• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    我国西部高寒山区同位素生态水文研究进展

    李宗省 张百娟 冯起 桂娟 张百婷

    李宗省, 张百娟, 冯起, 桂娟, 张百婷, 2023. 我国西部高寒山区同位素生态水文研究进展. 地球科学, 48(3): 1156-1178. doi: 10.3799/dqkx.2022.264
    引用本文: 李宗省, 张百娟, 冯起, 桂娟, 张百婷, 2023. 我国西部高寒山区同位素生态水文研究进展. 地球科学, 48(3): 1156-1178. doi: 10.3799/dqkx.2022.264
    Li Zongxing, Zhang Baijuan, Feng Qi, Gui Juan, Zhang Baiting, 2023. A Review of Isotope Ecohydrology in the Cold Regions of Western China. Earth Science, 48(3): 1156-1178. doi: 10.3799/dqkx.2022.264
    Citation: Li Zongxing, Zhang Baijuan, Feng Qi, Gui Juan, Zhang Baiting, 2023. A Review of Isotope Ecohydrology in the Cold Regions of Western China. Earth Science, 48(3): 1156-1178. doi: 10.3799/dqkx.2022.264

    我国西部高寒山区同位素生态水文研究进展

    doi: 10.3799/dqkx.2022.264
    基金项目: 

    国家自然科学基金区域发展联合基金重点项目 U22A20592

    国家重点研发计划项目专题 2020YFA0607702

    第二次青藏高原综合科学考察研究项目专题 2019QZKK0405

    中国科学院青年交叉团队项目 JCTD-2022-18

    中国科学院“西部之光”交叉团队项目‒重点实验室合作研究专项;甘肃省创新群体项目 20JR10RA038

    详细信息
      作者简介:

      李宗省(1984-),男,研究员,主要从事高寒山区生态水文与国家公园研究.ORCID:0000-0003-2870-7027. E-mail:lizxhhs@163.com

    • 中图分类号: P426.6

    A Review of Isotope Ecohydrology in the Cold Regions of Western China

    • 摘要: 我国西部高寒山区是亚洲水塔,是重要的生态屏障区.随着环境同位素测试技术的发展和相关理论的成熟,稳定同位素技术已成为集示踪、整合和指示等多项功能于一体的技术.本文基于前人的研究结果,对我国西部高寒山区同位素生态水文研究进行了梳理和总结,表明西部高寒山区大气降水线为δD=7.44δ18O+5.23(R2=0.86).降水稳定同位素的温度效应从南向北呈现增加趋势,而降水量效应呈现相反的变化趋势.研究区水汽来源复杂,当温度效应小于0时,水汽来源由西南季风主导;温度效应为0~0.3时,水汽来源由西南季风和西风共同主导;温度效应大于0.3时,水汽来源由西风主导.不同水体受水源补给、环境作用等的影响存在差异性,使得各水体稳定同位素局地蒸发线的斜率大小依次为:河水 > 冰雪融水 > 地下水.西部高寒山区降水中δ18O海拔效应为-1.3‰/100m,河水δ18O海拔效应为-0.17‰/100m.研究区植被水分来源主要是土壤水,对水分的利用率与植被类型及区域环境密切相关.水汽再循环已成为区域降水水汽来源的重要组成部分.然而,随着生态文明建设这一国家重大战略的纵深推进,作为国家重要生态屏障的西部高寒山区,变化环境下生态水文过程正在发生深刻而又剧烈的改变,已对区域水资源安全、生态安全和可持续发展带来极大挑战,为寒区同位素生态水文学的发展提供了广阔舞台,未来亟需从观测、采样、模型和理论4个方面全面创新.

       

    • 图  1  研究区概况

      Fig.  1.  The map of the study region and distribution of sampling

      图  2  西部高寒山区局地大气降水线

      Fig.  2.  Local meteoric water line in the western cold regions

      图  3  大气降水线斜率和截距空间分布

      Fig.  3.  Spatial distribution of slope and intercept of LMWL

      图  4  降水稳定同位素空间分布

      Fig.  4.  Spatial distribution of stable isotopes in precipitation

      图  5  河水稳定同位素空间分布

      Fig.  5.  Spatial distribution of stable isotopes in river water

      图  6  河水稳定同位素与海拔的相关关系

      Fig.  6.  Correlation between stable isotopes of river water and elevation

      图  7  河水局地蒸发线

      Fig.  7.  The evaporation line of River water in the western cold regions

      图  8  地下水蒸发线

      Fig.  8.  The evaporation line of groundwater in the western cold regions

      图  9  冰雪融水稳定同位素空间分布(a)和LEL(b)

      Fig.  9.  Spatial distribution of stable isotopes (a) and local evaporation line (b) of glacial snow meltwater

      图  10  温度效应的空间分布

      Fig.  10.  Spatial distribution of precipitation stable isotope correlation with temperature

      图  11  降水稳定同位素与海拔的相关关系

      Fig.  11.  The Correlation between stable isotopes of precipitation and elevation

      图  12  西部高寒山区径流不同补给源贡献率

      a.葫芦沟流域;b.八宝河流域;c.野牛沟河流域;d.古浪河流域;e.讨赖河流域源区;f.讨赖河流域出山口;g.石羊河流域;h.疏勒河流域;i.马粪沟流域;j.乌鲁木齐河流域(UH04);k.乌鲁木齐河流域(UH05);l.乌鲁木齐河流域(UH06);m.乌鲁木齐河流域(UH07);n.乌鲁木齐河流域(UH08);o.乌鲁木齐河流域;p.榆树沟流域;q.阿克苏河流域;r.库玛拉克河流域(AH9);s.库玛拉克河流域(AH10);t.库玛拉克河流域(AH11);u.提孜那甫河流域;v.青冰滩72号冰川流域;w.白水河流域;x.海螺沟流域;y.长江源区;z.恒河源区

      Fig.  12.  The Contribution of different recharge sources of runoff in the western cold regions

      图  13  中国西部寒区同位素生态水文概念模型

      Fig.  13.  The conceptual model of isotope ecohydrological in cold regions of western China

      表  1  数据来源

      Table  1.   Data source of water stable isotope from published literature

      数据类型 数据来源
      降水稳定同位素 Zhou et al., 2007; Tian et al., 2007; Wu et al., 2010; Gao et al., 2013; Zhang et al., 2014; Li et al., 2014, 2015a, 2016a, 2016b, 2016c, 2016d, 2016e, 2019a; Yu et al., 2014; Adhikari et al., 2019; Gui et al., 2019, 2020; Li et al., 2020a, 2020b; 章新平等,2001; 章新平等,2003; 田立德等,2008; 柳鉴容等,2008; 文蓉等,2012; 杨玉忠等,2013; 侯浩等,2014; 郭晓燕,2015; 王圣杰,2015; 陈粉丽,2016; 郭小云,2016; 孙从建等,2019张子宇,2019; 史晓宜,2020; 宋梦媛等,2020
      河水稳定同位素 Hren et al., 2009; Bershaw et al., 2012; Xu et al., 2014; Zhou et al., 2014; Li et al., 2015a, 2016a, 2016b, 2016c; Gui et al., 2019; Li et al., 2020b; 章新平等,2001; 刘忠方等,2008; 丁林等,2009; 丁悌平等,2013; 高建飞等,2011; 杨玉忠,2014; 刘琴,2014; 仝晓霞和刘存富,2018; 郭小云,2016; 孙从建等,2019; 包宇飞,2019; 李宗杰,2020; 宋梦媛等,2020; 刘峰等,2020
      地下水稳定同位素 Meng et al., 2013; Yang et al., 2013, 2017, 2020; Li et al., 2015a, 2016a, 2016b, 2016c; Ma et al., 2017; Gao et al., 2018; Wang et al., 2018a, 2018b, 2019; Gui et al., 2019; 李小飞,2013; 孙从建和陈伟,2017; 郭小云,2016
      冰雪融水稳定同位素 Yang et al., 2013; Meng et al., 2013; Zhou et al., 2014; Li et al., 2015b, 2016c; Fan et al., 2015; Wang et al., 2016; 李小飞,2013; 宋梦媛等,2015; 孙从建和陈伟,2017郭小云,2016
      径流分割数据 Liu et al., 2008b; Maurya et al., 2011; Yang et al., 2011; Kong and Pang, 2012; Pu et al., 2013; Li et al., 2014, 2015a, 2016a, 2016b, 2016c; ;Zhou et al., 2014, 2015; Sun et al., 2015, 2016a; Wang et al., 2015; Fan et al., 2015; Xing et al., 2015
      下载: 导出CSV

      表  2  西部高寒山区不同区域大气降水线差异比较

      Table  2.   Local meteoric water line in different regions of the western cold regions

      研究区 大气降水线 文献来源
      西部高寒山区 δD=7.44δ18O+5.23(R2=0.86) 本文
      我国西部地区 δD=7.88δ18O+9.42 黄天明等,2008
      西北干旱区 δD=7.42δ18O+1.38 Liu et al., 2009
      祁连山地区 δD=7.99δ18O+14.57 Gui et al., 2020
      青海湖流域 δD=7.91δ18O+13.94 崔步礼,2011
      长江源地区 δD=7.95δ18O+10.82 Li et al., 2020
      天山地区 δD=7.51δ18O+0.56 孙从建等,2019
      昆仑山区 δD=8.51δ18O+18.39 杨玉忠,2014
      云贵高原 δD=8.12δ18O+11.2 Wu et al., 2022
      下载: 导出CSV

      表  3  西部高寒山区部分降水采样点δ18O的海拔效应

      Table  3.   Altitude effect of δ18O at some precipitation sampling sites in the western cold regions

      研究区 海拔梯度(每100m) 文献来源
      祁连山区 ‒0.47‰(全年)/‒0.17‰(夏半年)/‒0.053‰(冬半年) Gui et al., 2020
      泛河西地区 ‒0.13 ‰ Guo et al., 2015
      石羊河流域 ‒0.40‰(全年)/‒0.20‰(夏半年)/‒0.50‰(冬半年) Li et al., 2016d
      黑河流域 ‒0.47‰ Wu et al., 2010
      疏勒河流域 ‒0.10‰ 郭小燕,2015
      乌鞘岭地区 ‒0.20‰(北坡)/‒0.32‰(南坡) Li et al., 2016e
      天山地区 ‒0.12‰(夏半年)/0.03‰(冬半年) 王圣杰,2015
      乌鲁木齐河流域 0.12‰ Kong and Pang, 2016
      乌鲁木齐河流域 ‒0.10‰至‒0.18‰ Pang et al., 2011
      青藏高原及其附近地区 ‒0.33‰ 姚檀栋等,2009
      青藏高原西风区 ‒0.17‰ Yao et al., 2013
      青藏高原过渡区 ‒0.06‰ Yao et al., 2013
      青藏高原季风区 ‒0.13‰ Yao et al., 2013
      青藏高原东坡 ‒0.42‰ Li et al., 2022
      雅鲁藏布江流域 ‒0.34‰ Liu et al., 2007
      帕米尔高原 ‒0.40‰ Li et al., 2006
      贡嘎山地区 ‒0.30‰ 宋春林等,2015
      喜马拉雅山北坡 ‒0.10‰(季风期) 康世昌等,2000
      喜马拉雅山脉 ‒0.36‰ Kumar et al., 2010
      下载: 导出CSV

      表  4  青藏高原部分站点降水同位素与降水量的相关系数

      Table  4.   Correlation effect between precipitation isotopes and precipitation at selected stations on the Tibetan Plateau

      站点 纬度 经度 海拔(m) δ18O与温度相关系数 δ18O与降水量相关系数
      樟木 27.983 85.98 2 239 0.25 ‒35.38
      定日 28.65 87.11 4 330 0.06 ‒4.29
      羊村 29.88 91.88 3 500 ‒0.43 ‒3.88
      鲁朗 29.77 94.73 3 327 ‒0.49 ‒2.58
      拉萨 29.70 91.13 3 658 ‒0.20 ‒2.43
      聂拉木 28.183 85.97 3 810 ‒0.38 ‒1.63
      那曲 31.48 92.07 4 508 ‒0.17 ‒1.10
      白地 29.12 90.43 4 430 0.01 ‒1.10
      翁果 28.90 90.35 4 500 ‒0.22 ‒1.03
      奴下 29.46 94.57 2 780 ‒0.23 0.06
      狮泉河 32.50 80.08 4 278 0.69 0.07
      波密 29.86 95.77 2 737 ‒0.05 0.50
      改则 32.30 84.07 4 430 0.47 0.71
      德令哈 37.36 97.37 2 981 0.57 1.32
      沱沱河 34.22 92.43 4 533 0.59 1.37
      玉树 33.02 97.02 3 682 0.66 2.27
      下载: 导出CSV

      表  5  不同地区植被水分利用来源

      Table  5.   Sources of plant water use in in the western cold regions

      地区 植被类型 土壤深度(cm) 利用水类型 利用率(%) 数据来源
      塔里木河下游 幼龄胡杨 80~140 土壤水 16.2 张江等,2018
      140~220 土壤水 21.4
      220~340 土壤水 24.6
      成熟胡杨 220~340 土壤水 32.8
      地下水 49.3
      天山北麓 两年生梭梭 80~150 土壤水 50 杨广等,2017
      地下水 20
      60~150 土壤水 52
      地下水 33
      青海湖地区 油菜根系 0~30 土壤水 Wu et al., 2018
      青稞 浅层和中土层
      柴达木盆地 胡杨幼苗 0~20 土壤水 陈小丽等,2014
      柽柳 200~300 深层土壤水
      黑刺 0~20 土壤水
      花花柴 50~100
      骆驼蓬 0~20
      苦豆子 0~5
      黑河下游 胡杨 地下水 93 Zhao et al., 2020
      怪柳 地下水 93
      苦豆子 80 土壤水 97
      下载: 导出CSV
    • Adhikari, S., Zhang, F., Zeng, C., et al., 2019. Precipitation Chemistry and Stable Isotopic Characteristics at Wengguo in the Northern Slopes of the Himalayas. Journal of Atmospheric Chemistry, 76(4): 289-313. https://doi.org/10.1007/s10874-020-09399-1
      An, W. L., Hou, S. G., Zhang, Q., et al., 2017. Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced from Ice Core Deuterium Excess Records. Journal of Geophysical Research: Atmospheres, 122(23): 12541-12556. https://doi.org/10.1002/2017jd027235
      Bao, Y. F., 2019. The Study of Hydrochemical Characteristics and Carbon Cycles in the Yarlung Zangbo River Basin (Dissertation). China Institute of Water Resources and Hydropower Research, Beijing (in Chinese with English abstract).
      Bershaw, J., Penny, S. M., Garzione, C. N., 2012. Stable Isotopes of Modern Water across the Himalaya and Eastern Tibetan Plateau: Implications for Estimates of Paleoelevation and Paleoclimate. Journal of Geophysical Research: Atmospheres, 117(D2): D02110. https://doi.org/10.1029/2011jd016132
      Boral, S., Sen, I. S., Ghosal, D., et al., 2019. Stable Water Isotope Modeling Reveals Spatio-Temporal Variability of Glacier Meltwater Contributions to Ganges River Headwaters. Journal of Hydrology, 577: 123983. https://doi.org/10.1016/j.jhydrol.2019.123983
      Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11): 4196-4209 (in Chinese with English abstract).
      Chen, F. L., 2016. Water Cycle Research in Lanzhou City Based on Stable Isotope in Precipitation (Dissertation), Northwest Normal University, Lanzhou (in Chinese with English abstract).
      Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
      Chen, X. L., Chen, Y. N., Chen, Y. P., 2014. Relationship among Water Use of Different Plants in Heihe River Riparian Forests. Chinese Journal of Eco-Agriculture, 22(8): 972-979 (in Chinese with English abstract).
      Chen, Y. N., Li, W. H., Chen, Y. P., et al., 2018. Water Use Process of Constructive Plants in Desert Riparian Forest. Arid Zone Research, 35(1): 130-136 (in Chinese with English abstract).
      Chen, Y. P., Chen, Y. N., Xu, C. C., et al., 2011. Effects of Groundwater Depth on the Gas Exchange and Chlorophyll Fluorescence of Populus Euphratica in the Lower Reaches of Tarim River. Acta Ecologica Sinica, 31(2): 344-353 (in Chinese with English abstract).
      Cheng, G. D., Jin, H. J., 2013. Groundwater in the Permafrost Regions on the Qinghai-Tibet Plateau and it Changes. Hydrogeology & Engineering Geology, 40(1): 1-11 (in Chinese with English abstract).
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Cui, B. L., 2011. Study on the Relationship between Water Cycle and Water Conversion in Qinghai Lake Basin Based on Stable Isotopes of Hydrogen and Oxygen. Beijing Normal University, Beijing (in Chinese with English abstract).
      Cui, B. L., Li, X. Y., 2015. Stable Isotopes Reveal Sources of Precipitation in the Qinghai Lake Basin of the Northeastern Tibetan Plateau. Science of the Total Environment, 527-528: 26-37. https://doi.org/10.1016/j.scitotenv.2015.04.105
      Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.3402/tellusa.v16i4.8993
      Ding, L., Xu, Q., Zhang, L. Y., et al., 2009. Regional Variation of River Water Oxygen Isotope and Empirical Elevation Prediction Models in Tibetan Plateau. Quaternary Sciences, 29(1): 1-12 (in Chinese with English abstract).
      Ding, T. P., Gao, J. F., Shi, G. Y., et al., 2013. Spacial and Temporal Variations of H and O Isotope Compositions of the Yangtze River Water and Their Environmental Implications. Acta Geologica Sinica, 87(5): 661-676 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.05.005
      Fan, Y. T., Chen, Y. N., Li, X. G., et al., 2015. Characteristics of Water Isotopes and Ice-Snowmelt Quantification in the Tizinafu River, North Kunlun Mountains, Central Asia. Quaternary International, 380-381: 116-122. https://doi.org/10.1016/j.quaint.2014.05.020
      Feng, F., Feng, Q., Liu, X. D., et al., 2017. Characteristics of δ18O and δD in Precipitation and Moisture Sources of Pailugou Catchment in The Qilian Mountains. Journal of Desert Research, 37(5): 997-1005 (in Chinese with English abstract).
      Fu, A. H., Chen, Y. N., Li, W. H., 2014. Water Use Strategies of the Desert Riparian Forest Plant Community in the Lower Reaches of Heihe River Basin, China. Science China Earth Sciences, 57(6): 1293-1305. https://doi.org/10.1007/s11430-013-4680-8
      Gao, J. F., Ding, T. P., Luo, X. R., et al., 2011. ΔD and δ18O Variations of Water in the Yellow River and Its Environmental Significance. Acta Geologica Sinica, 85(4): 596-602 (in Chinese with English abstract).
      Gao, J., Masson-Delmotte, V., Risi, C., et al., 2013. What Controls Precipitation δ18O in the Southern Tibetan Plateau at Seasonal and Intra-Seasonal Scales? A Case Study at Lhasa and Nyalam. Tellus B: Chemical and Physical Meteorology, 65(1): 21043. https://doi.org/10.3402/tellusb.v65i0.21043
      Gao, Z. Y., Niu, F. J., Lin, Z. J., et al., 2018. Evaluation of Thermokarst Lake Water Balance in the Qinghai-Tibet Plateau via Isotope Tracers. Science of the Total Environment, 636: 1-11. https://doi.org/10.1016/j.scitotenv.2018.04.103
      Gui, J., Li, Z. J., Yuan, R. F., et al., 2019. Hydrograph Separation and the Influence from Climate Warming on Runoff in the North-Eastern Tibetan Plateau. Quaternary International, 525: 45-53. https://doi.org/10.1016/j.quaint.2019.09.002
      Gui, J., Li, Z. X., Feng, Q., et al., 2020. Environmental Effect and Spatiotemporal Pattern of Stable Isotopes in Precipitation on the Transition Zone between the Tibetan Plateau and Arid Region. Science of the Total Environment, 749: 141559. https://doi.org/10.1016/j.scitotenv.2020.141559
      Gui, J., Li, Z. X., Feng, Q., et al., 2022. Water Resources Significance of Moisture Recycling in the Transition Zone between Tibetan Plateau and Arid Region by Stable Isotope Tracing. Journal of Hydrology, 605: 127350. https://doi.org/10.1016/j.jhydrol.2021.127350
      Guo, X. Y., 2015. Study on Hydrological Process in Shule River Basin Based on Stable Isotopes and Hydrochemistry (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      Guo, X. Y., 2016. Water Chemistry and Stable Isotope Characteristics Analysis of Different Water Bodies in the Hutubi River Basin (Dissertation). Xinjiang University, Urumqi (in Chinese with English abstract).
      Guo, X. Y., Feng, Q., Si, J. H., et al., 2022. Considerable Influences of Recycled Moistures and Summer Monsoons to Local Precipitation on the Northeastern Tibetan Plateau. Journal of Hydrology, 605: 127343. https://doi.org/10.1016/j.jhydrol.2021.127343
      Guo, X. Y., Feng, Q., Wei, Y. P., et al., 2015. An Overview of Precipitation Isotopes over the Extensive Hexi Region in NW China. Arabian Journal of Geosciences, 8(7): 4365-4378. https://doi.org/10.1007/s12517-014-1521-9
      Hagg, W., Braun, L. N., Kuhn, M., et al., 2007. Modelling of Hydrological Response to Climate Change in Glacierized Central Asian Catchments. Journal of Hydrology, 332(1-2): 40-53. https://doi.org/10.1016/j.jhydrol.2006.06.021
      Hou, H., Hou, S. G., Pang, H. X., 2014. Stable Isotopes in Different Water Samples on the Monh Hayrhan Glacier, Altay Mountains: Spatial Distribution Features and Vapor Sources. Journal of Glaciology and Geocryology, 36(5): 1271-1279 (in Chinese with English abstract).
      Hren, M. T., Bookhagen, B., Blisniuk, P. M., et al., 2009. δ18O and δD of Streamwaters across the Himalaya and Tibetan Plateau: Implications for Moisture Sources and Paleoelevation Reconstructions. Earth and Planetary Science Letters, 288(1-2): 20-32. https://doi.org/10.1016/j.epsl.2009.08.041
      Huang, T. M., Nie, Z. Q., Yuan, L. J., 2008. Temperature and Geographical Effects of Hydrogen and Oxygen Isotopes in Precipitation in West of China. Journal of Arid Land Resources and Environment, 22(8): 76-81 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-7578.2008.08.015
      Kang, S. C., Qin, D. H., Yao, T. D., et al., 2000. δ18O Characteristics of Atmospheric Precipitation during the Summer Monsoon in the High Altitude Area of Dasuopu Glacier in Xixiabangma Peak. Journal of Mountain Research, 18(1): 1-6 (in Chinese with English abstract).
      Kang, S. C., Xu, Y. W., You, Q. L., et al., 2010. Review of Climate and Cryospheric Change in the Tibetan Plateau. Environmental Research Letters, 5(1): 015101. https://doi.org/10.1088/1748-9326/5/1/015101
      Kong, Y. L., Pang, Z. H., 2012. Evaluating the Sensitivity of Glacier Rivers to Climate Change Based on Hydrograph Separation of Discharge. Journal of Hydrology, 434-435: 121-129. https://doi.org/10.1016/j.jhydrol.2012.02.029
      Kong, Y. L., Pang, Z. H., 2016. A Positive Altitude Gradient of Isotopes in the Precipitation over the Tianshan Mountains: Effects of Moisture Recycling and Sub-Cloud Evaporation. Journal of Hydrology, 542: 222-230. https://doi.org/10.1016/j.jhydrol.2016.09.007
      Kong, Y. L., Pang, Z. H., Froehlich, K., 2013. Quantifying Recycled Moisture Fraction in Precipitation of an Arid Region Using Deuterium Excess. Tellus B: Chemical and Physical Meteorology, 65(1): 19251. https://doi.org/10.3402/tellusb.v65i0.19251
      Kumar, U. S., Kumar, B., Rai, S. P., et al., 2010. Stable Isotope Ratios in Precipitation and Their Relationship with Meteorological Conditions in the Kumaon Himalayas, India. Journal of Hydrology, 391(1-2): 1-8. https://doi.org/10.1016/j.jhydrol.2010.06.019
      Li, J., Pang Z. H., Tursun, G., et al., 2016. Identification of Moisture Sources in Junggar Basin and Its Implication for Groundwater Recharge. Science & Technology Review, 34(18): 118-124 (in Chinese with English abstract).
      Li, J., Pang, Z. H., 2022. The Elevation Gradient of Stable Isotopes in Precipitation in the Eastern Margin of Tibetan Plateau. Science China Earth Sciences, 65(10): 1972-1984. https://doi.org/10.1007/s11430-021-9942-0
      Li, X. F., 2013. Stable Isotopes in Different Types of Water and Their Significance during the Wet Season in the Urumqi River Basin, Eastern Tianshan Mountains (Dissertation). Northwest Normal University, Lanzhou (in Chinese with English abstract).
      Li, Y. G., Li, Z. X., Feng, Q., et al., 2018. Environmental Significance of the Stable Isotopes in Precipitation at Different Altitudes in the Tuolai River Basin. Environmental Science, 39(6): 2661-2672 (in Chinese with English abstract).
      Li, Z. J., 2020. Study on the Runoff Sources Based on Stable Isotope Tracing in the Source Region of the Yangtze River (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Li, Z. J., Li, Z. X., Song, L. L., et al., 2020a. Characteristic and Factors of Stable Isotope in Precipitation in the Source Region of the Yangtze River. Agricultural and Forest Meteorology, 281: 107825. https://doi.org/10.1016/j.agrformet.2019.107825
      Li, Z. J., Li, Z. X., Song, L. L., et al., 2020b. Hydrological and Runoff Formation Processes Based on Isotope Tracing during Ablation Period in the Source Regions of Yangtze River. Hydrology and Earth System Sciences, 24(8): 4169-4187. https://doi.org/10.5194/hess-24-4169-2020
      Li, Z. X., Feng, Q., Li, Z. J., et al., 2019b. Climate Background, Fact and Hydrological Effect of Multiphase Water Transformation in Cold Regions of the Western China: A Review. Earth-Science Reviews, 190: 33-57. https://doi.org/10.1016/j.earscirev.2018.12.004
      Li, Z. X., Feng, Q., Liu, W., et al., 2014. Study on the Contribution of Cryosphere to Runoff in the Cold Alpine Basin: A Case Study of Hulugou River Basin in the Qilian Mountains. Global and Planetary Change, 122: 345-361. https://doi.org/10.1016/j.gloplacha.2014.10.001
      Li, Z. X., Feng, Q., Liu, W., et al., 2015b. The Stable Isotope Evolution in Shiyi Glacier System during the Ablation Period in the North of Tibetan Plateau, China. Quaternary International, 380-381: 262-271. https://doi.org/10.1016/j.quaint.2015.02.013
      Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016a. Contribution from Frozen Soil Meltwater to Runoff in an In-Land River Basin under Water Scarcity by Isotopic Tracing in Northwestern China. Global and Planetary Change, 136: 41-51. https://doi.org/10.1016/j.gloplacha.2015.12.002
      Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016b. Quantitative Evaluation on the Influence from Cryosphere Meltwater on Runoff in an Inland River Basin of China. Global and Planetary Change, 143: 189-195. https://doi.org/10.1016/j.gloplacha.2016.06.005
      Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016c. The Influence from the Shrinking Cryosphere and Strengthening Evopotranspiration on Hydrologic Process in a Cold Basin, Qilian Mountains. Global and Planetary Change, 144: 119-128. https://doi.org/10.1016/j.gloplacha.2016.06.017
      Li, Z. X., Feng, Q., Wang, Q. J., et al., 2016d. Contributions of Local Terrestrial Evaporation and Transpiration to Precipitation Using δ18O and D-Excess as a Proxy in Shiyang Inland River Basin in China. Global and Planetary Change, 146: 140-151. https://doi.org/10.1016/j.gloplacha.2016.10.003
      Li, Z. X., Feng, Q., Yong, S., et al., 2016e. Stable Isotope Composition of Precipitation in the South and North Slopes of Wushaoling Mountain, Northwestern China. Atmospheric Research, 182: 87-101. https://doi.org/10.1016/j.atmosres.2016.07.023
      Li, Z. X., Gui, J., Wang, X. F., et al., 2019a. Water Resources in Inland Regions of Central Asia: Evidence from Stable Isotope Tracing. Journal of Hydrology, 570: 1-16. https://doi.org/10.1016/j.jhydrol.2019.01.003
      Li, Z. X., Qi, F., Li, J. G., et al., 2015a. Environmental Significance and Hydrochemical Processes at a Cold Alpine Basin in the Qilian Mountains. Environmental Earth Sciences, 73(8): 4043-4052. https://doi.org/10.1007/s12665-014-3689-4
      Li, Z., Yao, T. D., Tian, L. D., et al., 2006. Variations of δ^18O in Precipitation from the Muztagata Glacier, East Pamirs. Science China Earth Sciences, 49(1): 36-42. https://doi.org/10.1007/s11430-004-5090-8
      Liu, F., Li, Z. Q., Hao, J. N., et al., 2020. Study on the Hydrochemical and Stable Isotope Characteristics at the Headwaters of the Irtysh River in Spring. Journal of Glaciology and Geocryology, 42(1): 234-242 (in Chinese with English abstract).
      Liu, F., Liu, P., Cao, M., et al., 2020. Review on Applications of Stable Isotope Technique in the Study of Plant and Water Relation. Ecological Science, 39(6): 224-232 (in Chinese with English abstract).
      Liu, G. S., Wang, G. X., Sun, X. Y., et al., 2012. Variation Characteristics of Stable Isotopes in Precipitation and River Water in Fenghuoshan Permafrost Watershed. Advances in Water Science, 23(5): 621-627 (in Chinese with English abstract).
      Liu, J. R., Song, X. F., Sun, X. M., et al., 2009. Isotopic Composition of Precipitation over Arid Northwestern China and Its Implications for the Water Vapor Origin. Journal of Geographical Sciences, 19(2): 164-174. https://doi.org/10.1007/s11442-009-0164-3
      Liu, J. R., Song, X. F., Yuan, G. F., et al., 2008. Characteristics of δ18O in Precipitation over Northwest China and Its Water Vapor Sources. Acta Geographica Sinica, 63(1): 12-22 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.2008.01.002
      Liu, Q., 2014. Variations of River Water Stable Isotopes on the Tibetan Plaeau and Adjacent Regions (Dissertation). Southwest University, Chongqing (in Chinese with English abstract).
      Liu, S. Y., Yao, X. J., Guo, W. Q., et al., 2015. The Contemporary Glaciers in China Based on the Second Chinese Glacier Inventory. Acta Geographica Sinica, 70(1): 3-16 (in Chinese with English abstract).
      Liu, Y. H., Fan, N. J., An, S. Q., et al., 2008a. Characteristics of Water Isotopes and Hydrograph Separation during the Wet Season in the Heishui River, China. Journal of Hydrology, 353(3-4): 314-321. https://doi.org/10.1016/j.jhydrol.2008.02.017
      Liu, Z. F., Tian, L. D., Chai, X. R., et al., 2008b. A Model-Based Determination of Spatial Variation of Precipitation δ18O over China. Chemical Geology, 249(1-2): 203-212. https://doi.org/10.1016/j.chemgeo.2007.12.011
      Liu, Z. F., Tian, L. D., Yao, T. D., et al., 2007. Temporal and Spatial Variations of δ18O in Precipitation of the Yarlung Zangbo River Basin. Journal of Geographical Sciences, 17(3): 317-326. https://doi.org/10.1007/s11442-007-0317-1
      Liu, Z. F., Tian, L. D., Yao, T. D., et al., 2008. The Temporal and Spatial Variations of δ18O in River Water of the Yarlung Zangbo River Basin. Journal of Glaciology and Geocryology, 30(1): 20-27 (in Chinese with English abstract).
      Ma, R., Sun, Z. Y., Hu, Y. L., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803-4823. https://doi.org/10.5194/hess-21-4803-2017
      Maurya, A. S., Shah, M., Deshpande, R. D., et al., 2011. Hydrograph Separation and Precipitation Source Identification Using Stable Water Isotopes and Conductivity: River Gangaat Himalayan Foothills. Hydrological Process, 25(10): 1521-1530. https://doi.org/10.1002/hyp.7912
      Meng, Y. C., Liu, G. D., 2013. Stable Isotopic Information for Hydrological Investigation in Hailuogou Watershed on the Eastern Slope of Mount Gongga, China. Environmental Earth Sciences, 69(1): 29-39. https://doi.org/10.1007/s12665-012-1931-5
      Pang, Z. H., Kong, Y. L., Froehlich, K., et al., 2011. Processes Affecting Isotopes in Precipitation of an Arid Region. Tellus B: Chemical and Physical Meteorology, 63(3): 352. https://doi.org/10.1111/j.1600-0889.2011.00532.x
      Peng, S. Z.,, 2019. 1-km Monthly Mean Temperature Dataset for China (1901-2017). National Tibetan Plateau Data Center, Beijing (in Chinese). https://doi.org/10.11888/Meteoro.tpdc.270961
      Peng, S. Z., 2020. 1-km Monthly Precipitation Dataset for China (1901-2017). National Tibetan Plateau Data Center, Beijing (in Chinese). https://doi.org/10.5281/zenodo.3185722
      Poage, M. A., 2001. Empirical Relationships between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. American Journal of Science, 301(1): 1-15. https://doi.org/10.2475/ajs.301.1.1
      Pu, T., He, Y. Q., Zhu, G. F., et al., 2013. Characteristics of Water Stable Isotopes and Hydrograph Separation in Baishui Catchment during the Wet Season in Mt. Yulong Region, South Western China. Hydrological Processes, 27(25): 3641-3648. https://doi.org/10.1002/hyp.9479
      Pu, T., Kong, Y. L., Wang, S. J., et al., 2020. Modification of Stable Isotopes in Snow and Related Post-Depositional Processes on a Temperate Glacier of Mt. Yulong, Southeast Tibetan Plateau. Journal of Hydrology, 584: 124675. https://doi.org/10.1016/j.jhydrol.2020.124675
      Qin, D. H., Zho, B. T., Xiao, C. D., 2014. Progress in Studies of Cryospheric Changes and Their Impacts on Climate of China. Acta Meteorologica Sinica, 72(5): 869-879 (in Chinese with English abstract).
      Shi, F. Z., Li, X. Y., Wu, X. C., et al., 2018. Seasonal Divergence in the Responses of Vegetation Growth to PDO in Tibetan Plateau, China. Chinese Journal of Applied Ecology, 29(4): 1107-1116 (in Chinese with English abstract).
      Shi, X. Y., 2020. The Influence Mechanisms and Simulations of Precipitation Stable Isotopes over the Southern Tibetan Plateau (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Song, C. L., Sun, X. Y., Wang, G. X., 2015. A Study on Precipitation Stable Isotopes Characteristics and Vapor Sources of the Subalpine Gongga Mountain, China. Resources and Environment in the Yangtze Basin, 24(11): 1860-1869 (in Chinese with English abstract). doi: 10.11870/cjlyzyyhj201511008
      Song, M. Y., Li, Z. Q., Jin, S., et al., 2015. Characteristics of Water Isotopes and Hydrograph Separation in the Glacier No. 72 of Qingbingtan, Tomur Peak. Journal of Arid Land Resources and Environment, 29(3): 156-160 (in Chinese with English abstract).
      Song, M. Y., Li, Z. Q., Wang, F. T., et al., 2020. Hydrogen and Oxygen Isotopes and Hydrochemical Parameters of Water Samples from the Jimunai River Basin, Xinjiang. Environmental Chemistry, 39(7): 1809-1820 (in Chinese with English abstract).
      Song, X. F., Liu, J. R., Sun, X. M., et al., 2020. Establishment of China Network of Isotopes in Precipitation (CHNIP) Based on CERN. Advances in Earth Science, 22(7): 738-747 (in Chinese with English abstract).
      Sun, C. J., Chen, W., 2017. Streamflow Components in Inland Rivers in the Tianshan Mountains, Northwest China. Arid Land Geography, 40(1): 37-44 (in Chinese with English abstract).
      Sun, C. J., Chen, Y. N., Li, W. H., et al., 2016a. Isotopic Time-Series Partitioning of Streamflow Components Under Regional Climate Change in the Urumqi River, Northwest China. Hydrological Sciences Journal, 61(8): 1443-1459. https://doi.org/10.1080/02626667.2015.1031757
      Sun, C. J., Chen, Y. N., Li, X. G., et al., 2016b. Analysis on the Streamflow Components of the Typical Inland River, Northwest China. Hydrological Sciences Journal, 1-12. https://doi.org/10.1080/02626667.2014.1000914
      Sun, C. J., Li, W. H., Chen, Y. N., et al., 2015. Isotopic and Hydrochemical Composition of Runoff in the Urumqi River, Tianshan Mountains, China. Environmental Earth Sciences, 74(2): 1521-1537. https://doi.org/10.1007/s12665-015-4144-x
      Sun, C. J., Zhang, Z. Y., Chen, W., et al., 2019. Spatial Distribution of Precipitation Stable Isotopes in the Alpine Zones in Central Asia. Arid Zone Resarch, 36(1): 19-28 (in Chinese with English abstract).
      Tang, Q. H., Liu, X. C., Zhou, Y. Y., et al., 2019. Cascading Impacts of Asian Water Tower Change on Downstream Water Systems. Bulletin of Chinese Academy of Sciences, 34(11): 1306-1312 (in Chinese with English abstract).
      Tian, L. D., Cai, Z. Y., Shao, L. L., et al., 2021. Review on the Study of Climatic Significance of Precipitation Isotope in Asian Monsoon Region. Quaternary Sciences, 41(3): 856-863 (in Chinese with English abstract).
      Tian, L. D., Ma, L. L., Yu, W. S., et al., 2008. Seasonal Variations of Stable Isotope in Precipitation and Moisture Transport at Yushu, Eastern Tibetan Plateau. Science in China (Series D), 38(8): 986-992 (in Chinese). doi: 10.3321/j.issn:1006-9267.2008.08.007
      Tian, L. D., Masson-Delmotte, V., Stievenard, M., et al., 2001. Tibetan Plateau Summer Monsoon Northward Extent Revealed by Measurements of Water Stable Isotopes. Journal of Geophysical Research: Atmospheres, 106(D22): 28081-28088. https://doi.org/10.1029/2001jd900186
      Tian, L. D., Yao, T. D., MacClune, K., et al., 2007. Stable Isotopic Variations in West China: A Consideration of Moisture Sources. Journal of Geophysical Research: Atmospheres, 112(D10): D10112. https://doi.org/10.1029/2006jd007718
      Tian, L. D., Yao, T. D., Stievenard, M., et al., 1998. A Study of Hydrogen Isotope in Precipitation in West China. Journal of Glaciolgy and Geocryology, 20(2): 175-179 (in Chinese with English abstract).
      Tian, L. D., Yao, T. D., Yu, W. S., et al., 2006. Stable Isotopes of Precipitation and Ice Core on the Tibetan Plateau and Moisture Transports. Quaternary Sciences, 26(2): 145-152 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2006.02.001
      Tian, L., Yao, T., Schuster, P. F., et al., 2003. Oxygen-18 Concentrations in Recent Precipitation and Ice Cores on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 108(D9): 4293. https://doi.org/10.1029/2002jd002173
      Tong, X. X., Liu, C. F., 2018. Hydrogeological Significance of Hydrogen and Oxygen Isotopes in Ice and Snow Melting Water in Northwest Arid Region. Environmental Science & Technology, 41(1): 57-63 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-288X.2018.01.013
      Turner, J. V., Bradd, J. M., Waite, T. D., 1992. Conjunctive Use of Isotopic Technique to Elucidate Solve Concentration and Flow Processes in Dryland Salinized Catchment. Isotope Techniques in Water Resources Development. Proceedings of a Symposium, IAEA, Vienna.
      Wang, C. X., Dong, Z. W., Qin, X., et al., 2016. Glacier Meltwater Runoff Process Analysis Using δD and δ18O Isotope and Chemistry at the Remote Laohugou Glacier Basin in Western Qilian Mountains, China. Journal of Geographical Sciences, 26(6): 722-734. https://doi.org/10.1007/s11442-016-1295-y
      Wang, N. L., Zhang, S. B., Pu, J. C., et al., 2008. Seasonal Variation of δ18O in River Water in the Upper Reaches of Heihe River Basin and Its Influence Factors. Journal of Glaciology and Geocryology, 30(6): 914-919 (in Chinese with English abstract).
      Wang, S. J., 2015. Stable Hydrogen and Oxygen Isotopes in Precipitation of the Tianshan Mountains and Their Significance in Hydrological Cycle (Dissertation). Northwest Normal University, Lanzhou (in Chinese with English abstract).
      Wang, S. J., Lei, S. J., Zhang, M. J., et al., 2022. Spatial and Seasonal Isotope Variability in Precipitation across China: Monthly Isoscapes Based on Regionalized Fuzzy Clustering. Journal of Climate, 35(11): 3411-3425. https://doi.org/10.1175/jcli-d-21-0451.1
      Wang, S. J., Zhang, M. J., Crawford, J., et al., 2017. The Effect of Moisture Source and Synoptic Conditions on Precipitation Isotopes in Arid Central Asia. Journal of Geophysical Research: Atmospheres, 122(5): 2667-2682. https://doi.org/10.1002/2015jd024626
      Wang, S. J., Zhang, M. J., Hughes, C. E., et al., 2016. Factors Controlling Stable Isotope Composition of Precipitation in Arid Conditions: An Observation Network in the Tianshan Mountains, Central Asia. Tellus B: Chemical and Physical Meteorology, 68(1): 1-14. https://doi.org/10.3402/tellusb.v68.26206
      Wang, S. Y., Wang, Q. L., Wu, J. K., et al., 2019. Characteristics of Stable Isotopes in Precipitation and Moisture Sources in the Headwaters of the Yangtze River. Environmental Science, 40(6): 2615-2623 (in Chinese with English abstract).
      Wang, W. H., Wu, T. H., Li, Y. N., et al., 2019. Spatial Variations and Controlling Factors of Ground Ice Isotopes in Permafrost Areas of the Central Qinghai-Tibet Plateau. Science of the Total Environment, 688: 542-554. https://doi.org/10.1016/j.scitotenv.2019.06.196
      Wang, W. H., Wu, T. H., Zhao, L., et al., 2018a. Hydrochemical Characteristics of Ground Ice in Permafrost Regions of the Qinghai-Tibet Plateau. Science of the Total Environment, 626: 366-376. https://doi.org/10.1016/j.scitotenv.2018.01.097
      Wang, W. H., Wu, T. H., Zhao, L., et al., 2018b. Exploring the Ground Ice Recharge near Permafrost Table on the Central Qinghai-Tibet Plateau Using Chemical and Isotopic Data. Journal of Hydrology, 560: 220-229. https://doi.org/10.1016/j.jhydrol.2018.03.032
      Wang, X. Y., Li, Z. Q., Ross, E., et al., 2015. Characteristics of Water Isotopes and Hydrograph Separation during the Spring Flood Period in Yushugou River Basin, Eastern Tianshans, China. Journal of Earth System Science, 124(1): 115-124. https://doi.org/10.1007/s12040-014-0517-x
      Wen, R., Tian, L. D., Weng, Y. B., et al., 2012. The Altitude Effect of δ18O in Precipitation and River Water in the Southern Himalayas. Chinese Science Bulletin, 57(12): 1693-1698 (in Chinese).
      Wu, H. W., Fu, C. S., Zhang, C. C., et al., 2022. Temporal Variations of Stable Isotopes in Precipitation from Yungui Plateau: Insights from Moisture Source and Rainout Effect. Journal of Hydrometeorology, 23(1): 39-51. https://doi.org/10.1175/jhm-d-21-0098.1
      Wu, H. W., Li, J., Zhang, C. C., et al., 2018. Determining Root Water Uptake of Two Alpine Crops in a Rainfed Cropland in the Qinghai Lake Watershed: First Assessment Using Stable Isotopes Analysis. Field Crops Research, 215: 113-121. https://doi.org/10.1016/j.fcr.2017.10.011
      Wu, J. K., Ding, Y., Ye, B., et al., 2010. Spatio-Temporal Variation of Stable Isotopes in Precipitation in the Heihe River Basin, Northwestern China. Environmental Earth Sciences, 61(6): 1123-1134. https://doi.org/10.1007/s12665-009-0432-7
      Xing, B., Liu, Z. F., Liu, G. D., et al., 2015. Determination of Runoff Components Using Path Analysis and Isotopic Measurements in a Glacier-Covered Alpine Catchment (Upper Hailuogou Valley) in Southwest China. Hydrological Processes, 29 (14), 3065-3073. https://doi.org/10.1002/hyp.10418.
      Xing, J. W., Li, X. Q., Zhou, A. G., et al., 2022. Multi-Isotope Tracing of the Impact of Human Activities on the Hydrological Environment in the Muli Permafrost Region. Earth Science, Online. http://kns.cnki.net/kcms/detail/42.1874.P.20220120.1519.006.html (in Chinese with English abstract).
      Xu, Q., Hoke, G. D., Jing, L. Z., et al., 2014. Stable Isotopes of Surface Water across the Longmenshan Margin of the Eastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 15(8): 3416-3429. https://doi.org/10.1002/2014gc005252
      Xu, Y. W., Kang, S. C., Zhang, Y. L., et al., 2011. A Method for Estimating the Contribution of Evaporative Vapor from Nam Co to Local Atmospheric Vapor Based on Stable Isotopes of Water Bodies. Chinese Science Bulletin, 56(14): 1511-1517. https://doi.org/10.1007/s11434-011-4467-2
      Yang, G., Li, X. L., Chen, S., et al., 2017. A Study of Water Use Sources of Typical Desert Vegetations in Manasi River Basin Based on δ18O Isotope. China Rural Water and Hydropower, (11): 94-97, 103 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2284.2017.11.019
      Yang, Y. G., Xiao, H. L., Wei, Y. P., et al., 2011. Hydrologic Processes in the Different Landscape Zones of Mafengou River Basin in the Alpine Cold Region during the Melting Period. Journal of Hydrology, 409(1-2): 149-156. https://doi.org/10.1016/j.jhydrol.2011.08.013
      Yang, Y. Z., 2014. Research on Stable Isotope Hydrology in Permafrost Regions along the Qinghai-Tibet Highway (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      Yang, Y. Z., Wu, Q. B., Jiang, G. L., et al., 2020. Ground Ice at Depths in the Tianshuihai Lake Basin on the Western Qinghai-Tibet Plateau: an Indication of Permafrost Evolution. Science of the Total Environment, 729: 138966. https://doi.org/10.1016/j.scitotenv.2020.138966
      Yang, Y. Z., Wu, Q. B., Yun, H. B., 2013. Characteristic Analysis of Stable Isotope Variation in Precipitation and Rivers in Beilu River Permafrost Region. Advances in Water Science, 24(6): 778-785 (in Chinese with English abstract).
      Yang, Y. Z., Wu, Q. B., Yun, H. B., 2013. Stable Isotope Variations in the Ground Ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quaternary International, 313-314: 85-91. https://doi.org/10.1016/j.quaint.2013.07.037
      Yang, Y. Z., Wu, Q. B., Zhang, P., et al., 2017. Stable Isotopic Evolutions of Ground Ice in Permafrost of the Hoh Xil Regions on the Qinghai-Tibet Plateau. Quaternary International, 444: 182-190. https://doi.org/10.1016/j.quaint.2017.01.008
      Yao, T. D., Masson, V., Jouzel, J., et al., 1999. Relationships between δ18O in Precipitation and Surface Air Temperature in the Urumqi River Basin, East Tianshan Mountains, China. Geophysical Research Letters, 26(23): 3473-3476. https://doi.org/10.1029/1999gl006061
      Yao, T. D., Masson-Delmotte, V., Gao, J., et al., 2013. A Review of Climatic Controls on δ18O in Precipitation over the Tibetan Plateau: Observations and Simulations. Reviews of Geophysics, 51(4): 525-548. https://doi.org/10.1002/rog.20023
      Yao, T. D., Qin, D. H., Shen, Y. P., et al., 2013. Cryospheric Changes and Their Impacts on Regional Water Cycle and Ecological Conditions in the Qinghai-Tibetan Plateau. Chinese Journal of Nature, 35(3): 178-186 (in Chinese with English abstract).
      Yao, T. D., Zhou, H., Yang, X. X., 2009. Influence of Indian Monsoon Water Vapor on the Decline Rate of δ18O Elevation in Precipitation and River Water in Qinghai-Tibet Plateau. Chinese Science Bulletin, 54(15): 2124-2130 (in Chinese with English abstract). doi: 10.1360/csb2009-54-15-2124
      Yu, T. T., Gan, Y. Q., Zhou, A. G., et al., 2010. Characteristics of Oxygen and Hydrogen Isotope Distribution of Surface Runoff in the Lhasa River Basin. Earth Science, 35(5): 873-878 (in Chinese with English abstract).
      Yu, W. S., Xu, B. Q., Lai, C. T., et al., 2014. Influences of Relative Humidity and Indian Monsoon Precipitation on Leaf Water Stable Isotopes from the Southeastern Tibetan Plateau. Geophysical Research Letters, 41(21): 7746-7753. https://doi.org/10.1002/2014gl062004
      Yuan, R. F., 2020. Study on Stable Isotope Characteristics and Sources of Precipitation and River Water of Shiyang River Basin (Dissertation). Northwest Normal University, Lanzhou (in Chinese with English abstract).
      Zhang, B. J., Li, Z. X., Wang, Y., et al., 2019. Characteristics of Stable Isotopes and Analysis of Water Vapor Sources of Precipitation at the Northern Slope of the Qilian Mountains. Environmental Science, 40(12): 5272-5285 (in Chinese with English abstract).
      Zhang, G. L., Jiao, Y. M., He, L. P., et al., 2015. Hydrogen and Oxygen Isotopes in Precipitation in Southwest China: Progress and Prospects. Journal of Glaciology and Geocryology, 37(4): 1094-1103 (in Chinese with English abstract).
      Zhang, J., Li, G. F., He, Y. L., et al., 2018. Water Utilization Sources of Populus Euphratica Trees of Different Ages in the Lower Reaches of Tarim River. Biodiversity Science, 26(6): 564-571 (in Chinese with English abstract). doi: 10.17520/biods.2017342
      Zhang, N. N., Cao, J. J., He, Y. Q., et al., 2014. Chemical Composition of Rainwater at Lijiang on the Southeast Tibetan Plateau: Influences from Various Air Mass Sources. Journal of Atmospheric Chemistry, 71(2): 157-174. https://doi.org/10.1007/s10874-014-9288-7
      Zhang, S., Yu, W. X., Zhang, Q. L., 1973. The Distribution of Deuterium and Heavy Oxygen in Snow and Ice, in the Jolmo Lungma Regions of the Southern Tibet. Science in China (Series B), (4): 430-433.
      Zhang, X. P., Liu, J. M., Nakawo, M., et al., 2009. Vapor Origins Revealed by Deuterium Excess in Precipitation in Southwest China. Journal of Glaciology and Geocryology, 31(4): 613-619 (in Chinese with English abstract).
      Zhang, X. P., Masayoshi, N., Fujita, K., et al., 2001. Variation of Precipitation δ18O in Langtang Valley Himalayas. Science in China (Series D), 31(3): 206-213 (in Chinese).
      Zhang, X. P., Yao, T. D., 1998. Distributional Features of δ18O in Precipitation in China. Acta Geographica Sinica, 53(4): 70-78 (in Chinese with English abstract).
      Zhang, X. P., Yao, T. D., Tian, L. D., et al., 2003. Stable Oxygen Isotope in Water Mediums in Urumqi River Basin. Advances in Water Science, 14(1): 50-56 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-6791.2003.01.009
      Zhang, Z. Y., 2019. Temporal and Spatial variations of stable isotopes of precipitation in the Northwest Alpine Mountainous Area (Dissertation). Shanxi Normal University, Linfen (in Chinese with English abstract).
      Zhao, L. J., Xie, C., Liu, X. H., et al., 2020. Water Sources of Major Plant Species along a Strong Climatic Gradient in the Inland Heihe River Basin. Plant and Soil, 455(1): 439-466. https://doi.org/10.1007/s11104-020-04639-5
      Zhao, W., Ma, J. Z., Gu, C. J., et al., 2016. Distribution of Isotopes and Chemicals in Precipitation in Shule River Basin, Northwestern China: An Implication for Water Cycle and Groundwater Recharge. Journal of Arid Land, 8(6): 973-985. https://doi.org/10.1007/s40333-016-0091-y
      Zheng, S. H., Hou, F. G., Ni, B. L, 1983. Study on Stable Isotopes of Hydrogen and Oxygen in Precipitation in China. Chinese Science Bulletin, 28(13): 801-806 (in Chinese). doi: 10.1360/csb1983-28-13-801
      Zhou, J. X., Wu, J. K., Liu, S. W., et al., 2015. Hydrograph Separation in the Headwaters of the Shule river basin: Combining Water Chemistry and Stable Isotopes. Advances in Meteorology, 2015: 830306. https://doi.org/10.1155/2015/830306.
      Zhou, S. Q., Masayoshi, N., Akiko, S., et al., 2007. Water Isotope Variations in the Snow Pack and Summer Precipitation at July 1 Glacier, Qilian Mountains in Northwest China. Chinese Science Bulletin, 52(21): 2963-2972. https://doi.org/10.1007/s11434-007-0401-z
      Zhou, S. Q., Wang, Z., Joswiak, D. R., 2014. From Precipitation to Runoff: Stable Isotopic Fractionation Effect of Glacier Melting on a Catchment Scale. Hydrological Processes, 28(8): 3341-3349. https://doi.org/10.1002/hyp.9911
      Zhu, X. F., Wu, T. H., Hu, G. J., et al., 2020. Long-Distance Atmospheric Moisture Dominates Water Budget in Permafrost Regions of the CentralQinghai-Tibetplateau. Hydrological Processes, 34(22): 4280-4294. https://doi.org/10.1002/hyp.13871
      Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere, 11: 2527-2542. https://doi.org/10.5194/tc-11-2527-2017
      包宇飞, 2019. 雅鲁藏布江水文水化学特征及流域碳循环研究(博士学位论文). 北京: 中国水利水电科学研究院.
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
      陈粉丽, 2016. 基于大气降水稳定同位素的兰州市水循环研究(博士学位论文). 兰州: 西北师范大学.
      陈小丽, 陈亚宁, 陈亚鹏, 2014. 黑河下游荒漠河岸林植物水分利用关系研究. 中国生态农业学报, 22(8): 972-979. doi: 10.13930/j.cnki.cjea.140169
      陈亚宁, 李卫红, 陈亚鹏, 等, 2018. 荒漠河岸林建群植物的水分利用过程分析. 干旱区研究, 35(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201801016.htm
      陈亚鹏, 陈亚宁, 徐长春, 等, 2011. 塔里木河下游地下水埋深对胡杨气体交换和叶绿素荧光的影响. 生态学报, 31(2): 344-353. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201102005.htm
      程国栋, 金会军, 2013. 青藏高原多年冻土区地下水及其变化. 水文地质工程地质, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201301007.htm
      崔步礼, 2011. 基于氢氧稳定同位素的青海湖流域水循环及水量转化关系研究(博士学位论文). 北京: 北京师范大学.
      丁林, 许强, 张利云, 等, 2009. 青藏高原河流氧同位素区域变化特征与高度预测模型建立. 第四纪研究, 29(1): 1-12.
      丁悌平, 高建飞, 石国钰, 等, 2013. 长江水氢、氧同位素组成的时空变化及其环境意义. 地质学报, 87(5): 661-676. doi: 10.3969/j.issn.0001-5717.2013.05.005
      冯芳, 冯起, 刘贤德, 等, 2017. 祁连山排露沟流域降水δ18O和δD特征及水汽来源. 37(5): 997-1005.
      高建飞, 丁悌平, 罗续荣, 等, 2011. 黄河水氢、氧同位素组成的空间变化特征及其环境意义. 地质学报, 85(4): 596-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104016.htm
      郭小燕, 2015. 基于稳定同位素和水化学的疏勒河流域水文过程研究(博士学位论文). 北京: 中国科学院大学.
      郭小云, 2016. 呼图壁河流域不同水体的水化学和稳定同位素特征分析(硕士学位论文). 乌鲁木齐: 新疆大学.
      侯浩, 侯书贵, 庞洪喜, 2014. 阿尔泰山蒙赫海尔汗冰川不同水体稳定同位素空间分布特征及水汽来源. 冰川冻土, 36(5): 1271-1279. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201405026.htm
      黄天明, 聂中青, 袁利娟, 2008. 西部降水氢氧稳定同位素温度及地理效应. 干旱区资源与环境, 22(8): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200808015.htm
      康世昌, 秦大河, 姚檀栋, 等, 2000. 希夏邦马峰达索普冰川高海拔区夏季风期间大气降水的δ18O特征. 山地学报, 18(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200001000.htm
      李捷, 庞忠和, 古丽波斯坦·吐逊江, 等, 2016. 北疆大气降水水汽源识别及其对地下水补给的指示意义. 科技导报, 34(18): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201618024.htm
      李小飞, 2013. 乌鲁木齐河流域湿季水体中稳定同位素特征及其示踪意义(硕士学位论文). 兰州: 西北师范大学.
      李永格, 李宗省, 冯起, 等, 2018. 托来河流域不同海拔降水稳定同位素的环境意. 环境科学, 39(6): 2661-2672. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201806018.htm
      李宗杰, 2020. 基于稳定同位素示踪的长江源区径流源解析研究(博士学位论文). 兰州: 兰州大学.
      刘峰, 李忠勤, 郝嘉楠, 等, 2020. 额尔齐斯河源春季水化学及稳定同位素特征研究. 冰川冻土, 42(1): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202001021.htm
      刘飞, 刘攀, 曹铭, 等, 2020. 稳定同位素技术在植物水分关系研究中的应用综述. 生态科学, 39(6): 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202006028.htm
      刘光生, 王根绪, 孙向阳, 等, 2012. 多年冻土区风火山流域降水河水稳定同位素特征分析. 水科学进展, 23(5): 621-627. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201205004.htm
      柳鉴容, 宋献方, 袁国富, 等, 2008. 西北地区大气降水18O的特征及水汽来源. 地理学报, 63(1): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE200902007.htm
      刘琴, 2014. 青藏高原及其周边地区地表水氢氧稳定同位素空间变化特征(硕士学位论文). 重庆: 西南大学.
      刘时银, 姚晓军, 郭万钦, 等, 2015. 基于第二次冰川编目的中国冰川现状. 地理学报, 70(1): 3-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501002.htm
      刘忠方, 田立德, 姚檀栋, 等, 2008. 雅鲁藏布江流域河水中氧稳定同位素的时空变化. 冰川冻土, 30(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200801004.htm
      彭守璋, 2019. 中国1km分辨率逐月平均气温数据集(1901-2017). 北京: 国家青藏高原科学数据中心. https://doi.org/10.11888/Meteoro.tpdc.270961
      彭守璋, 2020. 中国1km分辨率逐月降水量数据集(1901-2017). 北京: 国家青藏高原科学数据中心. https://doi.org/10.5281/zenodo.3185722
      秦大河, 周波涛, 效存德, 2014. 冰冻圈变化及其对中国气候的影响. 气象学报, 72(5): 869-879. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405005.htm
      石芳忠, 李小雁, 吴秀臣, 等, 2018. 青藏高原植被生长对PDO响应的季节分异. 应用生态学报, 29(4): 1107-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201804011.htm
      史晓宜, 2020. 青藏高原南部降水稳定同位素影响机理及其模拟研究(博士学位论文). 兰州: 兰州大学.
      宋春林, 孙向阳, 王根绪, 2015. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究. 长江流域资源与环境, 24(11): 1860-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201511008.htm
      宋梦媛, 李忠勤, 金爽, 等, 2015. 托木尔峰青冰滩72号冰川流域同位素特征及径流分割研究. 干旱区资源与环境, 29(3): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201503027.htm
      宋梦媛, 李忠勤, 王飞腾, 等, 2020. 新疆吉木乃诸河水体氢氧同位素和水化学特征. 环境化学, 39(7): 1809-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202007008.htm
      宋献方, 柳鉴容, 孙晓敏, 等, 2020. 基于CERN的中国大气降水同位素观测网络. 地球科学进展, 22(7): 738-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200707013.htm
      孙从建, 陈伟, 2017. 天山山区典型内陆河流域径流组分特征分析. 干旱区地理, 40(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201701006.htm
      孙从建, 张子宇, 陈伟, 等, 2019. 亚洲中部高山降水稳定同位素空间分布特征. 干旱区研究, 36(01): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201901004.htm
      汤秋鸿, 刘星才, 周园园, 等, 2019. "亚洲水塔"变化对下游水资源的连锁效应. 中国科学院院刊, 34(11): 1306-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201911014.htm
      田立德, 蔡忠银, 邵莉莉, 等, 2021. 亚洲季风区降水中稳定同位素气候意义研究进展. 第四纪研究, 41(3): 856-863. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202103019.htm
      田立德, 马凌龙, 余武生, 等, 2008. 青藏高原东部玉树降水中稳定同位素季节变化与水汽输送. 中国科学(D辑), 38(8): 986-992. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200808007.htm
      田立德, 姚檀栋, Stievenard, M., 等, 1998. 中国西部降水中δD的初步研究. 冰川冻土, 20(2): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT802.015.htm
      田立德, 姚檀栋, 余武生, 等, 2006. 青藏高原水汽输送与冰芯中稳定同位素记录. 第四纪研究, 26(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200602000.htm
      仝晓霞, 刘存富, 2018. 西北干寒区冰雪融水氢氧同位素水文地质意义. 环境科学与技术, 41(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201801011.htm
      王宁练, 张世彪, 蒲健辰, 等, 2008. 黑河上游河水中δ18O季节变化特征及其影响因素研究. 冰川冻土, 30(6): 914-919. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200806001.htm
      王圣杰, 2015. 天山地区降水稳定氢氧同位素特征及其在水循环过程中的指示意义(博士学位论文). 兰州: 西北师范大学.
      汪少勇, 王巧丽, 吴锦奎, 等, 2019. 长江源区降水氢氧稳定同位素特征及水汽来源. 环境科学, 40(6): 2615-2623. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906015.htm
      文蓉, 田立德, 翁永标, 等, 2012. 喜马拉雅山南坡降水与河水中δ18O高程效应. 科学通报, 57(12): 1693-1698. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201212012.htm
      邢剑伟, 李小倩, 周爱国, 等, 2022. 人类活动对木里冻土区水文环境影响的多元同位素示踪. 地球科学, 网络首发. http://kns.cnki.net/kcms/detail/42.1874.P.20220120.1519.006.html
      杨广, 李小龙, 陈思, 等, 2017. 基于δ18O同位素的玛纳斯河流域典型荒漠植被水分利用来源研究. 中国农村水利水电, (11): 94-97, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201711020.htm
      杨玉忠, 2014. 青藏公路沿线多年冻土区稳定同位素水文研究(博士学位论文). 北京: 中国科学院大学.
      杨玉忠, 吴青柏, 贠汉伯, 2013. 北麓河多年冻土区降水及河水稳定同位素特征分析. 水科学进展, 24(6): 778-785. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201306004.htm
      姚檀栋, 秦大河, 沈永平, 等, 2013. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响. 自然杂志, 35(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201303004.htm
      姚檀栋, 周行, 杨晓新, 2009. 印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响. 科学通报, 54(15): 2124-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200915003.htm
      余婷婷, 甘义群, 周爱国, 等, 2010. 拉萨河流域地表径流氢氧同位素空间分布特征. 地球科学, 35(5): 873-878. doi: 10.3799/dqkx.2010.101
      袁瑞丰, 2020. 石羊河流域降水与河水稳定同位素特征及来源研究(硕士学位论文). 兰州: 西北师范大学.
      张百娟, 李宗省, 王昱, 等, 2019. 祁连山北坡中段降水稳定同位素特征及水汽来源分析. 环境科学, 40(12): 5272-5285. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201912010.htm
      张贵玲, 角媛梅, 何礼平, 等, 2015. 中国西南地区降水氢氧同位素研究进展与展望. 冰川冻土, 37(4): 1094-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201504028.htm
      张江, 李桂芳, 贺亚玲, 等, 2018. 基于稳定同位素技术的塔里木河下游不同林龄胡杨的水分利用来源. 生物多样性, 26(6): 564-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDY201806004.htm
      章新平, 刘晶淼, 中尾正义, 等, 2009. 我国西南地区降水中过量氘指示水汽来源. 冰川冻土, 31(4): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200904003.htm
      章新平, 中尾正义, 藤田耕史, 等, 2001. 喜马拉雅山朗塘流域降水中δ18O的变化. 中国科学(D辑), 31(3): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200103003.htm
      章新平, 姚檀栋, 1998. 我国降水中δ18O的分布特点. 地理学报, 53(4): 356-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB804.008.htm
      章新平, 姚檀栋, 田立德, 等, 2003. 乌鲁木齐河流域不同水体中的氧稳定同位素. 水科学进展, 14(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200301009.htm
      张子宇, 2019. 西北高寒山区大气降水稳定同位素组成时空特征分布研究(硕士学位论文). 临汾: 山西师范大学.
      郑淑蕙, 侯发高, 倪葆龄, 1983. 我国大气降水的氢氧稳定同位素研究. 科学通报, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm
    • 加载中
    图(13) / 表(5)
    计量
    • 文章访问数:  749
    • HTML全文浏览量:  475
    • PDF下载量:  99
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-09
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回