Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm
-
摘要: 岩爆烈度等级的准确预测对减轻乃至消除岩爆危害具有重要意义.针对岩爆烈度等级预测模型特征选取模糊和预测准确度不高问题,提出了一种ReliefF-Pearson特征选择下基于SSA-SVM-AdaBoost算法的岩爆等级预测模型.结合ReliefF的权值思想和Pearson系数的相关性原理对特征指标进行选择,利用麻雀搜索算法(SSA)优化支持向量机(SVM)以获得最优模型初始参数,将多个SSA优化后的SVM作为弱分类器组成自适应增强学习算法(AdaBoost)的强分类器.首先通过收集分析国内外岩爆案例数据,选取7种特征指标构成原始特征空间,然后利用ReliefF-Pearson从原始特征空间中筛选出4维优势特征,采用随机过采样对数据进行处理,最后将其输入到SSA-SVM-AdaBoost模型中进行分类预测.研究结果表明:基于ReliefF-Pearson的特征选择方法能够有效提取优势特征;基于多SSA-SVM的AdaBoost模型预测准确率相较于SSA-SVM和单层决策树AdaBoost模型均提高12.5%,相较于SVM提高31.25%,说明SSA-SVM作为弱分类器在分类性能上要优于单层决策树,AdaBoost增强算法集成多个单分类器要优于单个分类模型,且数据过采样处理没有影响模型预测集准确率,表明SSA-SVM-AdaBoost模型可有效应用于岩爆烈度等级预测,为岩爆预测问题提供新思路.Abstract: Accurate prediction of rockburst intensity grade is of great significance for mitigating and eliminating rockburst hazards. Aiming at the problems of uncertain feature selection and low prediction accuracy of rockburst intensity grade prediction model, in this paper it proposes a rockburst grade prediction model based on SSA-SVM-AdaBoost algorithm with ReliefF-Pearson feature selection. The method combines the weight idea of ReliefF and the correlation principle of Pearson coefficient to select feature indexes, and SSA-SVM-AdaBoost algorithm is proposed by using the sparrow search algorithm (SSA) optimized support vector machine(SVM)classifier as the AdaBoost weak classifier to solve the multiclassification problem. First, 7 kinds of feature indicators are selected to form the original feature space by analyzing rockburst case data, then the 4⁃dimension advantage features are selected by ReliefF-Pearson method. The data is processed with random oversampling before input SSA-SVM-AdaBoost prediction model. The research results show that the feature selection method based on ReliefF-Pearson can effectively extract advantage feature indicators. Compared with SSA-SVM and AdaBoost based on single-layer decision tree, the prediction accuracy of SSA-SVM-AdaBoost model is improved by 12.5%, and 31.25% compared with SVM. It shows that SSA-SVM as a weak classifier is better than a single-layer decision tree in classification performance, and the AdaBoost enhancement algorithm integrating multiple single classifiers is better than a single classification model. Data oversampling process does not affect the accuracy of the model prediction set, but improves the prediction accuracy of the training set. It is proved that the proposed model can be effectively applied to rockburst intensity grade prediction, which provides a new perspective for this problem.
-
表 1 岩爆烈度预测的特征指标和分级标准汇总表
Table 1. Summary of feature indicators and grading standards for rockburst intensity prediction
参考文献 特征指标 无岩爆 轻微岩爆 中等岩爆 强烈岩爆 张乐文等, 2010 $ {\sigma }_{c} $ <80 80~120 120~180 >180 $ {\sigma }_{c}/{\sigma }_{1} $ >14.5 5.5~14.5 2.5~5.5 <2.5 $ {\sigma }_{c}/{\sigma }_{t} $ >40.0 26.7~40.0 14.5~26.7 <14.5 $ {\sigma }_{\theta }/{\sigma }_{c} $ <0.3 0.3~0.5 0.5~0.7 >0.7 Wet <2.0 2.0~3.5 3.5~5.0 >5.0 $ H $ <50 50~200 200~700 >700 KV <0.55 0.55~0.65 0.65~0.75 >0.75 Zhou et al., 2012 H、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c} $、$ {\sigma }_{t} $、Wet Dong et al., 2013 $ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c} $、$ {\sigma }_{t} $、Wet 周科平等, 2013 $ {\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta }/{\sigma }_{c} $、KV Wet <2 2~4 4~6 >6 王羽等, 2013 KV、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{\theta }/{\sigma }_{c} $、Wet KV <0.50 0.50~0.65 0.65~0.80 0.80~1 Zhou et al., 2016 $ {\sigma }_{c} $、$ {\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、Wet 吴顺川等, 2019 $ {\sigma }_{c} $、$ {\sigma }_{t} $、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、Wet 李明亮等, 2020 $ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、$ {\sigma }_{c} $、Wet 高磊等, 2021 $ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c}/{\sigma }_{t} $、Wet 周航等, 2022 $ {\sigma }_{c}/{\sigma }_{t} $、KV、Wet $ {\sigma }_{c}/{\sigma }_{\mathrm{m}\mathrm{a}\mathrm{x}} $ $ \ge $7 4~7 2~4 <2 $ {\sigma }_{\theta }/{\sigma }_{c} $ <0.2 0.2~0.3 0.3~0.55 $ \ge $0.55 汤志立和徐千军, 2020 $ {\sigma }_{c}/{\sigma }_{t} $、B2、H、$ {\sigma }_{\theta } $、$ {\sigma }_{\theta }/{\sigma }_{c} $、$ {\sigma }_{c} $、$ {\sigma }_{t} $、Wet 杨小彬等, 2021 $ {\sigma }_{\theta } $、$ {\sigma }_{c} $、$ {\sigma }_{t} $ 注:$ {\sigma }_{c} $为岩石单轴抗压强度,MPa;$ {\sigma }_{1} $为围岩洞壁的轴向应力,MPa;$ {\sigma }_{t} $为岩石单轴抗拉强度,MPa;$ {\sigma }_{\theta } $为围岩洞壁最大切向应力,MPa;Wet为岩石弹性能指数;H为隧洞埋深,m;$ {\sigma }_{\mathrm{m}\mathrm{a}\mathrm{x}} $为围岩洞壁最大主应力, MPa;KV为岩体完整程度;B2为岩石单轴抗压强度与抗拉强度之差与两者之和的比值;未标明的指标分级标准表示与张乐文等(2010)论文中指标分级标准相同. 表 2 部分岩爆案例实测数据
Table 2. Measured data of some rockburst cases
工程名称 H(m) $ {\sigma }_{\theta } $(MPa) $ {\sigma }_{c} $(MPa) $ {\sigma }_{t} $(MPa) $ {\sigma }_{\theta }/{\sigma }_{c} $ $ {\sigma }_{c}/{\sigma }_{t} $ Wet 等级 鱼子溪水电站引水隧道 200 90 170 11.3 0.53 15.04 9 Ⅲ 二滩水电站2#支洞 194 90 220 7.4 0.41 29.73 7.3 Ⅱ 拉西瓦水电站地下厂房 300 55.4 176 7.3 0.32 24.11 9.3 Ⅲ 天生桥Ⅱ级水电站引水隧道 400 30 88.7 3.7 0.34 23.97 6.6 Ⅲ 瑞典Vietas水电站引水隧道 250 80 180 6.7 0.44 26.87 5.5 Ⅱ 大相岭隧道YK55+119 362 25.7 59.7 1.3 0.43 45.9 1.7 Ⅰ 大相岭隧道ZK61+201 980 58.2 83.6 2.6 0.69 32.1 5.9 Ⅳ 日本关越隧道 890 89 236 8.3 0.38 28.43 5 Ⅲ 马路坪矿井巷 700 3.8 20 3 0.19 6.67 1.39 Ⅰ 括苍山隧道 204 35 133.4 9.3 0.26 14.34 2.9 Ⅱ 通榆隧道K21+740 1030 43.62 78.1 3.2 0.56 24.41 6 Ⅱ 河滩水电站引水隧道 203 157.3 91.23 6.92 0.58 13.18 6.27 Ⅳ 表 3 特征指标相关性矩阵
Table 3. Correlation matrix of feature indicators
编号 $ H $ $ {\sigma }_{\theta } $ $ {\sigma }_{\theta }/{\sigma }_{c} $ $ {W}_{et} $ $ H $ 1 0.14 0.27 ‒0.23 $ {\sigma }_{\theta } $ 0.14 1 0.29 0.37 $ {\sigma }_{\theta }/{\sigma }_{c} $ 0.27 0.29 1 ‒0.001 $ {W}_{et} $ ‒0.23 0.37 ‒0.001 1 表 4 岩爆烈度预测特征指标及分级标准
Table 4. Feature indicators and grading standards for rockburst intensity prediction
岩爆等级 预测指标 埋深H 围岩洞壁最大切向应力$ {\sigma }_{\theta } $ 岩石应力系数$ {\sigma }_{\theta }/{\sigma }_{c} $ 弹性变形能系数Wet 无(Ⅰ) <50 <24 <0.3 <2.0 轻微(Ⅱ) 50~200 24~60 0.3~0.5 2.0~3.5 中等(Ⅲ) 200~700 60~126 0.5~0.7 3.5~5.0 强烈(Ⅳ) >700 >126 >0.7 >5.0 表 5 模型各等级预测情况及总体准确率
Table 5. Prediction of each level of the model and overall accuracy
岩爆烈度等级 实际数量 预测模型 SVM SSA-SVM AdaBoost SSA-SVM-AdaBoost 1 3 2 3 3 3 2 5 2 4 4 3 3 6 5 4 5 6 4 2 0 1 0 2 总计 16 9 12 12 14 准确率 56.25% 75% 75% 87.5% 表 6 随机过采样对模型准确度的影响
Table 6. The effect of random oversampling on model accuracy
模型 数据处理方法 原始数据 随机过采样处理 SVM 56.25% 68.75% SSA-SVM 75% 81.25% AdaBoost 75% 75%% SSA-SVM-AdaBoost 87.5% 87.5% 表 7 桑珠岭隧道岩爆数据和预测结果
Table 7. Rockburst data and prediction results of Sangzhuling Tunnel
样本编号 隧道里程 特征指标 实际等级 本文模型 H(m) $ {\sigma }_{\theta } $(MPa) $ {\sigma }_{\theta }/{\sigma }_{c} $ Wet 1 DK188+280~DK188+896 1100 58.4 0.41 4.60 Ⅲ Ⅲ 2 DK188+896~DK188+946 860 54.4 0.38 4.60 Ⅲ Ⅲ 3 DK188+946~DK189+167 780 54.0 0.38 4.60 Ⅲ Ⅲ 4 DK189+167~DK189+217 750 54.8 0.38 4.60 Ⅲ Ⅲ 5 DK189+217~DK189+390 650 41.9 0.28 4.00 Ⅱ Ⅱ 6 DK189+430~DK189+450 590 30.9 0.21 4.00 Ⅲ Ⅱ(×) 7 DK189+450~DK189+610 460 27.2 0.18 4.00 Ⅱ Ⅱ 8 DK189+660~DK189+065 100 32.3 0.22 4.00 Ⅱ Ⅱ -
Afraei, S., Shahriar, K., Madani, S. H., 2019. Developing Intelligent Classification Models for Rock Burst Prediction after Recognizing Significant Predictor Variables, Section 1: Literature Review and Data Preprocessing Procedure. Tunnelling and Underground Space Technology, 83: 324-353. https://doi.org/10.1016/j.tust.2018.09.022 Dong, L. J., Li, X. B., Peng, K., 2013. Prediction of Rockburst Classification Using Random Forest. Transactions of Nonferrous Metals Society of China, 23(2): 472-477. doi: 10.1016/S1003-6326(13)62487-5 Freund, Y., Schapire, R. E., 1997. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1): 119-139. https://doi.org/10.1006/jcss.1997.1504 Gao, L., Liu, Z. K., Zhang, H. Y., 2021. Prediction of Rockburst Classification of Railway Tunnel Based on Hybrid PSO-RBF Neural Network. Journal of Railway Science and Engineering, 18(2): 450-458 (in Chinese with English abstract). Huang, J. Y., 2021. Research on Sparrow Search Algorithm Combining t Distribution and Tent Chaotic Mapping (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). Ji, X., Tang, Q. h., Chen, Y. l., et al., 2021. Multibeam Acoustic Seabed Classification Combining SVM and Adaptive Boosting Algorithm. Acta Geodaetica et Cartographica Sinica, 50(7): 972-981 (in Chinese with English abstract). Jia, Y. Q., 2018. Study on the Tendency Prediction and Control Techniques of Rock Burst in Laobi Mountain Tunnel of Chengdu to Kunming Railway (Dissertation). Xi'an University of Architecture and Technology, Xi'an, 44-45 (in Chinese with English abstract). Kong, L. G., Jiao, X. M., Chen, G. W., et al., 2020. Turnout Fault Diagnosis Based on Mallat Wavelet Decomposition and Improved GWO-SVM. Journal of Railway Science and Engineering, 17(5): 1070-1079 (in Chinese with English abstract). Li, M. L., Li, K. G., Qin, Q. C., et al., 2021. Discussion and Selection of Machine Learning Algorithm Model for Rockburst Intensity Grade Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2806-2816 (in Chinese with English abstract). doi: 10.1007/s10064-021-02460-7 Lyu, X., Mu, X. D., Zhang, J., et al., 2021. Chaos Sparrow Search Optimization Algorithm. Journal of Beijing University of Aeronautics and Astronautics, 47(8): 1712-1720 (in Chinese with English abstract). Ortlepp, W. D., 2001. The Behaviour of Tunnels at Great Depth under Large Static and Dynamic Pressures. Tunnelling and Underground Space Technology, 16 (1): 41-48. https://doi.org/10.1016/s0886-7798(01)00029-3 Pu, Y. Y., Apel, D. B., Liu, V., et al., 2019. Machine Learning Methods for Rockburst Prediction State of the Art Review. International Journal of Mining Science and Technology, 29(4): 565-570. doi: 10.1016/j.ijmst.2019.06.009 Robnik-šikonja, M., Kononenko, I., 2003. Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53(1/2): 23-69. https://doi.org/10.1023/A:1025667309714 Schapire, R. E., Singer, Y., 2000. BoosTexter: A Boosting-Based System for Text Categorization. Machine Learning, 39(2-3): 135-168. https://doi.org/10.1023/A:1007649029923 Tang, Z. L., Wang, X., Xu, Q. J., 2021. Rock Burst Prediction Based on Oversampling and Objective Weighting Method. Journal of Tsinghua University (Science and Technology), 61(6): 543-555 (in Chinese with English abstract). Tang, Z. L., Xu, Q. J., 2020. Rockburst Prediction Based on Nine Machine Learning Algorithms. Chinese Journal of Rock Mechanics and Engineering, 39(4): 773-781 (in Chinese with English abstract). Wang, C. H., Gao, G. Y., Yang, S. X., et al., 2019. Analysis and Prediction of Stress Fields of Sichuan-Tibet Railway Area Based on Contemporary Tectonic Stress Field Zoning in Western China. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242-2253 (in Chinese with English abstract). Wang, Y., Xu, Q., Chai, H. J., et al., 2013. Rock Burst Prediction in Deep Shaft Based on RBF-AR Model. Journal of Jilin University (Earth Science Edition), 43(6): 1943-1949, 1965 (in Chinese with English abstract). http://www.researchgate.net/publication/287477431_Rock_burst_prediction_in_deep_shaft_based_on_RBF-AR_model Wen, T., Zhang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396 (in Chinese with English abstract). Wu, S. C., Zhang, C. X., Cheng, Z. Q., 2019. Prediction of Intensity Classification of Rockburst Based on PCA-PNN Principle. Journal of China Coal Society, 44(9): 2767-2776 (in Chinese with English abstract). http://www.researchgate.net/publication/336232623_The_prediction_of_intensity_classification_of_rockburst_based_on_PCA-PNN_principle Xue, J. K., Shen, B., 2020. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Systems Science & Control Engineering, 8(1): 22-34. https://doi.org/10.1080/21642583.2019.1708830 Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093 (in Chinese with English abstract). Yang, X. B., Pei, Y. Y., Cheng, H. M., et al., 2021. Prediction Method of Rockburst Intensity Grade Based on SOFM Neural Network Model. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2708-2715 (in Chinese with English abstract). Zhang, J. H., Chen, M., Zhao, S. K., et al., 2016. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition. Sensors (Basel, Switzerland), 16(10): 1558. https://doi.org/10.3390/s16101558 Zhang, L. W., Zhang, D. Y., Qiu, D. H., 2010. Application of Extension Evaluation Method in Rockburst Prediction Based on Rough Set Theory. Journal of China Coal Society, 35(9): 1461-1465 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201009014.htm Zhang, X. N., Zhai, W. P., Hou, H. R., et al., 2021. ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection. Journal of Electronics & Information Technology, 43(7): 2032-2037 (in Chinese with English abstract). Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rockburst Risk Assessment of Deep Lying Tunnels Based on Combination Weight and Unascertained Measure Theory: A Case Study of Sangzhuling Tunnel on Sichuan-Tibet Traffic Corridor. Earth Science, 46(6): 2130-2148 (in Chinese with English abstract). Zhou, J., Li, X. B., Shi, X. Z., 2012. Long-Term Prediction Model of Rock Burst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Safety Science, 50(4): 629-644. https://doi.org/10.1016/j.ssci.2011.08.065 Zhou, K. P., Lei, T., Hu, J. H., 2013. RS-TOPSIS Model of Rockburst Prediction in Deep Metal Mines and Its Application. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3705-3711 (in Chinese with English abstract). http://www.researchgate.net/publication/288138072_RS-TOPSIS_model_of_rockburst_prediction_in_deep_metal_mines_and_its_application Zhou, K. P., Lin, Y., Deng, H. W., et al., 2016. Prediction of Rock Burst Classification Using Cloud Model with Entropy Weight. Transactions of Nonferrous Metals Society of China, 26(7): 1995-2002. https://doi.org/10.1016/S1003-6326(16)64313-3 Zhu, J., Zou, H., Rosset, S., et al., 2009. Multi-Class AdaBoost. Statistics and Its Interface, 2: 349-360. doi: 10.4310/SII.2009.v2.n3.a8 高磊, 刘振奎, 张昊宇, 2021. 基于混合PSO-RBF神经网络的铁路隧道岩爆分级预测. 铁道科学与工程学报, 18(2): 450-458. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202102021.htm 黄敬宇, 2021. 融合t分布和Tent混沌映射的麻雀搜索算法研究(硕士学位论文). 兰州: 兰州大学. 纪雪, 唐秋华, 陈义兰, 等, 2021. 联合支持向量机和增强学习算法的多波束声学底质分类. 测绘学报, 50(7): 972-981. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202107012.htm 贾月卿, 2018. 改建铁路成昆线老鼻山隧道岩爆倾向性预测分析与防治技术研究(硕士学位论文). 西安: 西安建筑科技大学, 44-45. 孔令刚, 焦相萌, 陈光武, 等, 2020. 基于Mallat小波分解与改进GWO-SVM的道岔故障诊断. 铁道科学与工程学报, 17(5): 1070-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202005002.htm 李明亮, 李克钢, 秦庆词, 等, 2021. 岩爆烈度等级预测的机器学习算法模型探讨及选择. 岩石力学与工程学报, 40(S01): 2806-2816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1023.htm 吕鑫, 慕晓冬, 张钧, 等, 2021. 混沌麻雀搜索优化算法. 北京航空航天大学学报, 47(8): 1712-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202108024.htm 汤志立, 王雪, 徐千军, 2021. 基于过采样和客观赋权法的岩爆预测. 清华大学学报(自然科学版), 61(6): 543-555. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202106008.htm 汤志立, 徐千军, 2020. 基于9种机器学习算法的岩爆预测研究. 岩石力学与工程学报, 39(4): 773-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004011.htm 王成虎, 高桂云, 杨树新, 等, 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估. 岩石力学与工程学报, 38(11): 2242-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911009.htm 王羽, 许强, 柴贺军, 等, 2013. 工程岩爆灾害判别的RBF-AR耦合模型. 吉林大学学报(地球科学版), 43(6): 1943-1949, 1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306025.htm 温韬, 张馨, 孙金山, 等, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342 吴顺川, 张晨曦, 成子桥, 2019. 基于PCA-PNN原理的岩爆烈度分级预测方法. 煤炭学报, 44(9): 2767-2776. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201909017.htm 严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153 杨小彬, 裴艳宇, 程虹铭, 等, 2021. 基于SOFM神经网络模型的岩爆烈度等级预测方法. 岩石力学与工程学报, 40(S01): 2708-2715. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1013.htm 张乐文, 张德永, 邱道宏, 2010. 基于粗糙集的可拓评判在岩爆预测中的应用. 煤炭学报, 35(9): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201009014.htm 张小内, 翟文鹏, 侯惠让, 等, 2021. 基于ReliefF-Pearson的嗅觉脑电通道选择. 电子与信息学报, 43(7): 2032-2037. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202107031.htm 周航, 廖昕, 陈仕阔, 等, 2022. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价: 以川藏交通廊道桑珠岭隧道为例. 地球科学, 46(6): 2130-2148. doi: 10.3799/dqkx.2021.170 周科平, 雷涛, 胡建华, 2013. 深部金属矿山RS-TOPSIS岩爆预测模型及其应用. 岩石力学与工程学报, 32(S2): 3705-3711. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2090.htm -