• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于支持向量机的缩径桩承载力可靠度分析

    徐志军 王政权 王云泰 田江涛

    徐志军, 王政权, 王云泰, 田江涛, 2023. 基于支持向量机的缩径桩承载力可靠度分析. 地球科学, 48(5): 1948-1959. doi: 10.3799/dqkx.2022.255
    引用本文: 徐志军, 王政权, 王云泰, 田江涛, 2023. 基于支持向量机的缩径桩承载力可靠度分析. 地球科学, 48(5): 1948-1959. doi: 10.3799/dqkx.2022.255
    Xu Zhijun, Wang Zhengquan, Wang Yuntai, Tian Jiangtao, 2023. Reliability Analysis of Vertical Capacity for Necking Piles Assisted with Support Vector Machine. Earth Science, 48(5): 1948-1959. doi: 10.3799/dqkx.2022.255
    Citation: Xu Zhijun, Wang Zhengquan, Wang Yuntai, Tian Jiangtao, 2023. Reliability Analysis of Vertical Capacity for Necking Piles Assisted with Support Vector Machine. Earth Science, 48(5): 1948-1959. doi: 10.3799/dqkx.2022.255

    基于支持向量机的缩径桩承载力可靠度分析

    doi: 10.3799/dqkx.2022.255
    基金项目: 

    国家自然科学基金面上项目 51978247

    详细信息
      作者简介:

      徐志军(1984-), 男, 教授, 博士, 主要从事岩土工程方面研究工作.ORCID: 0000-0001-6515-2724.E-mail: xuzhijun@haut.edu.cn

    • 中图分类号: P694

    Reliability Analysis of Vertical Capacity for Necking Piles Assisted with Support Vector Machine

    • 摘要: 针对常用的一次可靠度方法(FORM)计算基桩承载力可靠度指标的精度不高,将支持向量机(SVM)与FORM相结合计算缺陷桩承载力可靠度指标.以缩径缺陷桩为例,开展了1根完整桩及5根缩径桩的竖向加载试验.采用随机加权法对缺陷桩承载力折减系数的均值进行估计.算例表明缩径处被土体填充,致使此处桩的侧摩阻力转化为土体界面摩擦力,削弱了桩的承载能力.缩径长度越大,缩径处被土体填充的面积就越大,桩承载力折减系数和可靠度指标越小.缩径位置距离桩顶越近,缩径限制侧摩阻力发挥的程度越大.桩端阻力弥补了部分损失的侧摩阻力,使得缩径位于桩身浅部和中部时,桩承载力折减系数及可靠度指标大致相同;位于深部时,承载力损失最小,可靠度指标最大.

       

    • 图  1  熔融石英砂颗粒级配曲线

      Fig.  1.  Size distribution of fused quartz sand

      图  2  透明土试样

      Fig.  2.  Transparent soil sample

      图  3  透明土模型试验加载系统

      Fig.  3.  Loading system of transparent soil

      图  4  模型桩

      第一个字母S、M和D代表缩径底部到桩端距离的140 mm、100 mm和40 mm;第二个字母L、M和S分别代表缩径长度的20 mm、10 mm和5 mm;ab分别表示缩径直径和缩径长度

      Fig.  4.  Model pile

      图  5  基桩承载力

      Fig.  5.  Pile capacity

      图  6  基桩承载力折减系数

      Fig.  6.  Reduction coefficient of pile capacity

      图  7  缩径基桩可靠度指标

      Fig.  7.  Reliability index of vertical capacity of necking piles

      图  8  完整桩、SM桩、MM桩及DM桩桩周土体位移矢量图

      Fig.  8.  Soil displacements around intact pile, SM pile, MM pile and DM pile

      图  9  完整桩、SL桩、SM桩及SS桩桩周土体位移矢量图

      Fig.  9.  Soil displacements around intact pile, SL pile, SM pile and SS pile

      图  10  缩径部分被土体填充

      Fig.  10.  The reduced diameter part is filled with soil

      图  11  土体界面摩擦

      Fig.  11.  Friction on the soil interface

      表  1  透明土的基本参数

      Table  1.   Parameters of transparent soil

      Cu Cc ρd (g/cm3) ρdmax(g/cm3) ρdmin (g/cm3) γ
      (kN/m3)
      6 1.354 1.438 1.481 1.239 2.51
      注:Cu为不均匀系数; Cc为曲率系数; ρd为干密度,ρdmax为最大干密度,ρdmin为最小干密度,密度单位为g/cm3; γ为重度,单位为kN/m3.
      下载: 导出CSV
    • BenAmor, A., Moussa, R., 2019. Decomposition Formulae for Dirichlet Forms and Their Corollaries. Mediterranean Journal of Mathematics, 18(1): 1-20. https://doi.org/10.1007/s00009-020-01658-51660-5446/21/010001-20
      Chai, H, Y., Phoon, K.K., 2013. Detection of Shallow Anomalies in Pile Integrity Testing. International Journal of Geomechanics, 13(5): 672-677. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000233
      China Academy of Building Research, 2011. Code for Design Building Foundation (GB50007-2011). China Architecture & Building Press, Beijing (in Chinese).
      China Academy of Building Research, 2014. Technical Code of Building Foundation Piles (JGJ106-2014). China Architecture & Building Press, Beijing (in Chinese).
      Ezzein, F.M., Bathurst, R.J., 2011. A Transparent Sand for Geotechnical Laboratory Modeling. Geotechnical Testing Journal, 34(6): 590-601. https://doi.org/10.1520/GTJ103808
      He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain- Softening Slope. Earth Science, 46(2): 697-707 (in Chinese with English abstract).
      He, T.T., 2014. Slope Reliability Analysis Based on SVM (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
      Hou, Z. K., Tang, M. X., Hu, H. S., et al., 2022. Physical Model Tests on Bearing Performance Drilling with Pre-Stressed Concrete Pipe Cased Pile Considering Hole Collapse. Chinese Journal of Geotechnical Engineering, 44(1): 153-162 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Yang, B. B., et al., 2018. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Science, 43(3): 887-898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803020.htm
      Iai, S., 1989. Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field. Soils and Foundations, 29(1): 105-118. https://doi.org/10.3208/sandf1972.29.105
      Iskander, M., Douglas, R., Kelley, S., et al., 2003. Drilled Shaft Defects: Detection, and Effects on Capacity in Varved Clay. Journal of Geotechnical and Geoenvironmental Engineering, 129(12): 1128-1137. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1128)
      Kapsa, V., Skála, L., 2011. Quantum Mechanics, Probabilities and Mathematical Statistics. Journal of Computational and Theoretical Nanoscience, 8(6): 998-1005. https://doi.org/10.1166/jctn.2011.1779
      Kong, G. Q., Cao, Z. H., Zhou, H., et al., 2016. Transparent Soil Model Test on Tapered Pile Driving Displacement Field Influenced by Enlarged Base. Journal of Basic Science and Engineering, 24(6): 1248-1255 (in Chinese with English abstract).
      Li, D.Q., Zhang, L.M., Tang, W.H., 2005. Reliability Evaluation of Cross-Hole Sonic Logging for Bored Pile Integrity. Journal of Geotechnical and Geoenvironmental Engineering, 131(9): 1130-1138. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1130)
      Li, Z.Y., 2017. Key Problems Investigation on Non- Destructive Integrity Detection of Piles with Elevated-Cap (Beam) (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
      Liu, C., Tang, X.W., Wei, H.W., et al., 2020. Model Tests of Jacked-Pile Penetration into Sand Using Transparent Soil and Incremental Particle Image Velocimetry. KSCE Journal of Civil Engineering, 24(6): 1128-1145. https://doi.org/10.1007/s12205-020-1643-4
      Liu, C. L., Tang, M. X., Hu, H. S., et al., 2021. An Experimental Study of Vertical Bearing Capacity of DPC Piles Considering Sediment Effect at Pile Bottom. Rock and Soil Mechanics, 42(1): 177-185 (in Chinese with English abstract).
      Liu, G., Wang, K.H., Xiao, S., et al., 2016. An Analytical Solution for Excited Pile Vibrations with Variable Section Impedance in the Time Domain and Its Engineering Application. Computers & Geotechnics, 73(2): 170-178. https://doi.org/10.1016/j.compgeo.2015.12.008
      Liu, H. L., Zhong, H.Y., Gu, X., et al., 2021. Transparent Soil Model Testing on Ground Settlement Induced by Parallel Tunnels Excavation. Journal of Civil and Environmental Engineering, 43(1): 1-10. https://doi.org/10.11835/j.issn.2096-67172020.0821
      Luo, Q.X., Wang, W.P., 2010. Zhuangji Gongcheng Jiance Shouce 3th. China Communications Press, Beijing (in Chinese).
      Luo, S.X., 2004. Research and Engineering Application on Probability Limit States Design Method of Pile Foundation (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract).
      Massarsch, K.R., Weraell, C., 2013. Cumulative Lateral Soil Displacement Due to Pile Driving in Soft Clay. In: Geo-Congress, Sound Geotechnical Research to Practice, Geotechnical Special Publication (GSP230). Geo-Congress 2013, San Diego, 463-480. https://doi.org/10.1061/9780784412770.031
      Ministry of Housing and Urban-Rural Development of the People' s Republic of China, 2001. Unified Standard for Reliability Design of Building Structures (GB50068-2001). China Architecture & Building Press, Beijing, 7-10 (in Chinese).
      Poulos, H.G., 1997. Behaviour of Pile Groups with Defective Piles. In: Proceeding of 14th Soil Mechanics Foundation Engineering, Rotterdam. A.A. Balkema Publishers, London, 871-876.
      Poulos, H.G., 2005. Pile Behaviour-Consequences of Geological and Construction Imperfections. Journal of Geotechnical and Geoenvironmental Engineering, 131(5): 538-563. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(538)
      Samman, M., O'Neill, MW., 1997. The Reliability of Sonic Testing of Drilled Shafts. Concrete. Int. , 19(1): 49-54.
      Wang, C.H., Li, Q.H., Zhang, M.N., et al., 2014. Field Model Test Study of Vertical Bearing Behavior of some Kinds of Single Defect Piles. Rock and Soil Mechanics, 35(11): 3207-3213, 3230 (in Chinese with English abstract).
      Wang, K.H., Xiao, S., Wu, J.T., et al., 2018. Dynamic Characteristics of Defective Large Diameter Piles in Saturated Soil. Chinese Journal of Rock Mechanics and Engineering, 37(7): 1722-1730 (in Chinese with English abstract).
      Wang, N., Wang, K. H., 2013. Influence of Layering of Stratum under Pile Tip on Pile Longitudinal Stiffness. Chinese Journal of Rock Mechanics and Engineering, 32(5): 1042-1048 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.05.023
      Wu, J. T., Wang, K. H., Liu, X., et al., 2019. An Analytical Solution of Dynamic Responses of Multi-Layered Soil around Defect Piles and Its Application in Parallel Seismic Method. Chinese Journal of Rock Mechanics and Engineering, 38(1): 203-216 (in Chinese with English abstract).
      Xiao, Y., Yin, F., Liu, H., et al., 2017. Model Tests on Soil Movement during the Installation of Piles in Transparent Granular Soil. International Journal of Geomechanics, 17(4): 06016027. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000788
      Xu, Z. J., Han, X., Zheng, J. J., et al., 2020. Study on Reliability Optimization Design Method of Piles under Vertical Loads. Journal of Huazhong University of Science and Technology (Natural Science Edition), 48(5): 55-60 (in Chinese with English abstract).
      Xu, Z.J., Liu, J., Yuan, F., 2019. A Novel Measurement Method of Toe Debris Thickness for Bored Piles Based on One-Dimensional Wave Theory. Journal of Vibroengineering, 21(4): 1079-1091. https://doi.org/10.21595/jve.2019.20499
      Xu, Z.J., Liu, J., Zhang, J., et al., 2019a. A Device for Measuring the Thickness of Sediment at the Bottom of a Borehole Infused Pile Hole (Patent). Southwest Jiaotong University, Chengdu, ZL201820694463.6 (in Chinese).
      Xu, Z. J., Liu, J., Zhang, J., et al., 2019b. Development of Measurement Equipment of Toe Debris Thickness for Bored Piles. Journal of Huazhong University of Science and Technology (Natural Science Edition), 47(2): 19-23 (in Chinese).
      Xu, Z. J., Zheng, J. J., Bian, X. Y., et al., 2012. Probabilistic Analysis of Integrity Inspection and Dynamic Evaluation of Quality for Bored Piles. Chinese Journal of Geotechnical Engineering, 34(1): 151-157 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201201017.htm
      Zhang, W.G., Zhong, H.Y., Xiang, Y.Z., et al., 2020. Visualization and Digitization of Model Tunnel Deformation via Transparent Soil Testing Technique. Underground Space, 7(4): 564-576. https://doi.org/10.1016/j.undsp.2020.05.004
      Zhao, H. S., 2005. An Analysis Method for the Location and Degree of Shallow Defects of Piles. China Civil Engineering Journal, 38(6): 83-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TMGC200506013.htm
      Zheng, J. J., Xu, Z. J., Liu, Y., et al., 2010. Reliability Analysis for Vertical Bearing Capacity of Piles Based on the Maximum Entropy Principle. Chinese Journal of Geotechnical Engineering, 32(11): 1643-1647 (in Chinese with English abstract).
      Zheng, Z.G., 1987. Random Weighting Method. Acta Mathematicae Applicatae Sinica, 10(2): 247-253 (in Chinese with English abstract).
      Zhou, D., Liu, H. L., Zhang, W. G., et al., 2019. Transparent Soil Model Test on the Displacement Field of Soil around Single Passive Pile. Rock and Soil Mechanics, 40(7): 2686-2694 (in Chinese with English abstract).
      中国建筑科学研究院, 2011. GB50007建筑地基基础设计规范. 北京: 中国建筑工业出版社.
      中国建筑科学研究院, 2014. JGJ106-2014建筑基桩检测技术规范. 北京: 中国建筑工业出版社.
      何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      何婷婷, 2014. 基于支持向量机的边坡可靠性分析(博士学位论文). 杭州: 浙江大学.
      侯振坤, 唐孟雄, 胡贺松, 等, 2022. 考虑塌孔的随钻跟管桩承载性能物理模拟试验研究. 岩土工程学报, 44(1): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201015.htm
      黄发明, 殷坤龙, 杨背背, 等, 2018. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测. 地球科学, 43(3): 887-898. doi: 10.3799/dqkx.2018.909
      孔纲强, 曹兆虎, 周航, 等, 2016. 扩大头对楔形桩沉桩位移场影响的透明土模型试验. 应用基础与工程科学学报, 24(6): 1248-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201606015.htm
      李振亚, 2017. 带承台(梁)桩缺陷检测若干关键问题研究(博士学位论文). 杭州: 浙江大学.
      刘春林, 唐孟雄, 胡贺松, 等, 2021. 考虑桩底沉渣的随钻跟管桩竖向承载特性模型试验研究. 岩土力学, 42(1): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101020.htm
      罗骐先, 王五平, 2010. 桩基工程检测手册(第3版). 北京: 人民交通出版社.
      罗书学, 2004. 桩基概率极限状态法研究和工程应用(博士学位论文). 成都: 西南交通大学.
      中华人民共和国住房和城乡建设部, 2001. GB50068-2001建筑结构可靠度设计统一规范. 北京: 中国建筑工业出版社, 7-10.
      王成华, 李全辉, 张美娜, 等, 2014. 几种缺陷单桩竖向承载性状的现场模型试验研究. 岩土力学, 35(11): 3207-3213, 3230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411026.htm
      王奎华, 肖偲, 吴君涛, 等, 2018. 饱和土中大直径缺陷桩振动特性研究. 岩石力学与工程学报, 37(7): 1722-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807016.htm
      王宁, 王奎华, 2013. 桩底土的成层性对桩体纵向刚度的影响. 岩石力学与工程学报, 32(5): 1042-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305023.htm
      吴君涛, 王奎华, 刘鑫, 等, 2019. 缺陷桩周围成层土振动响应解析解及其在旁孔透射波法中的应用. 岩石力学与工程学报, 38(1): 203-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201901017.htm
      徐志军, 韩星, 郑俊杰, 等, 2020. 竖向荷载下基桩可靠度优化设计方法研究. 华中科技大学学报(自然科学版), 48(5): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202005010.htm
      徐志军, 刘军, 张健, 等, 2019a. 一种钻孔灌注桩孔底沉渣厚度测量的装置(国家专利). 成都: 西南石油大学, ZL 201820694463.6.
      徐志军, 刘军, 张健, 等, 2019b. 灌注桩孔底沉渣厚度测量装置研制. 华中科技大学学报(自然科学版), 47(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201902004.htm
      徐志军, 郑俊杰, 边晓亚, 等, 2012. 基桩完整性检测的概率分析及质量动态评估. 岩土工程学报, 34(1): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201017.htm
      赵海生, 2005. 基桩浅部缺陷位置及程度的振动理论分析方法. 土木工程学报, 38(6): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200506013.htm
      郑俊杰, 徐志军, 刘勇, 等, 2010. 基于最大熵原理的基桩竖向承载力的可靠度分析. 岩土工程学报, 32(11): 1643-1647. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011003.htm
      郑忠国, 1987. 随即加权法. 应用数学学报, 10(2): 247-253.
      周东, 刘汉龙, 仉文岗, 等, 2019. 被动桩侧土体位移场的透明土模型试验. 岩土力学, 40(7): 2686-2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  354
    • HTML全文浏览量:  356
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-21
    • 网络出版日期:  2023-06-06
    • 刊出日期:  2023-05-25

    目录

      /

      返回文章
      返回