• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渝东南-黔北地区下古生界页岩非构造裂缝发育特征与主控因素

    曾维特 丁文龙 张金川 林拓 久凯

    曾维特, 丁文龙, 张金川, 林拓, 久凯, 2023. 渝东南-黔北地区下古生界页岩非构造裂缝发育特征与主控因素. 地球科学, 48(7): 2652-2664. doi: 10.3799/dqkx.2022.257
    引用本文: 曾维特, 丁文龙, 张金川, 林拓, 久凯, 2023. 渝东南-黔北地区下古生界页岩非构造裂缝发育特征与主控因素. 地球科学, 48(7): 2652-2664. doi: 10.3799/dqkx.2022.257
    Zeng Weite, Ding Wenlong, Zhang Jinchuan, Lin Tuo, Jiu Kai, 2023. Non-Tectonic Fracture Characteristics of Lower Paleozoic Shale in Southeast Chongqing and North Guizhou Area (South China) and Its Main Controlling Factors. Earth Science, 48(7): 2652-2664. doi: 10.3799/dqkx.2022.257
    Citation: Zeng Weite, Ding Wenlong, Zhang Jinchuan, Lin Tuo, Jiu Kai, 2023. Non-Tectonic Fracture Characteristics of Lower Paleozoic Shale in Southeast Chongqing and North Guizhou Area (South China) and Its Main Controlling Factors. Earth Science, 48(7): 2652-2664. doi: 10.3799/dqkx.2022.257

    渝东南-黔北地区下古生界页岩非构造裂缝发育特征与主控因素

    doi: 10.3799/dqkx.2022.257
    基金项目: 

    海南省海洋地质资源与环境重点实验室自主课题 ZZ[2020]2019256-01

    海南省自然科学基金青年基金项目 421QN369

    海南省科协青年科技英才创新计划项目 QCXM202008

    详细信息
      作者简介:

      曾维特(1986-),男,副研究员,博士,从事非常规石油天然气地质研究.ORCID:0000-0003-3368-929X.E-mail:zengweite@126.com

      通讯作者:

      丁文龙, E-mail: dingwenlong2006@126.com

    • 中图分类号: P618.13

    Non-Tectonic Fracture Characteristics of Lower Paleozoic Shale in Southeast Chongqing and North Guizhou Area (South China) and Its Main Controlling Factors

    • 摘要: 天然非构造裂缝是页岩气的重要储集空间,但目前针对非构造缝形成机理、控制因素及发育特征的研究不足.对研究区下志留统龙马溪组和下寒武统牛蹄塘组页岩岩心非构造裂缝进行观察描述,通过扫描电镜分析识别页岩非构造裂缝并研究其结构特征,结合沉积环境、有机质丰度和类型、热演化程度、生烃史、粘土矿物含量、水体古盐度和成岩作用,分析各主控因素对非构造裂缝发育特征和分布规律的影响作用.结果表明,渝东南-黔北地区下古生界页岩非构造裂缝发育程度较高,主要类型包括成岩收缩缝、溶蚀缝和异常高压缝,其在纵向上切穿深度较浅,形态不规则,微观结构呈丝缕状、卷曲片状,缝宽一般10~500 nm,最大可超过1 μm,延伸性和连通性较好,可改善页岩的储渗性能.牛蹄塘组下部和龙马溪组下部的深水陆棚相发育大量的水平层理,是非构造缝发育的有利相带.欠压实增压和生烃增压可产生大规模超压裂缝,埋藏早期欠压实为地层超压的主因,生烃增压与热演化深度有很好的对应关系,并且可释放有机酸促进次生溶蚀缝发育;当构造运动的破坏调整作用使异常超压释放,超压裂缝随之萎缩甚至闭合.下古生界页岩在中等古盐度水体环境中发育,其高粘土含量有利于成岩收缩缝的形成.龙马溪组页岩处于中成岩晚期,随着蒙脱石不断向伊利石转化,成岩收缩缝已接近最大值.牛蹄塘组页岩属于晚成岩期,成岩收缩缝形成速率减缓,其体积已接近或达到最大值.

       

    • 图  1  渝东南‒黔北构造纲要图

      Fig.  1.  Tectonic outline map of Southeast Chongqing and North Guizhou area

      图  2  下古生界页岩岩心非构造裂缝特征

      a. 成岩收缩缝形态曲折且分布广,渝页1井,龙马溪组,125 m;b. 脱水收缩缝呈“鸡笼状”,渝页1井,龙马溪组,118 m;c. 收缩缝,沿层理发育,岑页1井,牛蹄塘组,1 461 m;d. 粘土矿物收缩缝,岑页1井,牛蹄塘组,1 418 m;e. 灰质页岩被溶蚀,渝页1井,龙马溪组,113 m;f. 层理缝被方解石充填,岑页1井,牛蹄塘组,1 418 m;g. 异常超压缝,沿层理发育,松科1井,牛蹄塘组,288 m;h. 异常高压缝被方解石充填,松科1井,牛蹄塘组,276 m;i. 异常高压缝被有机质充填,岑页1井,牛蹄塘组,1 459 m

      Fig.  2.  The non-tectonic fracture characteristics of Lower Paleozoic Shale

      图  3  下古生界页岩扫描电镜照片

      a. 伊利石化收缩缝,酉科1井,牛蹄塘组,1 350.0 m;b. 丝缕状、卷曲片状非构造缝缝,酉科1井,牛蹄塘组,1 360.0 m;c. 构造缝径直且开度大,延伸距离短,松科1井,牛蹄塘组,281.4 m;d. 方解石溶蚀孔缝,渝科1井,牛蹄塘组,77.2 m;e. 伊利石粒间孔,岑页1井,牛蹄塘组,1 414.7 m;f. 坑状矿物溶蚀孔凹凸不平,松科1井,牛蹄塘组,288.9 m

      Fig.  3.  The SEM images of Lower Paleozoic Shale

      图  4  下古生界页岩埋藏生烃史

      Fig.  4.  Burial and hydrocarbon generation history of Lower Paleozoic Shale

      图  5  龙马溪组页岩粘土矿物成分百分含量

      a. 龙马溪组页岩;b. 牛蹄塘组页岩

      Fig.  5.  The proportion of clay mineral content in Longmaxi Shale

      图  6  下古生界页岩总有机碳含量、粘土含量与孔缝总体积的关系

      图a、c为龙马溪组页岩样品;图b、d为牛蹄塘组页岩样品

      Fig.  6.  The relationships between TOC, clay content and total pore volume of Lower Paleozoic Shale

      图  7  下古生界页古盐度

      a. 渝页1井龙马溪组页岩;b. 渝科1井牛蹄塘组页岩;c. 岑页1井牛蹄塘组页岩

      Fig.  7.  The paleosalinity of Lower Paleozoic Shale

      图  8  Ⅰ型粘土矿物分布及成岩收缩缝发育模式

      Fig.  8.  The distribution of clay mineral and development model of diagenetic shrinkage fractures (Type Ⅰ)

      图  9  a型粘土矿物分布及成岩收缩缝发育模式

      Fig.  9.  The distribution of clay mineral and development model of diagenetic shrinkage fractures (Type Ⅱa)

      图  10  b型粘土矿物分布及成岩收缩缝发育模式

      Fig.  10.  The distribution of clay mineral and development model of diagenetic shrinkage fractures (Type Ⅱb)

      表  1  不同模式粘土矿物古环境特征

      Table  1.   The different clay minerals revealed different paleoenvironments

      粘土矿物分布模式 主要矿
      物组合
      古水介质 古气候 对成岩收缩缝
      影响程度
      古盐度(‰) 水类别
      S+I+K+C+I/S 0.3~15 淡水‒少盐水‒中盐水 潮湿 较小或无影响
      a I+K+C+I/S 10~30 中盐水‒多盐水 潮湿‒半干旱 较为有利
      b S+I+C+I/S 20~40 多盐水‒真盐水 干旱‒半干旱 较为有利
      I+C/S+C+S 18~30 多盐水 干旱‒半干旱 不利
      I+C ≥30 真盐水‒超盐水 干旱 极为有利
      K+I/S+I+S+C ≤12 淡水‒少盐水‒中盐水 潮湿 不利
      S+I/S+I+K+C 6~25 淡水‒少盐水‒中盐水‒多盐水 有利
      注:据赵杏媛和何东博(2012)修改.S. 蒙脱石;I. 伊利石;K. 高岭石;C. 绿泥石;I/S. 伊蒙混层;C/S. 绿蒙混层.
      下载: 导出CSV
    • Barker, C., 1990. Calculated Volume and Pressure Changes during the Thermal Cracking of Oil to Gas in Reservoirs. AAPG Bulletin, 74(8): 1254-1261. https://doi.org/10.1306/0c9b247f-1710-11d7-8645000102c1865d
      Browning, J., Tinker, S. W., Ikonnikova, S., et al., 2014. Study Develops Fayetteville Shale Reserves, Production Forecast. Oil and Gas Journal, 112(1): 64-73.
      Couch, E. L., 1971. Calculation of Paleosalinities from Boron and Clay Mineral Data. AAPG Bulletin, 55(10): 1829-1837. https://doi.org/10.1306/819a3dac-16c5-11d7-8645000102c1865d
      Ding, W. L., Wan, H., Zhang, Y. Q., et al., 2013a. Characteristics of the Middle Jurassic Marine Source Rocks and Prediction of Favorable Source Rock Kitchens in the Qiangtang Basin of Tibet. Journal of Asian Earth Sciences, 66: 63-72. https://doi.org/10.1016/j.jseaes.2012.12.025
      Ding, W. L., Zhu, D. W., Cai, J. J., et al., 2013b. Analysis of the Developmental Characteristics and Major Regulating Factors of Fractures in Marine-Continental Transitional Shale-Gas Reservoirs: A Case Study of the Carboniferous-Permian Strata in the Southeastern Ordos Basin, Central China. Marine and Petroleum Geology, 45: 121-133. https://doi.org/10.1016/j.marpetgeo.2013.04.022
      Ding, W.L., Xu, C.C., Jiu, K., et al., 2011. The Research Progress of Shale Fractures. Advances in Earth Science, 26(2): 135-144 (in Chinese with English abstract).
      Fisher, K., Warpinski, N., 2012. Hydraulic-Fracture-Height Growth: Real Data. SPE Production & Operations, 27(1): 8-19. https://doi.org/10.2118/145949-pa
      Gale, J. F. W., Lander, R. H., Reed, R. M., et al., 2010. Modeling Fracture Porosity Evolution in Dolostone. Journal of Structural Geology, 32(9): 1201-1211. https://doi.org/10.1016/j.jsg.2009.04.018
      Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151
      Guo, X.S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science, 42(7): 1069-1082 (in Chinese with English abstract).
      Guo, X., Zhong, J.H., Xu, X.L., et al., 2004. Development Characteristics and Genetic Mechanism of the Untectonic Fracture. Journal of the University of Petroleum, China, 28(2): 6-11 (in Chinese with English abstract).
      Jiu, K., Ding, W., Li, Y., et al., 2012. Structural Features in Northern Guizhou Area and Reservoir Fracture of Lower Cambrian Shale Gas. Natural Gas Geoscience, (4): 797-804 (in Chinese with English abstract).
      Kramar, U., 1997. Advances in Energy-Dispersive X-Ray Fluorescence. Journal of Geochemical Exploration, 58(1): 73-80. https://doi.org/10.1016/S0375-6742(96)00053-2
      Li, Y. F., Fan, T. L., Zhang, J. C., et al., 2015. Geochemical Changes in the Early Cambrian Interval of the Yangtze Platform, South China: Implications for Hydrothermal Influences and Paleocean Redox Conditions. Journal of Asian Earth Sciences, 109: 100-123. https://doi.org/10.1016/j.jseaes.2015.05.003
      Liu, Z.B., Gao, B., Zhang, Y.Y., et al., 2017. Types and Distribution of the Shale Sedimentary Facies of the Lower Cambrian in Upper Yangtze Area, South China. Petroleum Exploration and Development, 44(1): 21-31 (in Chinese with English abstract).
      Shi, Z.S., Qiu, Z., 2021. Main Bedding Types of Marine Fine-Grained Sediments and Their Significance for Oil and Gas Exploration and Development. Acta Sedimentologica Sinica, 39(1): 181-196 (in Chinese with English abstract).
      Sichuan Provincial Bureau of Geology and Mineral Resources, 1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese).
      Tian, H., Zeng, L.B., Xu, X., et al., 2020. Characteristics of Natural Fractures in Marine Shale in Fuling Area, Sichuan Basin, and Their Influence on Shale Gas. Oil & Gas Geology, 41(3): 474-483 (in Chinese with English abstract).
      Wang, R. Y., Ding, W. L., Wang, Z. et al., 2015. Progress of Geophysical Well Logging in Shale Gas Reservoir Evaluation. Progress in Geophysics, (1): 228-241 (in Chinese with English abstract).
      Wang, R. Y., Ding, W. L., Zhang, Y. Q., et al., 2016. Analysis of Developmental Characteristics and Dominant Factors of Fractures in Lower Cambrian Marine Shale Reservoirs: A Case Study of Niutitang Formation in Cen'gong Block, Southern China. Journal of Petroleum Science and Engineering, 138: 31-49. https://doi.org/10.1016/j.petrol.2015.12.004
      Wang, R.Y., Gong, D.J., Ding, W.L., et al., 2016. Brittleness Evaluation of the Lower Cambrian Niutitang Shale in the Upper Yangtze Region: A Case Study in the Cengong Block, Guizhou Province. Earth Science Frontiers, 23(1): 87-95 (in Chinese with English abstract).
      Wang, X. H., 2020. Fractures Characterization and Controlling Effect on Shale Gas of Lower Cambrian Niutitang Shale in Cen'gong Block, Northeastern Guizhou Province (Dissertation). China University of Geosciences, Beijing, 84-92 (in Chinese with English abstract).
      Wang, Y. H., 2018. Evolution of Formation Fluid Pressure in Longmaxi Formation, Pengshui Area, Southeast Chongqing (Dissertation). China University of Petroleum, Beijing, 36-55 (in Chinese with English abstract).
      Wei, Z.H., 2015. Late Fugitive Emission of Shale Gas from Wufeng-Longmaxi Formation in Sichuan Basin and Its Periphery. Oil & Gas Geology, 36(4): 659-665 (in Chinese with English abstract).
      Wilkins, S., Mount, V., Mahon, K., et al., 2014. Characterization and Development of Subsurface Fractures Observed in the Marcellus Formation, Appalachian Plateau, North-Central Pennsylvania. AAPG Bulletin, 98(11): 2301-2345. https://doi.org/10.1306/08191414024
      Wu, J., Chen, X.Z., Liu, W.P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng-Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531 (in Chinese with English abstract).
      Yuan, Y.S., Zhou, Y., Qiu, D.F., et al., 2016. Formation Mechanism and Characteristics of Non-Tectonic Fractures in Shales. Geoscience, 30(1): 155-162 (in Chinese with English abstract).
      Zeng, L.B., Lü, W.Y., Xu, X., et al., 2022. Development Characteristics, Formation Mechanism and Hydrocarbon Significance of Bedding Fractures in Typical Tight Sandstone and Shale. Acta Petrolei Sinica, 43(2): 180-191 (in Chinese with English abstract).
      Zeng, L. B., Lyu, W. Y., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. https://doi.org/10.1016/j.jngse.2015.11.048
      Zhang, J.C., Jin, Z.J., Yuan, M.S., 2004. Reservoiring Mechanism of Shale Gas and Its Distribution. Natural Gas Industry, 24(7): 15-18 (in Chinese with English abstract).
      Zhang, J.C., Yang, C., Chen, Q., et al., 2016. Deposition and Distribution of Potential Shales in China. Earth Science Frontiers, 23(1): 74-86 (in Chinese with English abstract).
      Zhao, X.Y., Chen, H.Q., 1988. Characteristics of the Distribution of Clay Minerals in Oil-Bearing Basins in China and Their Controlling Factors. Acta Petrolei Sinica, 9(3): 28-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB198803003.htm
      Zhao, X.Y., He, D.B., 2012. Clay Minerals and Shale Gas. Xinjiang Petroleum Geology, 33(6): 643-647 (in Chinese with English abstract).
      Zhao, Z.Y., Guo, Y.R., Gu, J.Y., et al., 2013. The Growth Patterns and Mechanisms of Mud Cracks at Different Diagenetic Stages and Its Geological Significance. Acta Sedimentologica Sinica, 31(1): 38-49 (in Chinese with English abstract).
      Zou, C.N., Zhao, Q., Cong, L.Z., et al., 2021. Development Progress, Potential and Prospect of Shale Gas in China. Natural Gas Industry, 41(1): 1-14 (in Chinese with English abstract).
      丁文龙, 许长春, 久凯, 等, 2011. 泥页岩裂缝研究进展. 地球科学进展, 26(2): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201102003.htm
      郭旭升, 2017. 上扬子地区五峰组‒龙马溪组页岩层序地层及演化模式. 地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086
      郭璇, 钟建华, 徐小林, 等, 2004. 非构造裂缝的发育特征及成因机制. 石油大学学报(自然科学版), 28(2): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200402001.htm
      久凯, 丁文龙, 李玉喜, 等, 2012. 黔北地区构造特征与下寒武统页岩气储层裂缝研究. 天然气地球科学, (4): 797-804. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204027.htm
      刘忠宝, 高波, 张钰莹, 等, 2017. 上扬子地区下寒武统页岩沉积相类型及分布特征. 石油勘探与开发, 44(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701004.htm
      施振生, 邱振, 2021. 海相细粒沉积层理类型及其油气勘探开发意义. 沉积学报, 39(1): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101013.htm
      四川省地质矿产局, 1991. 四川省区域地质志. 北京: 地质出版社.
      田鹤, 曾联波, 徐翔, 等, 2020. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响. 石油与天然气地质, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htm
      王濡岳, 丁文龙, 王哲, 等, 2015. 页岩气储层地球物理测井评价研究现状. 地球物理学进展, (1): 228-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201501034.htm
      王濡岳, 龚大建, 丁文龙, 等, 2016. 上扬子地区下寒武统牛蹄塘组页岩储层脆性评价: 以贵州岑巩区块为例. 地学前缘, 23(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601010.htm
      王兴华, 2020. 黔北岑巩区块下寒武统牛蹄塘组页岩储层裂缝表征与控气作用(博士学位论文). 北京: 中国地质大学.
      王瑀辉, 2018. 渝东南彭水地区龙马溪组地层压力演化(硕士学位论文). 北京: 中国石油大学.
      魏志红, 2015. 四川盆地及其周缘五峰组‒龙马溪组页岩气的晚期逸散. 石油与天然气地质, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm
      吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组‒龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049
      袁玉松, 周雁, 邱登峰, 等, 2016. 泥页岩非构造裂缝形成机制及特征. 现代地质, 30(1): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201601016.htm
      曾联波, 吕文雅, 徐翔, 等, 2022. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义. 石油学报, 43(2): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202202002.htm
      张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm
      张金川, 杨超, 陈前, 等, 2016. 中国潜质页岩形成和分布. 地学前缘, 23(1): 74-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601009.htm
      赵杏媛, 陈洪起, 1988. 我国含油盆地粘土矿物分布特征及控制因素. 石油学报, 9(3): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198803003.htm
      赵杏媛, 何东博, 2012. 黏土矿物与页岩气. 新疆石油地质, 33(6): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201206004.htm
      赵振宇, 郭彦如, 顾家裕, 等, 2013. 不同成岩期泥质岩非构造裂缝发育规律、形成机理及其地质意义. 沉积学报, 31(1): 38-49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301006.htm
      邹才能, 赵群, 丛连铸, 等, 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  334
    • HTML全文浏览量:  534
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-29
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回