• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于支持向量机和增强学习算法的岩爆烈度等级预测

    杨玲 魏静

    杨玲, 魏静, 2023. 基于支持向量机和增强学习算法的岩爆烈度等级预测. 地球科学, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251
    引用本文: 杨玲, 魏静, 2023. 基于支持向量机和增强学习算法的岩爆烈度等级预测. 地球科学, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251
    Yang Ling, Wei Jing, 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251
    Citation: Yang Ling, Wei Jing, 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251

    基于支持向量机和增强学习算法的岩爆烈度等级预测

    doi: 10.3799/dqkx.2022.251
    基金项目: 

    国家自然科学基金资助项目 42172291

    详细信息
      作者简介:

      杨玲(1999-),女,硕士,主要从事路基工程方面的研究.E-mail:20125980@bjtu.edu.cn

      通讯作者:

      魏静, E-mail:jingwei@bjtu.edu.cn

    • 中图分类号: P694

    Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm

    • 摘要: 岩爆烈度等级的准确预测对减轻乃至消除岩爆危害具有重要意义.针对岩爆烈度等级预测模型特征选取模糊和预测准确度不高问题,提出了一种ReliefF-Pearson特征选择下基于SSA-SVM-AdaBoost算法的岩爆等级预测模型.结合ReliefF的权值思想和Pearson系数的相关性原理对特征指标进行选择,利用麻雀搜索算法(SSA)优化支持向量机(SVM)以获得最优模型初始参数,将多个SSA优化后的SVM作为弱分类器组成自适应增强学习算法(AdaBoost)的强分类器.首先通过收集分析国内外岩爆案例数据,选取7种特征指标构成原始特征空间,然后利用ReliefF-Pearson从原始特征空间中筛选出4维优势特征,采用随机过采样对数据进行处理,最后将其输入到SSA-SVM-AdaBoost模型中进行分类预测.研究结果表明:基于ReliefF-Pearson的特征选择方法能够有效提取优势特征;基于多SSA-SVM的AdaBoost模型预测准确率相较于SSA-SVM和单层决策树AdaBoost模型均提高12.5%,相较于SVM提高31.25%,说明SSA-SVM作为弱分类器在分类性能上要优于单层决策树,AdaBoost增强算法集成多个单分类器要优于单个分类模型,且数据过采样处理没有影响模型预测集准确率,表明SSA-SVM-AdaBoost模型可有效应用于岩爆烈度等级预测,为岩爆预测问题提供新思路.

       

    • 图  1  特征指标选择流程

      Fig.  1.  Flowchart of feature indicators selection

      图  2  岩爆预测特征指标权重图

      Fig.  2.  Weight diagram of feature indicators for rockburst prediction

      图  3  岩爆等级与埋深$ H $的关系

      Fig.  3.  Relationship between rockburst grade and buried depth

      图  4  岩爆等级与围岩洞壁最大切向应力$ {\sigma }_{\theta } $的关系

      Fig.  4.  Relationship between rockburst grade and maximum tangential stress of surrounding rock cave wall

      图  5  岩爆等级与岩石应力系数$ {\sigma }_{\theta }/{\sigma }_{c} $的关系

      Fig.  5.  Relationship between rockburst grade and stress coefficient

      图  6  岩爆等级与岩石弹性能指数$ {W}_{et} $的关系

      Fig.  6.  Relationship between rockburst grade and elastic energy index

      图  7  岩爆预测指标箱型图

      Fig.  7.  Box diagram of rockburst prediction indexes

      图  8  基于SSA-SVM-AdaBoost的岩爆等级预测模型

      Fig.  8.  Prediction model of rockburst grade based on SSA-SVM-AdaBoost

      图  9  模型各等级预测准确率对比图

      Fig.  9.  The comparison chart of the prediction accuracy of each level of the model

      表  1  岩爆烈度预测的特征指标和分级标准汇总表

      Table  1.   Summary of feature indicators and grading standards for rockburst intensity prediction

      参考文献 特征指标 无岩爆 轻微岩爆 中等岩爆 强烈岩爆
      张乐文等, 2010 $ {\sigma }_{c} $ <80 80~120 120~180 >180
      $ {\sigma }_{c}/{\sigma }_{1} $ >14.5 5.5~14.5 2.5~5.5 <2.5
      $ {\sigma }_{c}/{\sigma }_{t} $ >40.0 26.7~40.0 14.5~26.7 <14.5
      $ {\sigma }_{\theta }/{\sigma }_{c} $ <0.3 0.3~0.5 0.5~0.7 >0.7
      Wet <2.0 2.0~3.5 3.5~5.0 >5.0
      $ H $ <50 50~200 200~700 >700
      KV <0.55 0.55~0.65 0.65~0.75 >0.75
      Zhou et al., 2012 H、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c} $、$ {\sigma }_{t} $、Wet
      Dong et al., 2013 $ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c} $、$ {\sigma }_{t} $、Wet
      周科平等, 2013 $ {\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta }/{\sigma }_{c} $、KV
      Wet <2 2~4 4~6 >6
      王羽等, 2013 KV、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta }/{\sigma }_{c} $、Wet
      KV <0.50 0.50~0.65 0.65~0.80 0.80~1
      Zhou et al., 2016 $ {\sigma }_{c} $、$ {\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、Wet
      吴顺川等, 2019 $ {\sigma }_{c} $、$ {\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、Wet
      李明亮等, 2020 $ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{c} $、Wet
      高磊等, 2021 $ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、Wet
      周航等, 2022 $ {\sigma }_{c}/{\sigma }_{t} $、KVWet
      $ {\sigma }_{c}/{\sigma }_{\mathrm{m}\mathrm{a}\mathrm{x}} $ $ \ge $7 4~7 2~4 <2
      $ {\sigma }_{\theta }/{\sigma }_{c} $ <0.2 0.2~0.3 0.3~0.55 $ \ge $0.55
      汤志立和徐千军, 2020 $ {\sigma }_{c}/{\sigma }_{t} $、B2H、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c} $、$ {\sigma }_{t} $、Wet
      杨小彬等, 2021 $ {\sigma }_{\theta } $、$ {\sigma }_{c} $、$ {\sigma }_{t} $
      注:$ {\sigma }_{c} $为岩石单轴抗压强度,MPa;$ {\sigma }_{1} $为围岩洞壁的轴向应力,MPa;$ {\sigma }_{t} $为岩石单轴抗拉强度,MPa;$ {\sigma }_{\theta } $为围岩洞壁最大切向应力,MPa;Wet为岩石弹性能指数;H为隧洞埋深,m;$ {\sigma }_{\mathrm{m}\mathrm{a}\mathrm{x}} $为围岩洞壁最大主应力, MPa;KV为岩体完整程度;B2为岩石单轴抗压强度与抗拉强度之差与两者之和的比值;未标明的指标分级标准表示与张乐文等(2010)论文中指标分级标准相同.
      下载: 导出CSV

      表  2  部分岩爆案例实测数据

      Table  2.   Measured data of some rockburst cases

      工程名称 H(m) $ {\sigma }_{\theta } $(MPa) $ {\sigma }_{c} $(MPa) $ {\sigma }_{t} $(MPa) $ {\sigma }_{\theta }/{\sigma }_{c} $ $ {\sigma }_{c}/{\sigma }_{t} $ Wet 等级
      鱼子溪水电站引水隧道 200 90 170 11.3 0.53 15.04 9
      二滩水电站2#支洞 194 90 220 7.4 0.41 29.73 7.3
      拉西瓦水电站地下厂房 300 55.4 176 7.3 0.32 24.11 9.3
      天生桥Ⅱ级水电站引水隧道 400 30 88.7 3.7 0.34 23.97 6.6
      瑞典Vietas水电站引水隧道 250 80 180 6.7 0.44 26.87 5.5
      大相岭隧道YK55+119 362 25.7 59.7 1.3 0.43 45.9 1.7
      大相岭隧道ZK61+201 980 58.2 83.6 2.6 0.69 32.1 5.9
      日本关越隧道 890 89 236 8.3 0.38 28.43 5
      马路坪矿井巷 700 3.8 20 3 0.19 6.67 1.39
      括苍山隧道 204 35 133.4 9.3 0.26 14.34 2.9
      通榆隧道K21+740 1030 43.62 78.1 3.2 0.56 24.41 6
      河滩水电站引水隧道 203 157.3 91.23 6.92 0.58 13.18 6.27
      下载: 导出CSV

      表  3  特征指标相关性矩阵

      Table  3.   Correlation matrix of feature indicators

      编号 $ H $ $ {\sigma }_{\theta } $ $ {\sigma }_{\theta }/{\sigma }_{c} $ $ {W}_{et} $
      $ H $ 1 0.14 0.27 ‒0.23
      $ {\sigma }_{\theta } $ 0.14 1 0.29 0.37
      $ {\sigma }_{\theta }/{\sigma }_{c} $ 0.27 0.29 1 ‒0.001
      $ {W}_{et} $ ‒0.23 0.37 ‒0.001 1
      下载: 导出CSV

      表  4  岩爆烈度预测特征指标及分级标准

      Table  4.   Feature indicators and grading standards for rockburst intensity prediction

      岩爆等级 预测指标
      埋深H 围岩洞壁最大切向应力$ {\sigma }_{\theta } $ 岩石应力系数$ {\sigma }_{\theta }/{\sigma }_{c} $ 弹性变形能系数Wet
      无(Ⅰ) <50 <24 <0.3 <2.0
      轻微(Ⅱ) 50~200 24~60 0.3~0.5 2.0~3.5
      中等(Ⅲ) 200~700 60~126 0.5~0.7 3.5~5.0
      强烈(Ⅳ) >700 >126 >0.7 >5.0
      下载: 导出CSV

      表  5  模型各等级预测情况及总体准确率

      Table  5.   Prediction of each level of the model and overall accuracy

      岩爆烈度等级 实际数量 预测模型
      SVM SSA-SVM AdaBoost SSA-SVM-AdaBoost
      1 3 2 3 3 3
      2 5 2 4 4 3
      3 6 5 4 5 6
      4 2 0 1 0 2
      总计 16 9 12 12 14
      准确率 56.25% 75% 75% 87.5%
      下载: 导出CSV

      表  6  随机过采样对模型准确度的影响

      Table  6.   The effect of random oversampling on model accuracy

      模型 数据处理方法
      原始数据 随机过采样处理
      SVM 56.25% 68.75%
      SSA-SVM 75% 81.25%
      AdaBoost 75% 75%%
      SSA-SVM-AdaBoost 87.5% 87.5%
      下载: 导出CSV

      表  7  桑珠岭隧道岩爆数据和预测结果

      Table  7.   Rockburst data and prediction results of Sangzhuling Tunnel

      样本编号 隧道里程 特征指标 实际等级 本文模型
      H(m) $ {\sigma }_{\theta } $(MPa) $ {\sigma }_{\theta }/{\sigma }_{c} $ Wet
      1 DK188+280~DK188+896 1100 58.4 0.41 4.60
      2 DK188+896~DK188+946 860 54.4 0.38 4.60
      3 DK188+946~DK189+167 780 54.0 0.38 4.60
      4 DK189+167~DK189+217 750 54.8 0.38 4.60
      5 DK189+217~DK189+390 650 41.9 0.28 4.00
      6 DK189+430~DK189+450 590 30.9 0.21 4.00 Ⅱ(×)
      7 DK189+450~DK189+610 460 27.2 0.18 4.00
      8 DK189+660~DK189+065 100 32.3 0.22 4.00
      下载: 导出CSV
    • Afraei, S., Shahriar, K., Madani, S. H., 2019. Developing Intelligent Classification Models for Rock Burst Prediction after Recognizing Significant Predictor Variables, Section 1: Literature Review and Data Preprocessing Procedure. Tunnelling and Underground Space Technology, 83: 324-353. https://doi.org/10.1016/j.tust.2018.09.022
      Dong, L. J., Li, X. B., Peng, K., 2013. Prediction of Rockburst Classification Using Random Forest. Transactions of Nonferrous Metals Society of China, 23(2): 472-477. doi: 10.1016/S1003-6326(13)62487-5
      Freund, Y., Schapire, R. E., 1997. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1): 119-139. https://doi.org/10.1006/jcss.1997.1504
      Gao, L., Liu, Z. K., Zhang, H. Y., 2021. Prediction of Rockburst Classification of Railway Tunnel Based on Hybrid PSO-RBF Neural Network. Journal of Railway Science and Engineering, 18(2): 450-458 (in Chinese with English abstract).
      Huang, J. Y., 2021. Research on Sparrow Search Algorithm Combining t Distribution and Tent Chaotic Mapping (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Ji, X., Tang, Q. h., Chen, Y. l., et al., 2021. Multibeam Acoustic Seabed Classification Combining SVM and Adaptive Boosting Algorithm. Acta Geodaetica et Cartographica Sinica, 50(7): 972-981 (in Chinese with English abstract).
      Jia, Y. Q., 2018. Study on the Tendency Prediction and Control Techniques of Rock Burst in Laobi Mountain Tunnel of Chengdu to Kunming Railway (Dissertation). Xi'an University of Architecture and Technology, Xi'an, 44-45 (in Chinese with English abstract).
      Kong, L. G., Jiao, X. M., Chen, G. W., et al., 2020. Turnout Fault Diagnosis Based on Mallat Wavelet Decomposition and Improved GWO-SVM. Journal of Railway Science and Engineering, 17(5): 1070-1079 (in Chinese with English abstract).
      Li, M. L., Li, K. G., Qin, Q. C., et al., 2021. Discussion and Selection of Machine Learning Algorithm Model for Rockburst Intensity Grade Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2806-2816 (in Chinese with English abstract). doi: 10.1007/s10064-021-02460-7
      Lyu, X., Mu, X. D., Zhang, J., et al., 2021. Chaos Sparrow Search Optimization Algorithm. Journal of Beijing University of Aeronautics and Astronautics, 47(8): 1712-1720 (in Chinese with English abstract).
      Ortlepp, W. D., 2001. The Behaviour of Tunnels at Great Depth under Large Static and Dynamic Pressures. Tunnelling and Underground Space Technology, 16 (1): 41-48. https://doi.org/10.1016/s0886-7798(01)00029-3
      Pu, Y. Y., Apel, D. B., Liu, V., et al., 2019. Machine Learning Methods for Rockburst Prediction State of the Art Review. International Journal of Mining Science and Technology, 29(4): 565-570. doi: 10.1016/j.ijmst.2019.06.009
      Robnik-šikonja, M., Kononenko, I., 2003. Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53(1/2): 23-69. https://doi.org/10.1023/A:1025667309714
      Schapire, R. E., Singer, Y., 2000. BoosTexter: A Boosting-Based System for Text Categorization. Machine Learning, 39(2-3): 135-168. https://doi.org/10.1023/A:1007649029923
      Tang, Z. L., Wang, X., Xu, Q. J., 2021. Rock Burst Prediction Based on Oversampling and Objective Weighting Method. Journal of Tsinghua University (Science and Technology), 61(6): 543-555 (in Chinese with English abstract).
      Tang, Z. L., Xu, Q. J., 2020. Rockburst Prediction Based on Nine Machine Learning Algorithms. Chinese Journal of Rock Mechanics and Engineering, 39(4): 773-781 (in Chinese with English abstract).
      Wang, C. H., Gao, G. Y., Yang, S. X., et al., 2019. Analysis and Prediction of Stress Fields of Sichuan-Tibet Railway Area Based on Contemporary Tectonic Stress Field Zoning in Western China. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242-2253 (in Chinese with English abstract).
      Wang, Y., Xu, Q., Chai, H. J., et al., 2013. Rock Burst Prediction in Deep Shaft Based on RBF-AR Model. Journal of Jilin University (Earth Science Edition), 43(6): 1943-1949, 1965 (in Chinese with English abstract). http://www.researchgate.net/publication/287477431_Rock_burst_prediction_in_deep_shaft_based_on_RBF-AR_model
      Wen, T., Zhang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396 (in Chinese with English abstract).
      Wu, S. C., Zhang, C. X., Cheng, Z. Q., 2019. Prediction of Intensity Classification of Rockburst Based on PCA-PNN Principle. Journal of China Coal Society, 44(9): 2767-2776 (in Chinese with English abstract). http://www.researchgate.net/publication/336232623_The_prediction_of_intensity_classification_of_rockburst_based_on_PCA-PNN_principle
      Xue, J. K., Shen, B., 2020. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Systems Science & Control Engineering, 8(1): 22-34. https://doi.org/10.1080/21642583.2019.1708830
      Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093 (in Chinese with English abstract).
      Yang, X. B., Pei, Y. Y., Cheng, H. M., et al., 2021. Prediction Method of Rockburst Intensity Grade Based on SOFM Neural Network Model. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2708-2715 (in Chinese with English abstract).
      Zhang, J. H., Chen, M., Zhao, S. K., et al., 2016. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition. Sensors (Basel, Switzerland), 16(10): 1558. https://doi.org/10.3390/s16101558
      Zhang, L. W., Zhang, D. Y., Qiu, D. H., 2010. Application of Extension Evaluation Method in Rockburst Prediction Based on Rough Set Theory. Journal of China Coal Society, 35(9): 1461-1465 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201009014.htm
      Zhang, X. N., Zhai, W. P., Hou, H. R., et al., 2021. ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection. Journal of Electronics & Information Technology, 43(7): 2032-2037 (in Chinese with English abstract).
      Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rockburst Risk Assessment of Deep Lying Tunnels Based on Combination Weight and Unascertained Measure Theory: A Case Study of Sangzhuling Tunnel on Sichuan-Tibet Traffic Corridor. Earth Science, 46(6): 2130-2148 (in Chinese with English abstract).
      Zhou, J., Li, X. B., Shi, X. Z., 2012. Long-Term Prediction Model of Rock Burst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Safety Science, 50(4): 629-644. https://doi.org/10.1016/j.ssci.2011.08.065
      Zhou, K. P., Lei, T., Hu, J. H., 2013. RS-TOPSIS Model of Rockburst Prediction in Deep Metal Mines and Its Application. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3705-3711 (in Chinese with English abstract). http://www.researchgate.net/publication/288138072_RS-TOPSIS_model_of_rockburst_prediction_in_deep_metal_mines_and_its_application
      Zhou, K. P., Lin, Y., Deng, H. W., et al., 2016. Prediction of Rock Burst Classification Using Cloud Model with Entropy Weight. Transactions of Nonferrous Metals Society of China, 26(7): 1995-2002. https://doi.org/10.1016/S1003-6326(16)64313-3
      Zhu, J., Zou, H., Rosset, S., et al., 2009. Multi-Class AdaBoost. Statistics and Its Interface, 2: 349-360. doi: 10.4310/SII.2009.v2.n3.a8
      高磊, 刘振奎, 张昊宇, 2021. 基于混合PSO-RBF神经网络的铁路隧道岩爆分级预测. 铁道科学与工程学报, 18(2): 450-458. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202102021.htm
      黄敬宇, 2021. 融合t分布和Tent混沌映射的麻雀搜索算法研究(硕士学位论文). 兰州: 兰州大学.
      纪雪, 唐秋华, 陈义兰, 等, 2021. 联合支持向量机和增强学习算法的多波束声学底质分类. 测绘学报, 50(7): 972-981. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202107012.htm
      贾月卿, 2018. 改建铁路成昆线老鼻山隧道岩爆倾向性预测分析与防治技术研究(硕士学位论文). 西安: 西安建筑科技大学, 44-45.
      孔令刚, 焦相萌, 陈光武, 等, 2020. 基于Mallat小波分解与改进GWO-SVM的道岔故障诊断. 铁道科学与工程学报, 17(5): 1070-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202005002.htm
      李明亮, 李克钢, 秦庆词, 等, 2021. 岩爆烈度等级预测的机器学习算法模型探讨及选择. 岩石力学与工程学报, 40(S01): 2806-2816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1023.htm
      吕鑫, 慕晓冬, 张钧, 等, 2021. 混沌麻雀搜索优化算法. 北京航空航天大学学报, 47(8): 1712-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202108024.htm
      汤志立, 王雪, 徐千军, 2021. 基于过采样和客观赋权法的岩爆预测. 清华大学学报(自然科学版), 61(6): 543-555. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202106008.htm
      汤志立, 徐千军, 2020. 基于9种机器学习算法的岩爆预测研究. 岩石力学与工程学报, 39(4): 773-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004011.htm
      王成虎, 高桂云, 杨树新, 等, 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估. 岩石力学与工程学报, 38(11): 2242-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911009.htm
      王羽, 许强, 柴贺军, 等, 2013. 工程岩爆灾害判别的RBF-AR耦合模型. 吉林大学学报(地球科学版), 43(6): 1943-1949, 1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306025.htm
      温韬, 张馨, 孙金山, 等, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
      吴顺川, 张晨曦, 成子桥, 2019. 基于PCA-PNN原理的岩爆烈度分级预测方法. 煤炭学报, 44(9): 2767-2776. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201909017.htm
      严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
      杨小彬, 裴艳宇, 程虹铭, 等, 2021. 基于SOFM神经网络模型的岩爆烈度等级预测方法. 岩石力学与工程学报, 40(S01): 2708-2715. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1013.htm
      张乐文, 张德永, 邱道宏, 2010. 基于粗糙集的可拓评判在岩爆预测中的应用. 煤炭学报, 35(9): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201009014.htm
      张小内, 翟文鹏, 侯惠让, 等, 2021. 基于ReliefF-Pearson的嗅觉脑电通道选择. 电子与信息学报, 43(7): 2032-2037. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202107031.htm
      周航, 廖昕, 陈仕阔, 等, 2022. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价: 以川藏交通廊道桑珠岭隧道为例. 地球科学, 46(6): 2130-2148. doi: 10.3799/dqkx.2021.170
      周科平, 雷涛, 胡建华, 2013. 深部金属矿山RS-TOPSIS岩爆预测模型及其应用. 岩石力学与工程学报, 32(S2): 3705-3711. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2090.htm
    • 加载中
    图(9) / 表(7)
    计量
    • 文章访问数:  447
    • HTML全文浏览量:  415
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-20
    • 网络出版日期:  2023-06-06
    • 刊出日期:  2023-05-25

    目录

      /

      返回文章
      返回