• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于PCA-GWR的包气带不同土层饱和导水率的传递函数及其回归克里金估计

    湛江 李志萍 赵贵章 王琳 袁巧灵

    湛江, 李志萍, 赵贵章, 王琳, 袁巧灵, 2024. 基于PCA-GWR的包气带不同土层饱和导水率的传递函数及其回归克里金估计. 地球科学, 49(3): 978-991. doi: 10.3799/dqkx.2022.242
    引用本文: 湛江, 李志萍, 赵贵章, 王琳, 袁巧灵, 2024. 基于PCA-GWR的包气带不同土层饱和导水率的传递函数及其回归克里金估计. 地球科学, 49(3): 978-991. doi: 10.3799/dqkx.2022.242
    Zhan Jiang, Li Zhiping, Zhao Guizhang, Wang Lin, Yuan Qiaoling, 2024. Pedo-Transfer Function and Regression Kriging Estimation of Saturated Hydraulic Conductivity of Different Soil Layers in Vadose Zone Based on PCA-GWR. Earth Science, 49(3): 978-991. doi: 10.3799/dqkx.2022.242
    Citation: Zhan Jiang, Li Zhiping, Zhao Guizhang, Wang Lin, Yuan Qiaoling, 2024. Pedo-Transfer Function and Regression Kriging Estimation of Saturated Hydraulic Conductivity of Different Soil Layers in Vadose Zone Based on PCA-GWR. Earth Science, 49(3): 978-991. doi: 10.3799/dqkx.2022.242

    基于PCA-GWR的包气带不同土层饱和导水率的传递函数及其回归克里金估计

    doi: 10.3799/dqkx.2022.242
    基金项目: 

    国家自然科学基金项目 41972261

    河南省自然资源厅2019-2020年度科技项目 201937913

    详细信息
      作者简介:

      湛江(1992-),男,博士研究生,主要从事水文地质与环境地质学的研究. ORCID:0000-0001-9565-3669. E-mail:zj20181021@163.com

      通讯作者:

      李志萍,E-mail: lizhiping@ncwu.edu.cn

    • 中图分类号: P641

    Pedo-Transfer Function and Regression Kriging Estimation of Saturated Hydraulic Conductivity of Different Soil Layers in Vadose Zone Based on PCA-GWR

    • 摘要: 饱和导水率是重要的土壤水力学参数,对渗流和溶质运移研究起着至关重要的作用.土壤传递函数可以代替大规模采样和室内外试验间接预测该参数,但由于土壤的空间变异性以及方法的局限性等原因,以往的传递函数往往精度有限.本文以黄河下游沿岸兰考县闫楼乡包气带不同土层为研究对象,基于64个钻孔数据,将土壤粒径分布(黏粒、粉粒和砂粒含量)、土壤结构分形维数、干容重、总孔隙度、pH值、有机质和电导率等9个基本理化特性参数作为影响因素,基于逐步回归、主成分回归和主成分‒地理加权回归(PCA-GWR)三种方法,分别对研究区包气带不同土层的饱和导水率进行回归分析,比较精度后基于PCA-GWR对饱和导水率进行地理加权回归克里金插值.结果显示,除表层粉土以外,PCA-GWR法的预测精度有显著优势.不同土层传递函数和饱和导水率分布的差异性表明,由于黄河下游地区快速多变的沉积过程、黄河的决口改道以及人类活动等因素,包气带土层相变剧烈,土壤饱和导水率在平面上亦具有明显的非平稳特征.而局部地质作用和人类活动是第二层粉土层回归克里金估计结果欠佳的深层原因.

       

    • 图  1  研究区示意图

      a.地理位置;b.卫星图;c.采样点分布

      Fig.  1.  Map of study area

      图  2  研究区包气带底板等值线图、三维示意图与剖面图

      Fig.  2.  Contour map, three-dimensional diagram and profile of vadose zone floor in the study area

      图  3  研究区采样点分布和代表钻孔剖面柱状图

      Fig.  3.  Histogram of sampling point distribution and representative borehole profile in the study area

      图  4  PCA-GWR的预测值与实测值的关系

      Fig.  4.  Relationship between predicted value and measured value of PCA-GWR

      图  5  不同土层饱和导水率的GWR-EBK插值

      Fig.  5.  GWR-EBK interpolation of saturated hydraulic conductivity in different soil layers

      表  1  土层岩性、厚度和取样情况

      Table  1.   Lithology, thickness and sampling of soil layers

      土层 岩性 样品数 土层平均厚度(m) 取样深度(m) 平均取样深度(m)
      表层 粉土 45 0.30 0.15 0.15
      表层 粉质黏土 19 0.30 0.15 0.15
      第二层 粉土 41 2.25 1.27~1.60 1.42
      第三层 粉质黏土 64 0.59 0.51~2.90 1.84
      第四层 粉砂 64 1.79 1.24~4.04 2.78
      下载: 导出CSV

      表  2  测试项目与方法

      Table  2.   Test items and methods

      测定项目 测试方法 试验设备或参考标准
      土壤饱和导水率(cm/s) 变水头渗透仪法 南京宁曦土壤变水头渗透仪BST-1型
      土壤结构组成(%) 激光粒度仪法 北京渠道科技QT-2012型
      土壤干容重(%) 烘干法 《土工试验方法标准》(GB/T 50123-2019)
      土壤总孔隙度(%) 烘干法 《土工试验方法标准》(GB/T 50123-2019)
      土壤有机质(g/kg) 重铬酸钾滴定法 《农业行业标准》(NY/T1121.6-2006)
      土壤pH值(-) pH酸度计 《农业行业标准》(NY/T1121.6-2006)
      土壤电导率(μm/s) 电导率仪法 《农业行业标准》(NY/T1121.6-2006)
      下载: 导出CSV

      表  3  不同土层土壤饱和导水率和理化特性的经典统计学特征

      Table  3.   Classical statistical characteristics of saturated hydraulic conductivity and physicochemical properties of soils in different topsoil layers

      指标 饱和导水率Ks(m/d) 黏粒(%) 粉粒(%) 砂粒(%) 分形维数 干容重(kN/m3 孔隙度(%) pH值 有机质(g/kg) 电导率(μs/m)
      表层
      (粉土)
      最小值 0.016 2 0.00 16.34 0.03 1.436 12.06 34.47 7.84 1.09 19.37
      最大值 1.930 8 4.58 98.65 83.66 2.246 16.44 50.12 9.51 31.20 1 141.20
      均值 0.458 9 0.59 76.40 22.99 1.923 13.85 42.02 8.65 8.96 432.06
      变异系数 1.024 4 2.110 7 0.283 3 0.961 1 0.109 2 0.067 9 0.093 9 0.041 8 0.620 0 0.615 1
      表层
      (粉质黏土)
      最小值 0.001 1 0.00 1.33 0.00 1.229 12.80 38.16 8.01 2.16 102.25
      最大值 0.587 2 91.28 93.22 0.60 2.470 16.06 53.24 9.20 27.80 824.85
      均值 0.129 5 39.80 54.98 0.0337 2.328 14.57 45.53 8.48 14.14 495.41
      变异系数 1.273 0 0.653 3 0.492 8 4.080 4 0.116 4 0.062 1 0.744 8 0.035 1 0.483 9 0.417 2
      第二层
      (粉土)
      最小值 0.007 2 0.00 18.80 0.00 1.500 12.01 39.01 8.10 1.02 8.67
      最大值 1.575 1 27.03 99.81 81.20 2.258 15.55 67.00 9.70 6.86 242.03
      均值 0.432 5 1.17 69.85 28.99 1.802 13.71 46.39 8.74 3.05 137.17
      变异系数 0.915 3 3.820 5 0.359 3 0.896 2 0.112 0.064 2 0.106 7 0.036 6 0.498 4 0.507 7
      第三层
      (粉质黏土)
      最小值 0.005 8 0.00 17.54 0.00 1.513 12.06 36.09 7.90 1.21 32.76
      最大值 0.930 8 82.46 99.95 79.61 2.458 15.84 64.58 9.70 23.30 179.25
      均值 0.210 5 19.71 74.14 6.83 2.210 13.69 48.18 8.58 6.51 104.74
      变异系数 0.887 8 1.081 2 0.292 0 2.472 9 0.117 0.062 0 0.104 2 0.038 5 0.672 8 0.415 8
      第四层
      (粉砂)
      最小值 0.123 7 0.08 0.05 21.51 1.046 13.26 32.30 8.40 0.57 78.77
      最大值 1.989 5 3.44 77.32 99.95 1.608 15.36 50.06 9.40 13.50 477.41
      均值 0.952 8 1.40 16.01 16.16 0.145 0.54 2.59 0.24 1.98 117.92
      变异系数 0.473 0 0.897 4 1.493 5 0.180 9 0.105 0.037 1 0.058 7 0.027 0 1.010 2 0.462 1
      注:变异系数和分形维数均为无量纲.
      下载: 导出CSV

      表  4  逐步回归方程及其精度评价

      Table  4.   Stepwise regression equation and accuracy evaluation

      土层 逐步回归方程 RMSE R2
      表层
      (粉土)
      Ks=6.759‒0.162silt+2.06×10‒3silt2‒1.199×10‒5silt3‒0.371pH+3.664×10‒4EC‒4.673EC2+9.760×10‒10EC3 0.320 7 0.524
      表层
      (粉质黏土)
      Ks=‒0.586+3.186/OM+3.210×10‒3EC‒6.182×10‒6 EC+3.193×10‒9 EC3 0.115 9 0.880
      第二层
      (粉土)
      Ks=1.12‒6.93×10‒3sand+5.48×10‒4sand2‒5.01×10‒6sand3‒3.89×10‒1OM+5.70×10‒2OM2‒2.39×10‒3OM3 0.278 5 0.604
      第三层
      (粉质黏土)
      Ks=3.40+9.75×10‒4sand+4.15×10‒4sand2‒4.06×10‒6sand3+1.25×10‒3e(5.594+29.155/silt)+
      9.52×10‒1pH+5.93×10‒2pH2
      0.098 8 0.721
      第四层
      (粉砂)
      Ks=1.29+6.67e(‒1.489D)‒2.28×10‒1BD+1.60×10‒2BD2 0.312 9 0.511
      注:clay(%),silt(%),sand(%),D(‒),BD(kN/m3),n(%),pH值(‒),OM(g/kg),EC(μs/m),Ks(m/d).
      下载: 导出CSV

      表  5  不同土层主成分表达式

      Table  5.   Principal component expression of different soil layers

      土层 主成分向量表达式
      表层
      (粉土)
      F1=0.260x1+0.413x2‒0.420x3+0.453x4+0.268x5‒0.220x6‒0.286x7+0.362x8‒0.217x9
      F2=0.006x1+0.324x2‒0.317x3+0.162x4‒0.550x5+0.600x6‒0.049x7‒0.020x8+0.321x9
      F3=0.538x1+0.117x2‒0.147x3+0.138x4+0.136x5‒0.025x6+0.652x7‒0.460x8+0.009x9
      F4=0.319x1‒0.126x2+0.104x3+0.004x4+0.110x5‒0.238x6‒0.086x7+0.249x8+0.856x9
      F5=0.668x1‒0.365x2+0.318x3+0.098x4‒0.257x5+0.237x6‒0.294x7+0.105x8‒0.302x9
      表层
      (粉质黏土)
      F1=0.090x1+0.355x2‒0.533x3+0.503x4+0.046x5+0.056x6‒0.041x7+0.345x8+0.102x9
      F2=0.620x1‒0.462x2‒0.152x3+0.234x4+0.476x5‒0.125x6+0.171x7‒0.020x8‒0.229x9
      F3=0.294x1‒0.177x2‒0.124x3+0.189x4‒0.464x5+0.676x6+0.147x7‒0.290x8+0.230x9
      F4=0.157x1‒0.254x2+0.127x3‒0.089x4‒0.016x5‒0.231x6+0.017x7+0.360x8+0.838x9
      第二层
      (粉土)
      F1=0.190x1+0.490x2‒0.506x3+0.479x4‒0.062x5+0.080x6‒0.234x7+0.415x8+0.023x9
      F2=0.358x1‒0.031x2‒0.032x3+0.216x4+0.598x5‒0.588x6+0.280x7‒0.044x8‒0.196x9
      F3=0.561x1‒0.189x2+0.087x3+0.172x4‒0.155x5+0.165x6+0.290x7‒0.056x8+0.689x9
      F4=‒0.231x1‒0.187x2+0.219x3+0.021x4+0.276x5‒0.319x6‒0.568x7+0.324x8+0.508x9
      F5=‒0.568x1+0.281x2‒0.175x3‒0.052x4+0.228x5+0.005x6+0.592x7+0.122x8+0.385x9
      第三层
      (粉质黏土)
      F1=0.517x1‒0.121x2‒0.492x3+0.591x4‒0.023x5+0.255x6‒0.030x7+0.141x8+0.203x9
      F2=‒0.256x1+0.413x2‒0.212x3+0.040x4‒0.322x5+0.434x6+0.379x7‒0.520x8+0.100x9
      F3=‒0.261x1+0.556x2‒0.387x3+0.204x4+0.467x5‒0.415x6+0.097x7+0.166x8‒0.063x9
      F4=0.244x1‒0.330x2+0.119x3+0.036x4+0.457x5‒0.151x6+0.676x7‒0.353x8‒0.048x9
      F5=‒0.103x1+0.003x2+0.125x3‒0.094x4+0.231x5‒0.032x6‒0.114x7‒0.076x8+0.944x9
      第四层
      (粉砂)
      F1=0.335x1+0.495x2‒0.499x3+0.464x4‒0.264x5‒0.163x6‒0.045x7+0.271x8‒0.082x9
      F2=0.148x1+0.167x2‒0.169x3‒0.082x4‒0.243x5+0.472x6+0.628x7‒0.444x8+0.204x9
      F3=0.058x1+0.297x2‒0.296x3‒0.148x4+0.630x5‒0.227x6‒0.153x7‒0.311x8+0.480x9
      F4=0.111x1‒0.237x2+0.232x3+0.267x4‒0.104x5‒0.052x6+0.162x7+0.398x8+0.780x9
      F5=‒0.647x1+0.257x2‒0.236x3‒0.073x4‒0.019x5+0.520x6‒0.209x7+0.332x8+0.172x9
      F6=0.555x1‒0.107x2+0.091x3+0.063x4+0.090x5+0.605x6‒0.540x7‒0.057x8+0.034x9
      注:表中x1, x2, …, x9为标准化后的自变量值,依次代表黏粒含量、粉粒含量、砂粒含量、分形维数、容重、总孔隙度、pH值、有机质和电导率.
      下载: 导出CSV

      表  6  主成分回归方程及其精度评价

      Table  6.   Principal component regression equation and its accuracy evaluation

      土层 主成分回归方程 RMSE R2
      表层
      (粉土)
      Ks=‒7.40×10‒2F1‒8.04×10‒3F2‒1.30×10‒1F3+1.79×10‒1F4+6.7×10‒2F5+0.459 0.385 0 0.319 0
      表层
      (粉质黏土)
      Ks=‒1.67×10‒1F1‒6.40×10‒2F2+1.01×10‒2F3‒2.12×10‒2F4+2.02×10‒2 0.145 2 0.812 3
      第二层
      (粉土)
      Ks=‒1.59×10‒1F1‒4.12×10‒3F2‒6.66×10‒3F3+1.99×10‒2F4‒3.41×10‒2F5+4.33×10‒1 0.268 2 0.541 2
      第三层
      (粉质黏土)
      Ks=‒8.09×10‒2F1‒1.62×10‒2F2‒5.56×10‒2F3‒3.66×10‒3F4+2.29×10‒2F5+2.10×10‒1 0.111 2 0.645 8
      第四层
      (粉砂)
      Ks=‒1.60×10‒1F1+1.07×10‒2F2+5.23×10‒2F3‒7.28×10‒2F4‒1.15×10‒2F5+5.96×10‒2F6+9.53×10‒1 0.336 6 0.433 2
      注:Ks(m/d).
      下载: 导出CSV

      表  7  三种回归方法的精度比较

      Table  7.   Accuracy comparison of three regression methods

      指标 逐步回归 主成分回归 PCA-GWR
      表层
      (粉土)
      RMSE 0.320 7 0.385 0 0.384 9
      R2 0.523 9 0.313 9 0.314 3
      表层
      (粉质黏土)
      RMSE 0.113 2 0.145 2 0.063 6
      R2 0.752 9 0.583 8 0.852 7
      第二层
      (粉土)
      RMSE 0.278 5 0.268 2 0.110 0
      R2 0.604 3 0.541 2 0.925 5
      第三层
      (粉质黏土)
      RMSE 0.098 8 0.111 2 0.092 0
      R2 0.720 6 0.645 8 0.758 7
      第四层
      (粉砂)
      RMSE 0.312 9 0.336 6 0.283 5
      R2 0.510 5 0.433 2 0.607 6
      下载: 导出CSV

      表  8  不同土层Ks的PCA-GWR方程的残差的最优变异函数模型

      Table  8.   Optimal variogram model for PCA-GWR equation of Ks in different soil layers

      土层 模型 块金值 基台值 块金系数 变程(m) R2 RMSE
      表层 指数 0.001 0.102 0.212 166 0.001 0.009
      第二层 球状 0.009 18.000 0.999 678 0.001 1.538
      第三层 球状 0.009 9.840 0.001 915 0.659 0.131
      第四层 高斯 0.086 45.070 0.002 568 0.444 0.781
      下载: 导出CSV

      表  9  GWR-EBK法的交叉验证

      Table  9.   Cross validation of GWR-EBK method

      土层 RMSE r
      表层 0.320 1 0.697 1
      第二层 0.391 8 0.183 0
      第三层 0.173 8 0.373 1
      第四层 0.385 9 0.506 1
      下载: 导出CSV
    • Cosby, B. J., Hornberger, G. M., Clapp, R. B., et al., 1984. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resources Research, 20(6): 682-690. https://doi.org/10.1029/WR020i006p00682
      Fang, L. J., Gao, R. Z., Liu, T. X., et al., 2020. Construction and Evaluation of Pedo-Transfer Functions in the Balager River Basin. Arid Zone Research, 37(5): 1156-1165 (in Chinese with English abstract).
      Fotheringham, A. S., Charlton, M., Brunsdon, C., 1996. The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity. International Journal of Geographical Information Systems, 10(5): 605-627. https://doi.org/10.1080/02693799608902100
      Gao, P. F., Ran, Z. L., Han, Z., et al., 2021. Hydraulic Properties and Saturated Hydraulic Conductivity Pedo-Transfer Function of Rocky Purple Soil. Acta Pedologica Sinica, 58(1): 128-139 (in Chinese with English abstract).
      Ge, Q., Liang, X., Gong, X. L., et al., 2017. Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits: A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain. Earth Science, 42(5): 793-803 (in Chinese with English abstract).
      Huang, M. B., Fredlund, D. G., Fredlund, M. D., 2010. Comparison of Measured and PTF Predictions of SWCCs for Loess Soils in China. Geotechnical and Geological Engineering, 28(2): 105-117. https://doi.org/10.1007/s10706-009-9284-x
      Huang, W. X., Deng, Y. S., Xie, F. Q., et al., 2020. Characteristics of Soil Saturated Hydraulic Conductivity on Different Positions and Their Controlling Factors of Granite Collapsing Gullies. Chinese Journal of Applied Ecology, 31(7): 2431-2440 (in Chinese with English abstract).
      Julià, M. F., Monreal, T. E., Jiménez, A. S. D. C., et al., 2004. Constructing a Saturated Hydraulic Conductivity Map of Spain Using Pedotransfer Functions and Spatial Prediction. Geoderma, 123(3-4): 257-277. https://doi.org/10.1016/j.geoderma.2004.02.011
      Kumar, S., Lai, R., Liu, D. S., 2012. A Geographically Weighted Regression Kriging Approach for Mapping Soil Organic Carbon Stock. Geoderma, 189-190: 627-634. https://doi.org/10.1016/j.geoderma.2012.05.022
      Li, H. X., Liu, J. L., Zhu, A. N., et al., 2010. Comparison Study of Soil Pedo-Transfer Functions in Estimating Saturated Soil Hydraulic Conductivity at Tianranwenyanqu Basin. Soils, 42(3): 438-445 (in Chinese with English abstract).
      Li, X. D., Shao, M. A., Zhao, C. L., 2019. Spatial Variability and Simulation of Soil Hydraulic Parameters in Arid Northwest China. Arid Zone Research, 36(6): 1325-1332 (in Chinese with English abstract)
      Li, Y., Chen, D., White, R. E., et al., 2007. Estimating Soil Hydraulic Properties of Fengqiu County Soils in the North China Plain Using Pedo-Transfer Functions. Geoderma, 138(3-4): 261-271. https://doi.org/10.1016/j.geoderma.2006.11.018
      Liao, K. H., Xu, S. H., Wu, J. C., et al., 2012. A Method Based on Principal Component Analysis and Artificial Neural Network for Estimating Soil Hydraulic Properties. Journal of Hydraulic Engineering, 43(3): 333-338 (in Chinese with English abstract).
      Liu, K., Huang, G. H., 2019. Joint State and Parameter Estimation of Two-Dimensional Soil Water Flow Model Based on Ensemble Kalman Filter Method. Journal of Hydraulic Engineering, 50(3): 399-408 (in Chinese with English abstract).
      Liu, Z. X., Shu, Q. S., Wang, Z. Y., 2007. Applying Pedo-Transfer Functions to Simulate Spatial Heterogeneity of Cinnamon Soil Water Retention Characteristics in Western Liaoning Province. Water Resources Management, 21(10): 1751-1762. https://doi.org/10.1007/s11269-006-9125-0
      Liu, T. Q., Wang, B. G., Zhang, J. S., et al., 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682 (in Chinese with English abstract).
      Luo, Y. W., Ren, Z. P., Ge, Y., et al., 2020. Analysis on Spatio-Temporal Patterns and Drivers of Poverty at Village Level Based on PCA-GWR. Journal of Geo-Information Science, 22(2): 231-245 (in Chinese with English abstract).
      Ma, Y. F., Li, S. Q., Pan, X. H., 2015. A Review on Development of the Yellow River Alluvial Fan. Acta Geographica Sinica, 70(1): 49-62 (in Chinese with English abstract).
      Qiao, J. B., 2019. Study On The Soil Physical Properties of The Deep Profile of the Critical Zone of the China's Loess Plateau and Their Pedotransfer Functions (Dissertation). Northwest A&F University, Yangling (in Chinese with English abstract).
      Qu, M. K., Li, W. D., Zhang, C. R., et al., 2014. Geographically Weighted Regression and Its Application Prospect in Soil and Environmental Sciences. Soils, 46(1): 15-22 (in Chinese with English abstract).
      Rawls, W. J., Gish, T. J., Brakensiek, D. L., 1991. Estimating Soil Water Retention from Soil Physical Properties and Characteristics. In: Stewart, B. A., ed., Advances in Soil Science. Springer, New York, 213-234. https://doi.org/10.1007/978-1-4612-3144-8_5
      Saxton, K. E., Rawls, W. J., Romberger, J. S., et al., 1986. Estimating Generalized Soil-Water Characteristics from Texture. Soil Science Society of America Journal, 50(4): 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
      Sun, L., Liu, T. X., Duan, L. M., et al., 2015. Prediction of Saturated Hydraulic Conductivity of Surface Soil in sand-Dune-and-Meadow Interlaced Region of Horqin with pedo-Transfer Functions Method. Acta Pedologica Sinica, 52(1): 68-76 (in Chinese with English abstract).
      Sun, M., Zhang, X. L., Feng, S. Y., et al., 2014. Pedo-Transfer Function for Saturated Hydraulic Conductivity of Agricultural Soil Based on Cross-Validation. Transactions of the Chinese Society for Agricultural Machinery, 45(10): 147-152 (in Chinese with English abstract).
      Vereecken, H., Maes, J., Feyen, J., 1990. Estimating Unsaturated Hydraulic Conductivity from Easily Measured Soil Properties. Soil Science, 149(1): 1-12. https://doi.org/10.1097/00010694-199001000-00001
      Wang, G. L., Zhou, S. L., Zhao, Q. G., 2005. Volume Fractal Dimension of Soil Particles and Its Applications to Land Use. Acta Pedologica Sinica, 42(4): 545-550 (in Chinese with English abstract).
      Wang, H. M., Ni, W. K., 2022. Prediction Model of Saturated/Unsaturated Permeability Coefficient of Compacted Loess with Different Dry Densities. Rock and Soil Mechanics, 43(3): 729-736 (in Chinese with English abstract).
      Wang, Z. L., Zhao, Y. G., Zhao, S. W., et al., 2016. Study on Soil Saturated Hydraulic Conductivity and Its Influencing Factors in Typical Grassland of Farmland Conversion. Acta Agrestia Sinica, 24(6): 1254-1262 (in Chinese with English abstract).
      Wösten, J. H. M., Lilly, A., Nemes, A., et al., 1999. Development and Use of a Database of Hydraulic Properties of European Soils. Geoderma, 90(3-4): 169-185. https://doi.org/10.1016/s0016-7061(98)00132-3
      Yang, S. H., Zhang, H. T., Guo, L., et al., 2015. Spatial Interpolation of Soil Organic Matter Using Regression Kriging and Geographically Weighted Regression Kriging. Chinese Journal of Applied Ecology, 26(6): 1649-1656 (in Chinese with English abstract).
      Yang, Z., Huang, X., She, D. L., 2020. Spatial Distribution Characteristics and Influencing Factors of Soil Saturated Hydraulic Conductivity in the Loess Hilly Region of Northwestern Shanxi. Journal of Soil and Water Conservation, 34(6): 178-184 (in Chinese with English abstract).
      Yao, S. X., Zhao, C. C., Zhang, T. H., 2013. A Comparison of Soil Saturated Hydraulic Conductivity (Kfs) in Different Horqin Sand Land. Acta Pedologica Sinica, 50(3): 469-477 (in Chinese with English abstract).
      Zhang, J., Liang, X., Liu, Y. F., et al., 2023. CoKriging Method Based on Principal Components to Predict Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831 (in Chinese with English abstract).
      Zhao, C. L., Shao, M. A., Jia, X. X., 2014. Distribution and Simulation of Saturated Soil Hydraulic Conductivity at a Slope of Northern Loess Plateau. Advances in Water Science, 25(6): 806-815 (in Chinese with English abstract).
      Zheng, H., Han, L., Shojaaddini, A., 2021. Predicting Saturated Hydraulic Conductivity by Pedo-Transfer Function and Spatial Methods in Calcareous Soils. Journal of Applied Geophysics, 191: 104367. https://doi.org/10.1016/j.jappgeo.2021.104367
      Zou, G. H., Li, Y., Li, Y. Y., et al., 2013. Developing a Pedo-Transfer Function for Estimating Saturated Soil Hydraulic Conductivity of Paddy Soils of a Catchment in Southern Subtropical China. Chinese Journal of Soil Science, 44(2): 302-307 (in Chinese with English abstract).
      房丽晶, 高瑞忠, 刘廷玺, 等, 2020. 巴拉格尔河流域土壤传递函数构建与评估. 干旱区研究, 37(5): 1156-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202005009.htm
      高鹏飞, 冉卓灵, 韩珍, 等, 2021. 含岩屑紫色土水力特性及饱和导水率传递函数研究. 土壤学报, 58(1): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202101012.htm
      葛勤, 梁杏, 龚绪龙, 等, 2017. 不同饱和黏性土渗透系数预测方法的应用与对比: 以苏北沿海平原黏土为例. 地球科学, 42(5): 793-803. doi: 10.3799/dqkx.2017.067
      黄婉霞, 邓羽松, 谢福倩, 等, 2020. 花岗岩崩岗不同部位土壤饱和导水率特征及其影响因素. 应用生态学报, 31(7): 2431-2440. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202007038.htm
      李慧霞, 刘建立, 朱安宁, 等, 2010. 预测天然文岩渠流域土壤饱和导水率的土壤转换函数方法比较研究. 土壤, 42(3): 438-445. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201003018.htm
      李祥东, 邵明安, 赵春雷, 2019. 西北干旱区土壤水力参数空间变异与模拟. 干旱区研究, 36(6): 1325-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201906001.htm
      廖凯华, 徐绍辉, 吴吉春, 等, 2012. 一种基于PCA和ANN的土壤水力性质估计方法. 水利学报, 43(3): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201203012.htm
      刘琨, 黄冠华, 2019. 基于集合卡尔曼滤波法的二维土壤水流状态变量和参数联合估计. 水利学报, 50(3): 399-408. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201903013.htm
      刘天奇, 汪丙国, 张钧帅, 等, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
      罗耀文, 任周鹏, 葛咏, 等, 2020. 基于PCA-GWR方法的村级贫困时空格局及致贫因素分析. 地球信息科学学报, 22(2): 231-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202002009.htm
      马玉凤, 李双权, 潘星慧, 2015. 黄河冲积扇发育研究述评. 地理学报, 70(1): 49-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501005.htm
      乔江波, 2019. 黄土高原关键带深剖面土壤物理性质及传递函数研究(博士学位论文). 杨凌: 西北农林科技大学.
      瞿明凯, 李卫东, 张传荣, 等, 2014. 地理加权回归及其在土壤和环境科学上的应用前景. 土壤, 46(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201401003.htm
      孙丽, 刘廷玺, 段利民, 等, 2015. 科尔沁沙丘‒草甸相间地区表土饱和导水率的土壤传递函数研究. 土壤学报, 52(1): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201501008.htm
      孙美, 张晓琳, 冯绍元, 等, 2014. 基于交叉验证的农田土壤饱和导水率传递函数研究. 农业机械学报, 45(10): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201410023.htm
      王国梁, 周生路, 赵其国, 2005. 土壤颗粒的体积分形维数及其在土地利用中的应用. 土壤学报, 42(4): 545-550. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200504002.htm
      王海曼, 倪万魁, 2022. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学, 43(3): 729-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202203016.htm
      王子龙, 赵勇钢, 赵世伟, 等, 2016. 退耕典型草地土壤饱和导水率及其影响因素研究. 草地学报, 24(6): 1254-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201606015.htm
      杨顺华, 张海涛, 郭龙, 等, 2015. 基于回归和地理加权回归Kriging的土壤有机质空间插值. 应用生态学报, 26(6): 1649-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201506007.htm
      杨震, 黄萱, 佘冬立, 2020. 晋西北黄土丘陵区土壤饱和导水率的空间分布特征及影响因素. 水土保持学报, 34(6): 178-184. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202006026.htm
      姚淑霞, 赵传成, 张铜会, 2013. 科尔沁不同沙地土壤饱和导水率比较研究. 土壤学报, 50(3): 469-477. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201303006.htm
      张洁, 梁杏, 刘延锋, 等, 2023. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
      赵春雷, 邵明安, 贾小旭, 2014. 黄土高原北部坡面尺度土壤饱和导水率分布与模拟. 水科学进展, 25(6): 806-815. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201406007.htm
      邹刚华, 李勇, 李裕元, 等, 2013. 亚热带小流域稻田土壤饱和导水率传递函数构建. 土壤通报, 44(2): 302-307. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201302009.htm
    • 加载中
    图(5) / 表(9)
    计量
    • 文章访问数:  79
    • HTML全文浏览量:  27
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-28
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回