• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    寒旱区内陆河流域碳通量年际变化控制机制

    王同红 王旭峰 张松林 谭俊磊 张阳 任志国 白雪洁

    王同红, 王旭峰, 张松林, 谭俊磊, 张阳, 任志国, 白雪洁, 2024. 寒旱区内陆河流域碳通量年际变化控制机制. 地球科学, 49(5): 1907-1919. doi: 10.3799/dqkx.2022.269
    引用本文: 王同红, 王旭峰, 张松林, 谭俊磊, 张阳, 任志国, 白雪洁, 2024. 寒旱区内陆河流域碳通量年际变化控制机制. 地球科学, 49(5): 1907-1919. doi: 10.3799/dqkx.2022.269
    Wang Tonghong, Wang Xufeng, Zhang Songlin, Tan Junlei, Zhang Yang, Ren Zhiguo, Bai Xuejie, 2024. Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions. Earth Science, 49(5): 1907-1919. doi: 10.3799/dqkx.2022.269
    Citation: Wang Tonghong, Wang Xufeng, Zhang Songlin, Tan Junlei, Zhang Yang, Ren Zhiguo, Bai Xuejie, 2024. Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions. Earth Science, 49(5): 1907-1919. doi: 10.3799/dqkx.2022.269

    寒旱区内陆河流域碳通量年际变化控制机制

    doi: 10.3799/dqkx.2022.269
    基金项目: 

    国家自然科学基金项目 41771466

    科技部重点研发计划 2017YFA0604801

    “一带一路”(甘肃段)生态服务功能问题与对策研究项目 5013/0030

    详细信息
      作者简介:

      王同红(1997—),女,硕士研究生,主要从事生态遥感研究. ORCID:0000-0002-4170-8756. E-mail:2862587111@qq.com

      通讯作者:

      王旭峰, ORCID: 0000-0003-3591-4091. E-mail: wangxufeng@lzb.ac.cn

      张松林,E-mail:zhangsonglin65@nwnu.edu.cn

    • 中图分类号: P69

    Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions

    • 摘要: 为了解寒旱区内陆河流域碳通量的年际变化及其控制机制,使用涡度相关技术和气象观测系统同步对黑河流域典型生态系统(草地、农田、湿地、荒漠、森林)的碳通量和气象环境要素进行了长期定位观测.分析观测数据显示:黑河流域内农田(玉米)生长季净生态系统生产力(NEP)与总初级生产力(GPP)最大(729.81 g C/m2/a与1 184.60 g C/m2/a),戈壁荒漠最小(94.18 g C/m2/a与134.97 g C/m2/a);湿地生长季生态系统呼吸(Reco)最大(460.22 g C/m2/a),戈壁荒漠最小(41.18 g C/m2/a).黑河上游高寒生态系统温度对NEP、GPP和Reco年际变化的解释度明显高于黑河中下游干旱生态系统,而上游高寒生态系统土壤水分对NEP、GPP和Reco年际变化的解释度低于中下游干旱生态系统.在上游的高寒生态系统中,各站点间温度与NEP、GPP和Reco为正相关,而在中下游则为负相关.浅层土壤水分在黑河流域内高寒区和干旱区均与生态系统的NEP、GPP和Reco为正相关,上游高寒区浅层土壤水分与NEP、GPP和Reco的相关性要高于深层土壤水分,而中下游干旱区则是深层土壤水分与NEP、GPP和Reco的相关性更高.

       

    • 图  1  黑河流域通量观测站点分布

      Fig.  1.  The distribution map of observation sites in the Heihe River basin

      图  2  各生态系统生长季平均气温(Ta,℃)、土壤温度(Ts,℃)、辐射(Rg,W/m2)逐年变化(所有站点按气温从小到大依次排列,主要纵坐标为温度,次纵坐标为Rg

      Fig.  2.  The growing season average temperature (Ta, ℃), soil temperature (Ts, ℃), and radiation (Rg W/m2) of each ecosystem (all stations are arranged in ascending order of temperature, the main ordinate is temperature, and the second ordinate is Rg)

      图  3  生态系统不同深度土壤水分(Ms,%)年际变化

      Fig.  3.  Annual variations of soil moisture (Ms, %) at different depths in the ecosystem

      图  4  黑河流域各生态系统NEP、GPP与Reco的年际动态

      Fig.  4.  Interannual variations of NEP, GPP and Reco in ecosystems in the Heihe River basin

      图  5  黑河流域各生态系统年均碳通量分布状况

      Fig.  5.  Distributions of annual average carbon fluxes at various stations in the Heihe River basin

      图  6  黑河流域环境因子空间变化及其对碳通量决定性

      YK(4 148 m)、DSL(3 739 m)、AR(3 033 m)、DM(1 556 m)、SD(1 460 m)、HZZ(1 731 m)、SDQ(873 m)、HHL(874 m)、HM(1 053 m),主要纵坐标为碳通量与环境因子的R2,次坐标为环境因子多年平均值

      Fig.  6.  Spatial variation of environmental factors in the Heihe River basin and its decisiveness to carbon flux

      图  7  黑河流域环境因子对碳通量的控制机制

      以海拔2 500 m分为两个生态系统: > 2 500 m为高寒生态系统, < 2 500 m为干旱生态系统;符号*表示0.05的统计显著性水平

      Fig.  7.  The control mechanism of environmental factors on carbon flux in the Heihe River basin

      表  1  各生态系统环境因子和碳通量的年际变异IAV

      Table  1.   Interannual variability IAV and of environmental factors and carbon fluxes in each ecosystem

      变量 上游 中游 下游
      YK DSL AR DM SD HZZ SDQ HHL HM
      Ta(℃) 0.51 0.61 0.56 0.8 0.44 0.48 0.35 2.06 0.55
      Ts(℃) 0.53 0.64 1.24 1.19 1.06 0.67 1.75 2.74 0.57
      Rg(W/m2) 27.48 10.45 5.96 9.82 6.65 4.35 6.14 14.63 5.38
      Ms-20 cm(%) 4.9 2.27 1.23 6.74 2.84 1.94 1.37 1.35
      Ms -40 cm(%) 5.25 2.68 0.96 6.41 0.63 1.63 3.46 1.08
      Ms -80 cm(%) 1.11 3.6 0.18 7.89 0.43 1.24 3.59 0.8
      Ms -120 cm(%) 1.41 5.07 0.23 10.22 2.52 4.74 1.26
      NEP(g C/m2/a) 19.77 33.92 81.74 55.42 177.67 44.31 93.03 84.13 43.34
      GPP(g C/m2/a) 13.12 31.15 81.03 69.57 233.45 43.6 166.63 102.56 71.7
      Reco(g C/m2/a) 16.97 44.39 116.46 43.61 129.65 32.7 127.66 85.47 36.06
      注:生态系统碳通量的年际变异(IAV,以标准差表示).
      下载: 导出CSV

      表  2  各生态系统环境因子和碳通量的变异系数CV

      Table  2.   Coefficient of variation CV of environmental factors and carbon fluxes in each ecosystem

      变量 上游 中游 下游
      YK DSL AR DM SD HZZ SDQ HHL HM
      Ta 0.20 0.13 0.06 0.04 0.02 0.02 0.02 0.09 0.02
      Ts 0.13 0.08 0.10 0.06 0.06 0.03 0.08 0.13 0.02
      Rg 0.11 0.04 0.03 0.04 0.03 0.02 0.02 0.06 0.02
      Ms -20 cm 0.16 0.08 0.04 0.22 0.15 0.05 0.13 0.27
      Ms -40 cm 0.18 0.09 0.04 0.21 0.04 0.04 0.22 0.20
      Ms -80 cm 0.08 0.18 0.02 0.21 0.03 0.03 0.12 0.15
      Ms-120 cm 0.16 0.22 0.03 0.30 0.08 0.40 0.17
      NEP 0.25 0.17 0.30 0.08 0.31 0.52 0.41 0.27 0.46
      GPP 0.10 0.08 0.11 0.06 0.23 0.34 0.25 0.15 0.53
      Reco 0.31 0.26 0.26 0.10 0.28 0.79 0.29 0.24 0.88
      注:生态系统碳通量的变异系数(CV,以标准差除平均值表示).
      下载: 导出CSV

      表  3  黑河流域内生态系统环境因子与碳通量的相关性

      Table  3.   Correlation coefficients between environmental factors and carbon fluxes in ecosystems in the Heihe River basin

      变量 上游 中游 下游
      YK DSL AR DM SD HZZ SDQ HHL HM
      NEP Ta ‒0.97*** ‒0.83** 0.50* 0.32 ‒0.29 0.37 ‒0.10 ‒0.32 0.61*
      Ts ‒0.92** ‒0.66* 0.60* 0.05 ‒0.39 0.24 0.44* ‒0.38 0.59*
      Rg 0.26 0.50* 0.18 0.36 0.37 0.60* 0.54*
      Ms_20 cm 0.40 0.48 0.43 0.12 0.66* 0.36 0.35 0.76**
      Ms_40 cm 0.20 0.48 0.43 0.29 0.51* 0.09 0.07 0.96**
      Ms_80 cm 0.37 0.37 0.40 0.36 0.47 0.29 0.26 0.88*
      Ms_120 cm 0.27 0.31 0.39 0.29 0.41 0.38 0.83*
      GPP Ta 0.40 ‒0.10 0.49 0.31 0.48 0.45 0.30 ‒0.40 0.64*
      Ts 0.18 ‒0.26 0.46 0.17 ‒0.65* 0.55* 0.55* ‒0.43 0.61*
      Rg 0.54 0.60* 0.21 0.46 0.67* 0.70** 0.47
      Ms_20 cm 0.07 0.17 0.51* 0.14 0.62* 0.46 0.50 0.81*
      Ms_40 cm 0.12 0.17 0.49 0.14 0.63* 0.24 0.20 0.93*
      Ms_80 cm 0.17 0.24 0.47 0.17 0.78** 0.31 0.15 0.81*
      Ms_120 cm 0.25 0.17 0.49 0.12 0.43 0.36 0.86*
      Reco Ta 0.80 0.54 0.66 0.02 0.71* 0.24 0.30 ‒0.40 0.56*
      Ts 0.77 0.37 0.52 0.05 ‒0.64* 0.12 0.55* ‒0.31 0.61*
      Rg ‒0.03 0.20 0.43 0.36 0.37 0.70* 0.54*
      Ms_20 cm 0.07 ‒0.26 0.39 0.14 0.20 0.50 0.15 0.69*
      Ms_40 cm 0.20 ‒0.26 0.36 0.14 0.46 0.24 0.27 0.79**
      Ms_80 cm 0.07 ‒0.10 0.37 0.17 0.54* 0.20 0.39 0.61*
      Ms_120 cm 0.27 ‒0.37 0.38 0.17 0.47 0.39 0.76**
      注:表中数字为Spearman相关系数;P≥0.05无显著性标记,0.01 < P < 0.05标记为*;0.001 < P≤0.01标记为**P≤0.001标记为***.
      下载: 导出CSV

      表  4  不同环境因子对碳通量的控制解释度

      Table  4.   Control interpretability of different environmental factors on carbon flux

    • Baldocchi, D., 2008. 'Breathing' of the Terrestrial Biosphere: Lessons Learned from a Global Network of Carbon Dioxide Flux Measurement Systems. Australian Journal of Botany, 56(1): 1. https://doi.org/10.1071/bt07151
      Baldocchi, D., Falge, E., Gu, L. H., et al., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. https://doi.org/10.1175/1520-0477(2001)0822415: fantts>2.3.co;2 doi: 10.1175/1520-0477(2001)0822415:fantts>2.3.co;2
      Barros, V., Stocker, T. F., 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Journal of Clinical Endocrinology & Metabolism, 18(6): 586-599.
      Cao, L., Shen, J. M., Nie, Z. L., et al., 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983 (in Chinese with English abstract).
      Cao, S. K., Cao, G. C., Feng, Q., et al., 2017. Alpine Wetland Ecosystem Carbon Sink and Its Controls at the Qinghai Lake. Environmental Earth Sciences, 76(5): 210. https://doi.org/10.1007/s12665-017-6529-5
      Chai, X., Li, Y. N., Duan, C., et al., 2018. CO2 Flux Dynamics and Its Limiting Factors in the Alpine Shrub-Meadow and Steppe-Meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 42(1): 6-19 (in Chinese with English abstract). doi: 10.17521/cjpe.2017.0266
      Cheng, G. D., Li, X., 2015. Integrated Research Methods in Watershed Science. Science China Earth Sciences, 58(7): 1159-1168. https://doi.org/10.1007/s11430-015-5074-x
      Guo, H., Li, S. E., Wong, F. L., et al., 2021. Drivers of Carbon Flux in Drip Irrigation Maize Fields in Northwest China. Carbon Balance and Management, 16(1): 12. https://doi.org/10.1186/s13021-021-00176-5
      Le Quéré, C., Raupach, M. R., Canadell, J. G., et al., 2009. Trends in the Sources and Sinks of Carbon Dioxide. Nature Geoscience, 2: 831-836. https://doi.org/10.1038/ngeo689
      Li, Y. N., Sun, X. M., Zhao, X. Q., et al., 2006. Seasonal Variations and Mechanism for Environmental Control of NEE of CO2 Concerning the Potentilla Fruticosa in Alpine Shrub Meadow of Qinghai-Tibet Plateau. Science in China (Series D: Earth Sciences), 49(2): 174-185. https://doi.org/10.1007/s11430-006-8174-9
      Liu, S. M., Che, T., Zhang, Y., et al., 2021. Comprehensive Observation Network of Qilian Mountains: Comprehensive Observation Network of Surface Processes in the Haihe River Basin (Eddy Correlator at Yakou Station-2020). National Tibetan Plateau Scientific Data Center, Beijing (in Chinese with English abstract).
      Liu, S. M., Xu, Z. W., Wang, W. Z., et al., 2011. A Comparison of Eddy-Covariance and Large Aperture Scintillometer Measurements with Respect to the Energy Balance Closure Problem. Hydrology and Earth System Sciences, 15(4): 1291-1306. https://doi.org/10.5194/hess-15-1291-201110.5194/hessd-7-8741-2010
      Lloyd, J., Taylor, J. A., 1994. On the Temperature Dependence of Soil Respiration. Functional Ecology, 315-323.
      Loescher, H. W., Law, B. E., Mahrt, L., et al., 2006. Uncertainties in, and Interpretation of, Carbon Flux Estimates Using the Eddy Covariance Technique. Journal of Geophysical Research: Atmospheres, 111(D21): D21S90. https://doi.org/10.1029/2005jd006932
      Ma, X. J., Wang, C. X., Dong, B. Y., et al., 2019. Carbon Emissions from Energy Consumption in China: Its Measurement and Driving Factors. Science of the Total Environment, 648: 1411-1420. https://doi.org/10.1016/j.scitotenv.2018.08.183
      Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      Richardson, A. D., Braswell, B. H., Hollinger, D. Y., et al., 2006. Comparing Simple Respiration Models for Eddy Flux and Dynamic Chamber Data. Agricultural and Forest Meteorology, 141(2/3/4): 219-234. https://doi.org/10.1016/j.agrformet.2006.10.010
      Solomon, S., Pierrehumbert, R. T., Matthews, D., et al., 2013. Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy. Climate Science for Serving Society. Springer, Dordrecht, 415-436. https://doi.org/10.1007/978-94-007-6692-1_15
      Thorsteinsson, T., Jóhannesson, T., Snorrason, Á., 2013. Glaciers and Ice Caps: Vulnerable Water Resources in a Warming Climate. Current Opinion in Environmental Sustainability, 5(6): 590-598. https://doi.org/10.1016/j.cosust.2013.11.003
      Wang, H. B., Li, X., Xiao, J. F., et al., 2019. Carbon Fluxes across Alpine, Oasis, and Desert Ecosystems in Northwestern China: The Importance of Water Availability. The Science of the Total Environment, 697: 133978. https://doi.org/10.1016/j.scitotenv.2019.133978
      Wang, J., Feng, L., Palmer, P. I., et al., 2020. Large Chinese Land Carbon Sink Estimated from Atmospheric Carbon Dioxide Data. Nature, 586: 720-723. https://doi.org/10.1038/s41586-020-2849-9
      Wang, J. F., Xu, C. D., 2017. Geodetector: Principle and Prospective. Acta Geographica Sinica, 72(1): 116-134 (in Chinese with English abstract).
      Wang, S. Y., Zhang, Y., Lü, S. H., et al., 2016. Biophysical Regulation of Carbon Fluxes over an Alpine Meadow Ecosystem in the Eastern Tibetan Plateau. International Journal of Biometeorology, 60(6): 801-812. https://doi.org/10.1007/s00484-015-1074-y
      Wang, X. F., Ma, M. G., Huang, G. H., et al., 2012. Vegetation Primary Production Estimation at Maize and Alpine Meadow over the Heihe River Basin, China. International Journal of Applied Earth Observation and Geoinformation, 17: 94-101. https://doi.org/10.1016/j.jag.2011.09.009
      Wang, Y. N., 2015. Remote Sensing Monitoring of Farmland Carbon Flux and Carbon Sequestration Capacity Based on Vorticity Correlation (Dissertation). Henan Polytechnic University, Jiaozuo (in Chinese with English abstract).
      Wei, D., Qi, Y. H., Ma, Y. M., et al., 2021. Plant Uptake of CO2 Outpaces Losses from Permafrost and Plant Respiration on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 118(33): e2015283118. https://doi.org/10.1073/pnas.2015283118
      Wutzler, T., Lucas-Moffat, A., Migliavacca, M., et al., 2018. Basic and Extensible Post-Processing of Eddy Covariance Flux Data with REddyProc. Biogeosciences, 15(16): 5015-5030. https://doi.org/10.5194/bg-15-5015-2018
      Xiao, J. F., Sun, G., Chen, J. Q., et al., 2013. Carbon Fluxes, Evapotranspiration, and Water Use Efficiency of Terrestrial Ecosystems in China. Agricultural and Forest Meteorology, 182/183: 76-90. https://doi.org/10.1016/j.agrformet.2013.08.007
      Xinhua News Agency, 2020. Xi Jinping Delivered an Important Speech at the General Debate of the 75th Session of the UN General Assembly (in Chinese).
      Yamamoto, S., Saigusa, N., Gamo, M., et al., 2005. Findings through the AsiaFlux Network and a View Toward the Future. Journal of Geographical Sciences, 15(2): 142-148. https://doi.org/10.1007/BF02872679
      Yang, P., Zhao, L. Q., Liang, X. R., et al., 2022. Response of Net Ecosystem CO2 Exchange to Precipitation Events in the Badain Jaran Desert. Environmental Science and Pollution Research, 29(24): 36486-36501. https://doi.org/10.1007/s11356-021-18229-0
      You, N. S., Meng, J. J., Zhu, L. K., 2018. Sensitivity and Resilience of Ecosystems to Climate Variability in the Semi-Arid to Hyper-Arid Areas of Northern China: A Case Study in the Heihe River Basin. Ecological Research, 33(1): 161-174. https://doi.org/10.1007/s11284-017-1543-3
      Yu, T., Zhang, Q., Sun, R., 2021. Spatial Representativeness of Gross Primary Productivity from Carbon Flux Sites in the Heihe River Basin, China. Remote Sensing, 13(24): 5016. https://doi.org/10.3390/rs13245016
      Zhang, Q., Sun, R., Jiang, G. Q., et al., 2016. Carbon and Energy Flux from a Phragmites Australis Wetland in Zhangye Oasis-Desert Area, China. Agricultural and Forest Meteorology, 230/231: 45-57. https://doi.org/10.1016/j.agrformet.2016.02.019
      Zhou, B. T., Qian, J., 2021. Changes of Weather and Climate Extremes in the IPCC AR6. Climate Change Research, 17(6): 713-718.
      Zhou, T. J., 2021. New Physical Science Behind Climate Change: What does IPCC AR6 Tell Us? Innovation (Cambridge (Mass)), 2(4): 100173. https://doi.org/10.1016/j.xinn.2021.100173
      曹乐, 申建梅, 聂振龙, 等, 2021. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273
      柴曦, 李英年, 段呈, 等, 2018. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子. 植物生态学报, 42(1): 6-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201801002.htm
      刘绍民, 车涛, 张阳, 等, 2021. 祁连山综合观测网: 黑河流域地表过程综合观测网(垭口站涡动相关仪-2020). 北京: 国家青藏高原科学数据中心.
      毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      王劲峰, 徐成东, 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201905015.htm
      王亚楠, 2015. 基于涡度相关的农田碳通量及固碳能力遥感监测(硕士学位论文). 焦作: 河南理工大学.
      新华社, 2020. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话. http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  425
    • HTML全文浏览量:  108
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-04
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回