• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    三维散射声波远探测测井裂缝评价的物理模拟

    赵腾 车小花 乔文孝 程路 卢俊强 门百永

    赵腾, 车小花, 乔文孝, 程路, 卢俊强, 门百永, 2023. 三维散射声波远探测测井裂缝评价的物理模拟. 地球科学, 48(7): 2703-2717. doi: 10.3799/dqkx.2022.258
    引用本文: 赵腾, 车小花, 乔文孝, 程路, 卢俊强, 门百永, 2023. 三维散射声波远探测测井裂缝评价的物理模拟. 地球科学, 48(7): 2703-2717. doi: 10.3799/dqkx.2022.258
    Zhao Teng, Che Xiaohua, Qiao Wenxiao, Cheng Lu, Lu Junqiang, Men Baiyong, 2023. Experimental Simulation of Fracture Evaluation Based on Borehole 3D Scanning Acoustic Imaging Using Scattered Waves. Earth Science, 48(7): 2703-2717. doi: 10.3799/dqkx.2022.258
    Citation: Zhao Teng, Che Xiaohua, Qiao Wenxiao, Cheng Lu, Lu Junqiang, Men Baiyong, 2023. Experimental Simulation of Fracture Evaluation Based on Borehole 3D Scanning Acoustic Imaging Using Scattered Waves. Earth Science, 48(7): 2703-2717. doi: 10.3799/dqkx.2022.258

    三维散射声波远探测测井裂缝评价的物理模拟

    doi: 10.3799/dqkx.2022.258
    基金项目: 

    国家自然科学基金项目 12274465

    国家自然科学基金项目 42174218

    中石油战略合作科技专项长庆专项 ZLZX2020⁃02

    详细信息
      作者简介:

      赵腾(1996-),男,博士研究生,主要从事声波测井方法与资料处理技术研究. ORCID:0000-0001-6794-0572.E-mail:zhaotengchn@foxmail.com

      通讯作者:

      车小花,E-mail: aclab@cup.edu.cn

    • 中图分类号: P631.8

    Experimental Simulation of Fracture Evaluation Based on Borehole 3D Scanning Acoustic Imaging Using Scattered Waves

    • 摘要: 现有的远探测声波测井主要利用了反射波信息,这不利于井旁地层中裂缝的高分辨率成像,而基于散射波的探测方法才有可能获得更高分辨率的测量结果.提出一种三维散射声波远探测扫描成像方法及结合平面扫描成像和球面扫描成像的技术实现方案,采用薄铝板来模拟井旁地层裂缝,在大水面湖中开展了方位远探测声波测井水下物理模拟实验,用本文提出的反演成像技术处理了实验数据.数据处理结果表明,三维散射声波远探测扫描成像方法能够提高成像信噪比、分辨率和探测范围,较准确地估计井旁裂缝的径向距离、方位、倾角、尺度和深度等参数;与3D-STC和Beamforming方法相比,基于散射波的扫描成像方法不必假设回波信号为平面波,提高了井旁裂缝方位定位准确性.本文方法有望突破目前远探测声波测井技术的局限性,具有良好的应用前景.

       

    • 图  1  (a)平面和(b)球面扫描成像方案

      Fig.  1.  Schematic of (a) plane, (b) spherical scanning imaging

      图  2  裂缝评价的数据处理流程

      Fig.  2.  Data processing flow of fracture evaluation

      图  3  方位远探测声波测井仪器结构示意图,实验时采用相控线阵发射、方位接收工作模式

      Fig.  3.  Schematic of BAR, linear phased array radiation and azimuth reception used in the experiment

      图  4  用于模拟裂缝的薄铝板

      a. 尺寸为2.0 m×1.0 m;b. 尺寸为2.0 m×0.5 m

      Fig.  4.  Thin aluminum plate for simulating fractures

      图  5  实验模型A示意图

      a.俯视图;b.前视图

      Fig.  5.  Schematic of experimental model A

      图  6  实验模型B示意图

      a.俯视图;b.前视图

      Fig.  6.  Schematic of experimental model B

      图  7  实验模型C示意图

      a.俯视图;b.前视图

      Fig.  7.  Schematic of experimental model C

      图  8  实验模型A的测量波形

      图a为R1声波接收站的等源距波形,图b和图c为深度17.93 m处单炮数据的模拟裂缝回波部分,接收单元编号顺序为:先改变方位、后改变源距(图b),即R1E1~R1E8R2E1~R2E8,…,R10E1~R10E8;先改变源距、后改变方位(图c),即R1E1~R10E1R1E2~R10E2,…,R1E8~R10E8

      Fig.  8.  Waveforms in experimental model A

      图  9  实验模型B的测量波形

      图a为R1声波接收站的等源距波形,图b和图c为深度18.89 m处单炮数据的模拟裂缝回波部分,接收单元编号顺序为:先改变方位、后改变源距(图b),即R1E1~R1E8R2E1~R2E8,…,R10E1~R10E8;先改变源距、后改变方位(图c),即R1E1~R10E1R1E2~R10E2,…,R1E8~R10E8

      Fig.  9.  Waveforms in experimental model B

      图  10  实验模型C的测量波形

      图a为R1声波接收站的等源距波形,图b和图c为深度35.16 m处单炮数据的模拟裂缝回波部分,接收单元编号顺序为:先改变方位、后改变源距(图b),即R1E1~R1E8R2E1~R2E8,…,R10E1~R10E8;先改变源距、后改变方位(图c),即R1E1~R10E1R1E2~R10E2,…,R1E8~R10E8

      Fig.  10.  Waveforms in experimental model C

      图  11  (a)实验模型A、(b)实验模型B和(c)实验模型C的平面扫描成像图

      Fig.  11.  Plane scanning imaging results of the experimental (a) model A, (b) model B and (c) model C

      图  12  实验模型A的(a)球面扫描、(b)3D-STC、(c)Beamforming成像图和(d)方位定位曲线(归一化)

      Fig.  12.  (a) Spherical scanning, (b) 3D-STC, (c) beamforming imaging results and (d) azimuth normalized localization curves for the experimental model A

      图  13  实验模型B的(a)球面扫描、(b)3D-STC、(c)Beamforming成像图和(d)方位定位曲线(归一化)

      Fig.  13.  (a) Spherical scanning, (b) 3D-STC, (c) beamforming imaging results and (d) azimuth normalized localization curves for the experimental model B

      图  14  实验模型C的(a)球面扫描、(b)3D-STC、(c)Beamforming成像图和(d)方位定位曲线(归一化)

      Fig.  14.  (a) Spherical scanning, (b) 3D-STC, (c) beamforming imaging results and (d) azimuth normalized localization curves for the experimental model C

      图  15  (a)实验模型A、(b)实验模型B、(c)实验模型C的多炮数据叠加成像图

      Fig.  15.  Multi-shot imaging results for the experimental (a) model A, (b) model B and (c) model C

      图  16  (a)实验模型A、(b)实验模型B、(c)实验模型C的模拟裂缝成像轨迹

      Fig.  16.  Imaging trajectories of simulated fractures for the experimental (a) model A, (b) model B and (c) model C

      表  1  平面定位结果

      Table  1.   Plane localization results

      实验模型A 实验模型B 实验模型C(1号模拟裂缝/2号模拟裂缝)
      径向距离r(m) 径向距离r(m) 径向距离r(m)
      实际值 16.40 29.10 5.70/5.10
      反演值 16.35 29.90 5.58/5.20
      下载: 导出CSV

      表  2  方位定位结果

      Table  2.   Azimuth localization results

      实验模型A 实验模型B 实验模型C(1号模拟裂缝/2号模拟裂缝)
      方位(o 3dB角宽(o 方位(o 3dB角宽(o 方位(o 3dB角宽(o
      实际值 247 250 75/260
      Spherical Scanning 253 55 248 58 73/260 65/69
      3D-STC 251 77 248 80 77/265 104/110
      Beamforming 251 72 248 68 74/255 87/90
      下载: 导出CSV

      表  3  模拟裂缝的轴向长度计算结果

      Table  3.   Axial lengths of simulated fractures

      实验模型A 实验模型B 实验模型C(1号模拟裂缝/2号模拟裂缝)
      轴向长度(m) 轴向长度(m) 轴向长度(m)
      实际值 2.00 2.00 2.00/0.50
      反演值 2.02 1.96 2.26/0.46
      下载: 导出CSV
    • Ben, J. L., Che, X. H., Qiao, W. X., et al., 2021. Application of Near-Borehole Geologic Reflector Evaluation Using Azimuthal Acoustic Reflection Imaging Logging. Well Logging Technology, 45(1): 23-29 (in Chinese with English abstract).
      Ben, J. L., Qiao, W. X., Che, X. H., et al., 2020a. Experimental Simulation of Obtaining the Reflector Azimuth Using Azimuthal Acoustic Reflection Tool in the Underwater Environment. Journal of Petroleum Science and Engineering, 195: 107649. https://doi.org/10.1016/j.petrol.2020.107649
      Ben, J. L., Qiao, W. X., Che, X. H., et al., 2020b. Field Validation of Imaging an Adjacent Borehole Using Scattered P-Waves. Petroleum Science, 17(5): 1272-1280. https://doi.org/10.1007/s12182-020-00475-5
      Bennett, N. N., 2019.3D Slowness Time Coherence for Sonic Imaging. Geophysics, 84(5): D179-D189. https://doi.org/10.1190/geo2018-0077.1
      Cai, M., 2016. Study on Signal Processing Method for Borehole Azimuthal Acoustic Reflection Imaging Logging (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Cai, M., Zhang, C. G., Han, C., et al., 2020a. Experimental Research of Effect of Microfracture on Shear Wave Attenuation and Its Application on Fracture Evaluation in Tight Sand Formation. Journal of China University of Petroleum (Edition of Natural Science), 44(1): 45-52 (in Chinese with English abstract).
      Cai, M., Zhang, C. G., Tang, J., et al., 2020b. Study on Factors of Influencing Extraction Effect of Reflection Wave in Acoustic Remote Detection Using Parameter Estimation Method. Journal of Xi'an Shiyou University (Natural Science Edition), 35(1): 42-48 (in Chinese with English abstract).
      Che, X. H., Qiao, W. X., Ju, X. D., et al., 2014. An Experimental Study on Azimuthal Reception Characteristics of Acoustic Well-Logging Transducers Based on Phased-Arc Arrays. Geophysics, 79(3): D197-D204. https://doi.org/10.1190/geo2013-0334.1
      Che, X. H., Zhao, T., Qiao, W. X., et al., 2020. Fracture Identification and Evaluation Based on Multi-Pole Acoustic Logging. Oil & Gas Geology, 41(6): 1263-1272 (in Chinese with English abstract).
      Dong, J. L., Xu, X. K., Zhang, J. Y., et al., 2020. Overview and Development of Acoustic Far Detection Technology. Progress in Geophysics, 35(2): 566-572 (in Chinese with English abstract).
      Feng, Y. W., Chen, Y., Zhao, Z. Y., et al., 2021. Migration of Natural Gas Controlled by Faults of Majiagou Formation in Central Ordos Basin: Evidence from Fluid Inclusions. Earth Science, 46(10): 3601-3614 (in Chinese with English abstract).
      Gu, X. H., Tang, X. M., Zhuang, C. X., et al., 2020. Simulation of Dipole Shear-Wave Reflection Survey for Multi-Fracture System Using Liner Slip Interface Theory. Progress in Geophysics, 35(3): 955-962 (in Chinese with English abstract).
      Hornby, B. E., 1989. Imaging of Near-Borehole Structure Using Full-Waveform Sonic Data. Geophysics, 54(6): 747-757. https://doi.org/10.1190/1.1442702
      Li, N., Wang, K. W., Liu, P., et al., 2021. Experimental Study on Attenuation of Stoneley Wave under Different Fracture Factors. Petroleum Exploration and Development, 48(2): 258-265 (in Chinese with English abstract).
      Li, S. Q., Su, Y. D., Tang, X. M., 2020. Research on a Fast Inversion Method for Structural Strike around a Borehole Based on Four-Component Dipole Shear Wave Reflection Imaging. Chinese Journal of Geophysics, 63(6): 2478-2487 (in Chinese with English abstract).
      Ou, W. M., Wang, Z. W., Ning, Q. Q., et al., 2019. Numerical Simulation of Acoustic Logging in Fractured Formation Based on Linear-Slip Model. Journal of China University of Petroleum (Edition of Natural Science), 43(3): 56-64 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2019.03.006
      Qiao, W. X., Ju, X. D., Che, X. H., et al., 2011. Progress in Acoustic Well Logging Technology. Well Logging Technology, 35(1): 14-19 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2011.01.003
      Tang, J., Zhang, C. G., Xin, Y., 2017. A Fracture Evaluation by Acoustic Logging Technology in Oil-Based Mud: A Case from Tight Sandstone Reservoirs in Keshen Area of Kuqa Depression, Tarim Basin, NW China. Petroleum Exploration and Development, 44(3): 389-397, 406 (in Chinese with English abstract).
      Tang, X. M., 2004. Imaging Near-Borehole Structure Using Directional Acoustic-Wave Measurement. Geophysics, 69(6): 1378-1386. https://doi.org/10.1190/1.1836812
      Tang, X. M., Li, S. Q., Xu, S., et al., 2017. Acoustic Characterization and Imaging of Shale Gas Fractures in Horizontal Wells: Field Case Study in the Sichuan Basin of Southwest China. Well Logging Technology, 41(5): 501-505 (in Chinese with English abstract).
      Tang, X. M., Xu, S., Zhuang, C. X., et al., 2016. Quantitative Evaluation of Rock Brittleness and Fracability Based on Elastic-Wave Velocity Variation around Borehole. Petroleum Exploration and Development, 43(3): 417-424 (in Chinese with English abstract).
      Wang, H., Li, N., Wang, C. Z., et al., 2019. Influence of Rock Fractures on the Amplitude of Dipole-Source Reflected Shear Wave. Applied Geophysics, 16(1): 1-13. https://doi.org/10.1007/s11770-019-0757-2
      Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract).
      Yan, F., 2014. The Application Study on Data Processing Method of Dipole Shear-Wave Reflection Imaging (Dissertation). China University of Petroleum, Qingdao (in Chinese with English abstract).
      Yang, B., Zhang, C. G., Cai, M., et al., 2019. Research on Evaluation Method of Fracture Permeability Based on Stoneley Wave Energy Attenuation. Progress in Geophysics, 34(3): 1127-1131 (in Chinese with English abstract).
      Yang, S. B., Qiao, W. X., Che, X. H., et al., 2019. Numerical Simulation of Acoustic Reflection Logging While Drilling Based on a Cylindrical Phased Array Acoustic Receiver Station. Journal of Petroleum Science and Engineering, 183: 106467. https://doi.org/10.1016/j.petrol.2019.106467
      Yu, M. Y., Yu, C. Q., Qu, C., et al., 2021. Deep Structural Characteristics of Pengguan Complex in Longmenshan Fault Zone Derived from Seismic Reflective Profile. Earth Science, 46(5): 1737-1748 (in Chinese with English abstract).
      Zhang, C. W., Qiao, W. X., Che, X. H., et al., 2019. Automated Microseismic Event Location by Amplitude Stacking and Semblance. Geophysics, 84(6): KS191-KS210. https://doi.org/10.1190/geo2018-0409.1
      Zhao, T., 2020. Study on Fracture Evaluation Methods Based on Multi-Pole Array Acoustic Logging Data (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      本建林, 车小花, 乔文孝, 等, 2021. 方位反射声波成像测井技术在井旁地质体评价中的应用. 测井技术, 45(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202101004.htm
      蔡明, 2016. 方位反射声波成像测井信号处理方法研究(博士学位论文). 北京: 中国石油大学.
      蔡明, 章成广, 韩闯, 等, 2020a. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用. 中国石油大学学报(自然科学版), 44(1): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202001005.htm
      蔡明, 章成广, 唐军, 等, 2020b. 参数估计法声波远探测反射波提取效果影响因素研究. 西安石油大学学报(自然科学版), 35(1): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202001008.htm
      车小花, 赵腾, 乔文孝, 等, 2020. 多极子声波测井的裂缝识别与评价. 石油与天然气地质, 41(6): 1263-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006016.htm
      董经利, 许孝凯, 张晋言, 等, 2020. 声波远探测技术概述及发展. 地球物理学进展, 35(2): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202002021.htm
      冯艳伟, 陈勇, 赵振宇, 等, 2021. 鄂尔多斯盆地中部地区马家沟组断裂控制天然气运移方向的流体包裹体证据. 地球科学, 46(10): 3601-3614. doi: 10.3799/dqkx.2020.384
      古希浩, 唐晓明, 庄春喜, 等, 2020. 用滑移界面理论模拟多裂缝体系的偶极横波远探测声场. 地球物理学进展, 35(3): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202003019.htm
      李宁, 王克文, 刘鹏, 等, 2021. 不同裂缝条件下斯通利波幅度衰减实验. 石油勘探与开发, 48(2): 258-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102004.htm
      李盛清, 苏远大, 唐晓明, 2020. 基于四分量偶极横波远探测的井周构造走向快速反演方法研究. 地球物理学报, 63(6): 2478-2487. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202006027.htm
      欧伟明, 王祝文, 宁琴琴, 等, 2019. 基于线性滑动模型的裂缝性地层声波测井响应数值模拟. 中国石油大学学报(自然科学版), 43(3): 56-64. doi: 10.3969/j.issn.1673-5005.2019.03.006
      乔文孝, 鞠晓东, 车小花, 等, 2011. 声波测井技术研究进展. 测井技术, 35(1): 14-19. doi: 10.3969/j.issn.1004-1338.2011.01.003
      唐军, 章成广, 信毅, 2017. 油基钻井液条件下裂缝声波测井评价方法——以塔里木盆地库车坳陷克深地区致密砂岩储集层为例. 石油勘探与开发, 44(3): 389-397, 406. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703009.htm
      唐晓明, 李盛清, 许松, 等, 2017. 页岩气藏水平测井裂缝识别及声学成像研究. 测井技术, 41(5): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201705001.htm
      唐晓明, 许松, 庄春喜, 等, 2016. 基于弹性波速径向变化的岩石脆裂性定量评价. 石油勘探与开发, 43(3): 417-424. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603014.htm
      王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
      燕菲, 2014. 偶极横波远探测声波测井资料处理方法的应用研究(硕士学位论文). 青岛: 中国石油大学.
      杨博, 章成广, 蔡明, 等, 2019. 基于斯通利波能量衰减的裂缝渗透性评价方法研究. 地球物理学进展, 34(3): 1127-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903033.htm
      于明羽, 于常青, 瞿辰, 等, 2021. 从反射地震剖面认识龙门山断裂带彭灌杂岩深部结构. 地球科学, 46(5): 1737-1748. doi: 10.3799/dqkx.2020.020
      赵腾, 2020. 基于多极子阵列声波测井资料的裂缝评价方法研究(硕士学位论文). 北京: 中国石油大学.
    • 加载中
    图(16) / 表(3)
    计量
    • 文章访问数:  404
    • HTML全文浏览量:  566
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-13
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回