gr.2011.01.013
      Du, L., 2018. Petrogenesis and Tectonic Setting of Paleozoic Felsic Intrusions in East Tianshan (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641: CSOTAT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      Fang, W. X., Zheng, X. M., Fang, T. H., et al., 2021. Restoration of the Devonian-Carboniferous Limited Ocean Basin and Deep Structure of Ophiolitic Melange in the Hongshishan Area of Gansu Province. Geological Bulletin of China, 40(5): 649-673 (in Chinese with English abstract).
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1-4): 118-131. https://doi.org/10.1016/j.tecto.2011.01.001
      Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8
      Gao, J., Long, L. L., Qian, Q., et al., 2006. South Tianshan: A Late Paleozoic or a Triassic Orogen? Acta Petrologica Sinica, 22(5): 1049-1061 (in Chinese with English abstract).
      Gou, L. L., Zhang, L. F., Tao, R. B., et al., 2012. A Geochemical Study of Syn-Subduction and Post-Collisional Granitoids at Muzhaerte River in the Southwest Tianshan UHP Belt, NW China. Lithos, 136-139: 201-224. https://doi.org/10.1016/j.lithos.2011.10.005
      Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3-4): 627-640. https://doi.org/10.1130/b26491.1
      Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
      Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04
      He, X. Y., Fang, T. H., Liu, H. P., et al., 2021. Classification, Geochemical Characteristics and Geological Significance of the Xingxingxia Complex in Xingxingxia Area, Eastern Tianshan. Mineral Exploration, 12(7): 1519-1529 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2021.07.004
      He, Z. Y., Yan, L. L., 2021. Zircon Trace Element Geochemistry Constrains on the Silicic Volcanic System. Acta Petrologica et Mineralogica, 40(5): 939-951 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2021.05.006
      He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190-191: 485-499. https://doi.org/10.1016/j.lithos.2013.12.023
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.04.010
      Ji, W. H., Li, R. S., Chen, F. N., et al., 2020. Tectonic Reconstruction of Northwest China in the Nanhua-Paleozoic and Discussions on Key Issues. Journal of Geomechanics, 26(5): 634-655 (in Chinese with English abstract).
      Jia, X. H., Wang, Q., Tang, G. J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.03.017
      Jiang, T., Gao, J., Klemd, R., et al., 2015. Genetically and Geochronologically Contrasting Plagiogranites in South Central Tianshan Ophiolitic Mélange: Implications for the Breakup of Rodinia and Subduction Zone Processes. Journal of Asian Earth Sciences, 113: 266-281. https://doi.org/10.1016/j.jseaes.2014.10.015
      Konopelko, D., Biske, G., Seltmann, R., et al., 2007. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160. https://doi.org/10.1016/j.lithos.2006.12.005
      Li, J. L., Gao, J., Wang, X. S., 2016. A Subduction Channel Model for Exhumation of Oceanic-Type High-Pressure to Ultrahigh-Pressure Eclogite-Facies Metamorphic Rocks in SW Tianshan, China. Science China Earth Sciences, 59(12): 2339-2354. https://doi.org/10.1007/s11430-016-5103-7
      Li, X. W., Mo, X. X., Zhao, Z. D., et al., 2010. Discussion on Some Problems in the Process of Distinguishing A-Type Granite. Geological Bulletin of China, 29(S1): 278-285 (in Chinese with English abstract).
      Li, Y. J., Wang, Z. M., Wu, H. R., et al., 2002. Discovery of Radiolarian Fossils from the Aiketik Group at the Western End of the South Tianshan Mountains of China and Its Implications. Acta Geologica Sinica-English Edition, 76(2): 146-154. https://doi.org/10.1111/j.1755-6724.2002.tb00081.x
      Li, Y. J., Yang, H. J., Zhao, Y., et al., 2009. Tectonic Framework and Evolution of South Tianshan, NW China. Geotectonica et Metallogenia, 33(1): 94-104 (in Chinese with English abstract).
      Liu, C. X., Xu, B. L., Zhou, T. R., et al., 2004. Petrochemistry and Tectonic Significance of Hercynian Alkaline Rocks along the Northern Margin of the Tarim Platform and Its Adjacent Area. Xinjiang Geology, 22(1): 43-49 (in Chinese with English abstract).
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Loader, M. A., Wilkinson, J. J., Armstrong, R. N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010
      Long, L. L., Gao, J., Wang, J. B., et al., 2008. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China: Examples from the Heiyingshan and Laohutai Plutons. Acta Geologica Sinica-English Edition, 82(2): 415-424. https://doi.org/10.1111/j.1755-6724.2008.tb00592.x
      Ma, X. X., Shu, L. S., Meert, J. G., 2015. Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Post-Collisional Granitoids. Gondwana Research, 27(1): 228-243. https://doi.org/10.1016/j.gr.2013.09.018
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635: TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Niu, Y. Z., Liu, C. Y., Shi, G. R., et al., 2018. Unconformity-Bounded Upper Paleozoic Megasequences in the Beishan Region (NW China) and Implications for the Timing of the Paleo-Asian Ocean Closure. Journal of Asian Earth Sciences, 167: 11-32. https://doi.org/10.1016/j.jseaes.2018.06.019
      Ouyang, S., Wang, Z., Zhan, J. Z., et al., 1993. A Preliminary Discussion on Phytoprovincial Characters of Carboniferous: Permian Palynofloras in N. Xinjiang, NW China. Acta Micropalaeontologica Sinica, 10(3): 237-255 (in Chinese with English abstract).
      Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Qin, K. Z., Zhai, M. G., Li, G. M., et al., 2017. Links of Collage Orogenesis of Multiblocks and Crust Evolution to Characteristic Metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325 (in Chinese with English abstract).
      Roche, H. D. L., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses: Its Relationships with Current Nomenclature. Chemical Geology, 29(1-4): 183-210. https://doi.org/10.1016/0009-2541(80)90020-0
      Shi, Y., 2018. Petrogenesis and Metallogenesis of Post-Collisional Mantle-Derived Orthomagmatic Deposits in East Tianshan, Xinjiang. China University of Geosciences, Beijing (in Chinese with Engish abstract).
      Shu, L. S., Wang, B., Zhu, W. B., 2007. Age of Radiolarian Fossils from the Heiyingshan Ophiolitic Mélange, Southern Tianshan Belt, NW China, and Its Tectonic Significance. Acta Geologica Sinica, 81(9): 1161-1168. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2007.09.001
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Tan, Z., Agard, P., Monié, P., et al., 2019. Architecture and P-T-Deformation-Time Evolution of the Chinese SW-Tianshan HP/UHP Complex: Implications for Subduction Dynamics. Earth-Science Reviews, 197: 102894. https://doi.org/10.1016/j.earscirev.2019.102894
      Tian, Z. H., Xiao, W. J., Shan, Y. H., et al., 2013. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration during Permo-Triassic Termination of the Altaids. Journal of Structural Geology, 52: 119-135. https://doi.org/10.1016/j.jsg.2013.03.016
      Wang, C. M., Chen, L., Bagas, L., et al., 2016b. Characterization and Origin of the Taishanmiao Aluminous A-Type Granites: Implications for Early Cretaceous Lithospheric Thinning at the Southern Margin of the North China Craton. International Journal of Earth Sciences, 105(5): 1563-1589. https://doi.org/10.1007/s00531-015-1269-9
      Wang, C. M., Deng, J., Bagas, L., et al., 2017. Zircon Hf-Isotopic Mapping for Understanding Crustal Architecture and Metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 50: 293-310. https://doi.org/10.1016/j.gr.2017.04.008
      Wang, E. T., Wu, L., Zhai, X. W., et al., 2022. Geochronology, Petrogenesis and Tectonic Implications of Huaniushan Diorite Porphyrite from the Gansu Beishan Area in the Southern Central Asian Orogenic Belt. Earth Science, 47(9): 3285-3300 (in Chinese with Engish abstract).
      Wang, J. L., Wang, S. J., Liu, X. M., 2009. Geochemistry, Geochronology and Geological Significance of Alkali-Feldspar Granite from Tianger Area, Xingjiang. Acta Petrologica Sinica, 25(4): 925-933 (in Chinese with English abstract).
      Wang, J. L., Wu, C. D., Jiang, X., et al., 2018a. Age Assignment of the Upper Carboniferous Arbasay Formation in Shichang Region, North Tianshan (NW China). Journal of Palaeogeography, 7(1): 5. https://doi.org/10.1186/s42501-018-0003-5
      Wang, M., Zhang, J. J., Zhang, B., et al., 2016a. Bi-Directional Subduction of the South Tianshan Ocean during the Late Silurian: Magmatic Records from both the Southern Central Tianshan Block and Northern Tarim Craton. Journal of Asian Earth Sciences, 128: 64-78. https://doi.org/10.1016/j.jseaes.2016.07.007
      Wang, Q. F., Groves, D. I., Deng, J., et al., 2020. Evolution of the Miocene Ailaoshan Orogenic Gold Deposits, Southeastern Tibet, during a Complex Tectonic History of Lithosphere-Crust Interaction. Mineralium Deposita, 55(6): 1085-1104. https://doi.org/10.1007/s00126-019-00922-3
      Wang, X. S., Klemd, R., Gao, J., et al., 2018b. Final Assembly of the Southwestern Central Asian Orogenic Belt as Constrained by the Evolution of the South Tianshan Orogen: Links with Gondwana and Pangea. Journal of Geophysical Research: Solid Earth, 123(9): 7361-7388. https://doi.org/10.1029/2018JB015689
      Wang, X. S., Klemd, R., Li, J. L., et al., 2022. Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights from the Wuwamen Accretionary Complex of the Chinese South Tianshan. Tectonics, 41(2): e2021TC006965. https://doi.org/10.1029/2021TC006965
      Wen, D. J., 2019. Petrogenesis and Tectonic Implications of the Late Paleozoic Granites from the Xingxingxia Area of the Central Tianshan. Chinese Academy of Geological Sciences, Beijing (in Chinese with Engish abstract).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010a. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007
      Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010b. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12
      Xiao, W. J., Song, D. F., Windley, B. F., et al., 2020. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science China Earth Sciences, 63(3): 329-361. https://doi.org/10.1007/s11430-019-9524-6
      Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
      Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Xu, W., Sun, Z. M., Shi, G. R., et al., 2019. First Report of Coupled Early Permian Paleomagnetic and Geochronologic Data from the Dunhuang Block (NW China), and Implications for the Tectonic Evolution of the Paleo-Asian Ocean. Gondwana Research, 67: 46-63. https://doi.org/10.1016/j.gr.2018.10.012
      Yang, G. X., Li, Y. J., Kerr, A. C., et al., 2018. Accreted Seamounts in North Tianshan, NW China: Implications for the Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 223-237. https://doi.org/10.1016/j.jseaes.2017.05.010
      Zhang, C. C., Sun, W. D., Wang, J. T., et al., 2017. Oxygen Fugacity and Porphyry Mineralization: A Zircon Perspective of Dexing Porphyry Cu Deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363. https://doi.org/10.1016/j.gca.2017.03.013.
      Zhang, C. L., Zou, H. B., 2013. Permian A-Type Granites in Tarim and Western Part of Central Asian Orogenic Belt (CAOB): Genetically Related to a Common Permian Mantle Plume? Lithos, 172-173: 47-60. https://doi.org/10.1016/j.lithos.2013.04.001
      Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016a. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256-257: 269-281. https://doi.org/10.1016/j.lithos.2016.04.006
      Zhang, X. R., Zhao, G. C., Sun, M., et al., 2016b. Tectonic Evolution from Subduction to Arc-Continent Collision of the Junggar Ocean: Constraints from U-Pb Dating and Hf Isotopes of Detrital Zircons from the North Tianshan Belt, NW China. Geological Society of America Bulletin, 128(3-4): 644-660. https://doi.org/10.1130/b31230.1
      Zhang, J., Qu, J. F., Zhao, H., et al., 2023. Formation, Mechanism and Tectonic Implication of a Large Ductile Strike-Slip Duplex in the Middle Segment of Central Asian Orogenic Belt. Mineral Exploration, 14(4): 519-540 (in Chinese with English abstract).
      卞翔, 伊其安, 杨硕, 等, 2016. 巴伦台地区星星峡岩群岩石地球化学特征、锆石U-Pb年龄及原岩恢复. 新疆地质, 34(1): 76-83.
      杜龙, 2018. 东天山古生代长英质侵入体岩石成因及其构造背景(博士学位论文). 广州: 中国科学院广州地球化学研究所.
      方维萱, 郑小明, 方同辉, 等, 2021. 甘肃红石山地区泥盆纪‒石炭纪有限洋盆重建与蛇绿混杂岩深部结构. 地质通报, 40(5): 649-673.
      高俊, 龙灵利, 钱青, 等, 2006. 南天山: 晚古生代还是三叠纪碰撞造山带? 岩石学报, 22(5): 1049-1061.
      贺昕宇, 方同辉, 刘海鹏, 等, 2021. 东天山星星峡地区星星峡岩群的划分、地球化学特征与地质意义. 矿产勘查, 12(7): 1519-1529.
      贺振宇, 颜丽丽, 2021. 锆石微量元素地球化学对硅质火山岩浆系统的制约. 岩石矿物学杂志, 40(5): 939-951.
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492.
      计文化, 李荣社, 陈奋宁, 等, 2020. 中国西北地区南华纪‒古生代构造重建及关键问题讨论. 地质力学学报, 26(5): 634-655.
      贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480.
      李小伟, 莫宣学, 赵志丹, 等, 2010. 关于A型花岗岩判别过程中若干问题的讨论. 地质通报, 29(S1): 278-285.
      李曰俊, 杨海军, 赵岩, 等, 2009. 南天山区域大地构造与演化. 大地构造与成矿学, 33(1): 94-104.
      刘楚雄, 许保良, 邹天人, 等, 2004. 塔里木北缘及邻区海西期碱性岩岩石化学特征及其大地构造意义. 新疆地质, 22(1): 43-49.
      欧阳舒, 王智, 詹家桢, 等, 1993. 新疆北部石炭纪‒二叠纪孢粉组合的植物区系性质初步探讨. 微体古生物学报, 10(3): 237-255.
      秦克章, 翟明国, 李光明, 等, 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325.
      石煜, 2018. 新疆东天山后碰撞幔源岩浆矿床成岩‒成矿作用(博士学位论文). 北京: 中国地质大学.
      舒良树, 王博, 朱文斌, 2007. 南天山蛇绿混杂岩中放射虫化石的时代及其构造意义. 地质学报, 81(9): 1161-1168.
      王二腾, 武磊, 翟新伟, 等, 2022. 中亚造山带南缘甘肃北山地区花牛山闪长玢岩地球化学特征及地质意义. 地球科学, 47(9): 3285-3300. doi: 10.3799/dqkx.2021.155
      王居里, 王守敬, 柳小明, 2009. 新疆天格尔地区碱长花岗岩的地球化学、年代学及其地质意义. 岩石学报, 25(4): 925-933.
      温定军, 2019. 中天山星星峡地区晚古生代花岗岩的成因和构造意义(硕士学位论文). 北京: 中国地质科学院.
      张进, 曲军峰, 赵衡, 等, 2023. 中亚造山带中部大型韧性走滑双重构造的形成、机制与涵义. 矿产勘查, 14(4): 519-540.
    • dqkxzx-49-9-3089-附表1-3.doc
    • 加载中
    图(13)
    计量
    • 文章访问数:  644
    • HTML全文浏览量:  175
    • PDF下载量:  148
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-06
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回