• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于贝叶斯网络的隧道勘察设计期大变形灾害概率分级预测与应用研究

    张志强 范俊奇 曾鹏 石晓燕 李天斌 聂宇 张振宏

    张志强, 范俊奇, 曾鹏, 石晓燕, 李天斌, 聂宇, 张振宏, 2023. 基于贝叶斯网络的隧道勘察设计期大变形灾害概率分级预测与应用研究. 地球科学, 48(5): 1923-1934. doi: 10.3799/dqkx.2022.274
    引用本文: 张志强, 范俊奇, 曾鹏, 石晓燕, 李天斌, 聂宇, 张振宏, 2023. 基于贝叶斯网络的隧道勘察设计期大变形灾害概率分级预测与应用研究. 地球科学, 48(5): 1923-1934. doi: 10.3799/dqkx.2022.274
    Zhang Zhiqiang, Fan Junqi, Zeng Peng, Shi Xiaoyan, Li Tianbin, Nie Yu, Zhang Zhenhong, 2023. Probabilistic Classification Prediction of Tunnel Squeezing Based on Bayesian Network and Its Application during Investigation and Design Stage. Earth Science, 48(5): 1923-1934. doi: 10.3799/dqkx.2022.274
    Citation: Zhang Zhiqiang, Fan Junqi, Zeng Peng, Shi Xiaoyan, Li Tianbin, Nie Yu, Zhang Zhenhong, 2023. Probabilistic Classification Prediction of Tunnel Squeezing Based on Bayesian Network and Its Application during Investigation and Design Stage. Earth Science, 48(5): 1923-1934. doi: 10.3799/dqkx.2022.274

    基于贝叶斯网络的隧道勘察设计期大变形灾害概率分级预测与应用研究

    doi: 10.3799/dqkx.2022.274
    基金项目: 

    国家自然科学基金项目 U19A20111

    国家自然科学基金项目 42130719

    四川省科技厅科技计划项目 2021JDR0399

    详细信息
      作者简介:

      张志强(1996-),男,硕士研究生,主要从事岩土工程及地下工程领域的科研工作. E-mail:1299502491@qq.com

      通讯作者:

      范俊奇,E-mail: lyfjq@163.com

    • 中图分类号: P642

    Probabilistic Classification Prediction of Tunnel Squeezing Based on Bayesian Network and Its Application during Investigation and Design Stage

    • 摘要: 我国西南山区的铁路和公路隧道在遭遇高地应力、软岩和断层破碎带等不良地质条件时常发生挤压大变形灾害,带来巨大的经济损失.从隧道工程勘察设计期的实际需求出发,考虑该阶段预测指标的易获取性,以隧道埋深、围岩级别、等效洞径和岩石强度作为预测指标;搜集建立了以我国西南地区隧道工程为主的包含151组大变形案例的数据库.采用贝叶斯网络模型建立了不完整数据条件下隧道挤压大变形灾害概率分级预测模型,通过十折交叉验证确定模型准确率为76.52%.基于该模型研发了一款大变形分级预测软件平台,并在九绵高速公路白马隧道开展应用,预测准确率达71.11%.本研究成果可为我国西南地区类似地质环境条件下隧道勘察设计期大变形灾害预测提供技术支撑.

       

    • 图  1  隧道挤压大变形灾害案例数据库

      Fig.  1.  Database of tunnel squeezing disaster

      图  2  预测指标统计信息

      Fig.  2.  Statistical information of prediction indexes

      图  3  格拉布斯检验异常值

      Fig.  3.  Outliers identified by Grubbs test

      图  4  隧道勘察设计期大变形预测贝叶斯网络结构

      Fig.  4.  Bayesian network for tunnel squeezing prediction during investigation and design stage

      图  5  隧道勘察设计期大变形概率分级预测模型

      Fig.  5.  Probabilistic classification prediction model of tunnel squeezing during investigation and design

      图  6  白马隧道围岩大变形破坏特征

      Fig.  6.  Tunnel squeezing disasters observed in Baima tunnel

      图  7  大变形分级预测平台

      Fig.  7.  Tunnel squeezing classification prediction platform

      表  1  隧道大变形分级标准

      Table  1.   Classification of tunnel squeezing

      大变形等级 相对变形量 围岩变形特征
      无大变形 < 3% -
      轻微大变形 3%~5% 围岩级别Ⅳ ~ Ⅴ级;开挖后围岩位移较大,持续时间较长;一般支护开裂或破损较严重;围岩自稳时间短,
      以塑流型、弯曲型、滑移型变形模式为主,兼有剪切变形.
      中等大变形 5%~8% 围岩级别Ⅳ ~ Ⅴ级;开挖后围岩位移大,持续时间长;一般支护开裂或破损严重;洞底有隆起现象,
      围岩自稳时间很短,以塑流型、弯曲型变形模式为主.
      严重大变形 > 8% 围岩级别Ⅳ ~ Ⅴ级;开挖后围岩位移很大,持续时间很长;一般支护开裂或破损很严重;
      洞底有明显隆起现象,流变特征很明显;围岩自稳时间很短,以塑流型变形模式为主.
      下载: 导出CSV

      表  2  预测变量间的相关性系数

      Table  2.   Correlation coefficient of prediction indexes

      隧道埋深 围岩级别 岩石强度 等效洞径
      隧道埋深 1 0.237 0.199 0.160
      围岩级别 0.237 1 ‒0.026 0.372
      岩石强度 0.199 ‒0.026 1 0.017
      等效洞径 0.160 0.372 0.017 1
      下载: 导出CSV

      表  3  预测指标离散化与区间节点取值

      Table  3.   Discretization of prediction index and the corresponding interval node value

      指标 描述 区间样本数量
      大变形等级 无大变形(0) 42
      轻微大变形(1) 41
      中等大变形(2) 27
      严重大变形(3) 35
      围岩级别 Ⅲ级(3) 2
      Ⅳ级(4) 22
      Ⅴ级(5) 118
      岩石强度 硬岩(0) 6
      较软岩(1) 17
      软岩(2) 66
      极软岩(3) 21
      隧道埋深(m) 0~221 19
      221~390 39
      390~574 37
      > 574 28
      等效洞径(m) 0~8.25 28
      8.25~12 31
      12~13 42
      > 13 44
      注:括号内为离散化区间赋值.
      下载: 导出CSV

      表  4  白马隧道大变形预测指标信息与预测结果

      Table  4.   Prediction indexes and results of tunnel squeezing for Baima tunnel

      序号 里程 岩石强度 隧道埋深(m) 围岩级别 等效洞径(m) 预测大变形等级及其发生概率 实际大变形等级
      1 ZK40+010 较软岩 599 12 无大变形(60.9%) 轻微大变形
      2 ZK40+020 较软岩 608 12 无大变形(60.9%) 轻微大变形
      3 ZK40+030 较软岩 612 12 无大变形(60.9%) 轻微大变形
      4 ZK40+040 较软岩 622 12 无大变形(60.9%) 无大变形
      5 ZK40+050 较软岩 626 12 无大变形(60.9%) 无大变形
      6 ZK40+060 较软岩 630 12 无大变形(60.9%) 无大变形
      7 ZK40+070 较软岩 636 12 无大变形(60.9%) 无大变形
      8 ZK40+080 较软岩 642 12 无大变形(60.9%) 无大变形
      9 ZK40+090 较软岩 646 12 无大变形(60.9%) 无大变形
      10 ZK40+100 较软岩 655 12 无大变形(60.9%) 无大变形
      11 ZK40+110 较软岩 648 12 无大变形(60.9%) 无大变形
      12 ZK40+120 较软岩 645 12 无大变形(60.9%) 无大变形
      13 YK41+010 极软岩 930 12 中等大变形(43.6%) 中等大变形
      14 YK41+020 极软岩 940 12 中等大变形(43.6%) 中等大变形
      15 YK41+030 极软岩 945 12 中等大变形(43.6%) 中等大变形
      16 YK41+040 极软岩 950 12 中等大变形(43.6%) 中等大变形
      17 YK41+050 极软岩 960 12 中等大变形(43.6%) 轻微大变形
      18 ZK44+755 极软岩 660 12 中等大变形(43.6%) 无大变形
      19 ZK44+765 极软岩 655 12 中等大变形(43.6%) 中等大变形
      20 ZK44+775 极软岩 648 12 中等大变形(43.6%) 中等大变形
      21 ZK44+785 极软岩 646 12 中等大变形(43.6%) 中等大变形
      22 ZK44+795 极软岩 644 12 中等大变形(43.6%) 中等大变形
      23 ZK44+805 极软岩 635 12 中等大变形(43.6%) 中等大变形
      24 ZK44+815 极软岩 640 12 中等大变形(43.6%) 中等大变形
      25 ZK44+825 极软岩 642 12 中等大变形(43.6%) 强烈大变形
      26 ZK44+835 极软岩 644 12 中等大变形(43.6%) 中等大变形
      27 ZK44+845 极软岩 645 12 中等大变形(43.6%) 中等大变形
      28 ZK44+855 极软岩 640 12 中等大变形(43.6%) 中等大变形
      29 ZK44+865 极软岩 634 12 中等大变形(43.6%) 轻微大变形
      30 ZK44+876 软岩 622 12 轻微大变形(50.3%) 轻微大变形
      31 ZK44+895 软岩 615 12 轻微大变形(50.3%) 轻微大变形
      32 ZK44+905 软岩 603 12 轻微大变形(50.3%) 轻微大变形
      33 ZK44+915 软岩 598 12 轻微大变形(50.3%) 轻微大变形
      34 ZK44+925 软岩 588 12 轻微大变形(50.3%) 轻微大变形
      35 ZK44+935 软岩 583 12 轻微大变形(50.3%) 中等大变形
      36 ZK44+945 软岩 575 12 轻微大变形(50.3%) 中等大变形
      37 ZK44+975 软岩 555 12 轻微大变形(62.2%) 中等大变形
      38 ZK44+985 软岩 550 12 轻微大变形(62.2%) 无大变形
      39 ZK44+995 软岩 542 12 轻微大变形(62.2%) 轻微大变形
      40 ZK45+005 软岩 531 12 轻微大变形(62.2%) 轻微大变形
      41 ZK45+015 软岩 518 12 轻微大变形(62.2%) 轻微大变形
      42 YK44+780 极软岩 662 12 中等大变形(43.6%) 中等大变形
      43 YK44+790 极软岩 658 12 中等大变形(43.6%) 轻微大变形
      44 YK44+800 极软岩 656 12 中等大变形(43.6%) 轻微大变形
      45 YK44+810 极软岩 648 12 中等大变形(43.6%) 中等大变形
      注:一个里程桩号代表其前后共10 m的范围.
      下载: 导出CSV
    • Aydan, Ö., Akagi, T., Kawamoto, T., 1993. The Squeezing Potential of Rocks around Tunnels; Theory and Prediction. Rock Mechanics and Rock Engineering, 26(2): 137-163. doi: 10.1007/BF01023620
      Bhasin, R., Grimstad, E., 1996. The Use of Stress-Strength Relationships in the Assessment of Tunnel Stability. Tunnelling and Underground Space Technology, 11(1): 93-98. doi: 10.1016/0886-7798(95)00047-X
      Bhawani, S., Jethwa, J. L., Dube, A. K., et al., 1992. Correlation between Observed Support Pressure and Rock Mass Quality. Tunnelling and Underground Space Technology, 7(1): 59-74. doi: 10.1016/0886-7798(92)90114-W
      Bonett, D. G., Wright, T. A., 2000. Sample Size Requirements for Estimating Pearson, Kendall and Spearman Correlations. Psychometrika, 65(1): 23-28. doi: 10.1007/BF02294183
      China Railway No. 2 Engineer Group Co. Ltd., 2000. General Report and Sub-Item Report on Excavation and Support Technology of Poor Geological Tunnel (in Chinese).
      China State Bureau of Standards, 1985. Statistical Treatment and Interpretation of Data-Normal Sample Outlier Handling (in Chinese).
      Chen, S. K., Zhou, H., Liao, X., et al., 2022. Line Selection for Disaster Reduction of High Geostress Tunnel on the Sichuan-Tibet Railway. Earth Science, 47(3): 803-817 (in Chinese with English abstract).
      Chen, Y., Li, T., Zeng, P., et al., 2020. Dynamic and Probabilistic Multi-Class Prediction of Tunnel Squeezing Intensity. Rock Mechanics and Rock Engineering, 53(8): 3521-3542. doi: 10.1007/s00603-020-02138-8
      Cheng, Q. Y., 2010. Structure Entropy Weight Method to Confirm the Weight of Evaluating Index. Systems Engineering-Theory & Practice, 30(7): 1225-1228 (in Chinese with English abstract). http://www.sysengi.com/CN/article/downloadArticleFile.do?attachType=PDF&id=106597
      Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Series B: Statistical Methodology, 39(1): 1-22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
      Ding, Y. Z., Tan, Z. S., Ma, D., 2017. Study on Large Deformation Characteristics and Control Measures of Soft Rock Tunnel in Fault Zone with High Geostress. China Civil Engineering Journal, 50(S1): 129-134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TMGC2017S1023.htm
      Dwivedi, R. D., Singh, M., Viladkar, M. N., et al., 2013. Prediction of Tunnel Deformation in Squeezing Grounds. Engineering Geology, 161: 55-64. doi: 10.1016/j.enggeo.2013.04.005
      Fan, X. M., Rossiter, D. G., van Westen, C. J., et al., 2014. Empirical Prediction of Coseismic Landslide Dam Formation. Earth Surface Processes and Landforms (The Journal of the British Geomorphological Research Group), 39(14): 1913-1926. doi: 10.1002/esp.3585
      Feng, X., Jimenez, R., 2015. Predicting Tunnel Squeezing with Incomplete Data Using Bayesian Networks. Engineering Geology, 195: 214-224. doi: 10.1016/j.enggeo.2015.06.017
      Goel, R., Jethwa, J., Paithankar, A., 1995. Indian Experiences with Q and RMR Systems. Tunnelling and Underground Space Technology, 10(1): 97-109. doi: 10.1016/0886-7798(94)00069-W
      Hall, M., Frank, E., Holmes, G., et al., 2009. The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter, 11(1): 10-18. doi: 10.1145/1656274.1656278
      He, M. C., Jing, H. H., Sun, X. M., 2002. Soft Rock Engineering Mechanics. Science Press, Beijing (in Chinese).
      Hoek, E., 2001. Big Tunnels in Bad Rock. Journal of Geotechnical and Geoenvironmental Engineering, 127(9): 73575412. http://www.researchgate.net/publication/228583544_Big_tunnels_in_bad_rock_2000_Terzaghi_Lecture
      Hoek, E., Marinos, P., 2000. Predicting Tunnel Squeezing Problems in Weak Heterogeneous Rock Masses. Tunnels and Tunnelling International, 32(11): 45-51.
      Jimenez, R., Recio, D., 2011. A Linear Classifier for Probabilistic Prediction of Squeezing Conditions in Himalayan Tunnels. Engineering Geology, 121(3): 101-109. http://www.xueshufan.com/publication/2062993778
      Jiménez, R., Recio, D., 2011. Probabilistic Prediction of Squeezing in Tunneling under High-Stress Conditions. Taylor & Francis Group, London.
      Korb, K. B., Nicholson, A. E., 2011. Bayesian Artificial Intelligence (2nd Ed. ). CRC Press, Boca Raton.
      Li, T. B., Meng, L. B., Wang, L. S., 2016. Stability of High Ground Stress Tunnel and Prevention of Rock Burst and Large Deformation Disasters. Science Press, Beijing, 572 (in Chinese).
      Liu, Z. C., Zhu, Y. Q., Li, W. J., et al., 2008. Mechanism and Classification Criterion for Large Deformation of Squeezing Ground Tunnels. Chinese Journal of Geotechnical Engineering, 30(5): 690-697 (in Chinese with English abstract). http://www.researchgate.net/publication/282736099_Mechanism_and_classification_criterion_for_large_deformation_of_squeezing_ground_tunnels
      Mahdevari, S., Torabi, S. R., 2012. Prediction of Tunnel Convergence Using Artificial Neural Networks. Tunnelling and Underground Space Technology, 28: 218-228. doi: 10.1016/j.tust.2011.11.002
      Pearl, J., 1985. Bayesian Netwcrks: A Model CF Self- Activated Memory for Evidential Reasoning. Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, 15-17.
      Ren, Y., Li, T. B., 2011. Application of Large Deformation Forecast Method for Surrounding Rocks Based on Hierarchical Analysis and Extension Theory. Modern Tunnelling Technology, 48(4): 6-12, 18 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6582.2011.04.002
      Saari, K., 1982. Analysis of Plastic Deformation (Squeezing) of Layers Intersecting Tunnels and Shafts in Rock (Dissertation). University of California, Berkeley.
      Singh, B., Goel, R. K., 1999. Rock Mass Classification: A Practical Approach in Civil Engineering. Elsevier, Amsterdam.
      Singh, D. P., Wood, D. A., Singh, V., et al., 2022. Impact of Particle Crush-Size and Weight on Rock-Eval S2, S4, and Kinetics of Shales. Journal of Earth Science, 33(2): 513-524. doi: 10.1007/s12583-021-1452-9
      Sun, Y., Feng, X. D., Yang, L. Q., 2018. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines. Advances in Civil Engineering, 2018: 4543984. http://en.cnki.com.cn/Article_en/CJFDTotal-JZSX201808085.htm
      Wang, X. R., Cai, S., Yang, W., et al., 2022. Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum. Earth Science, 47(4): 1483-1491 (in Chinese with English abstract).
      Xiong, Y. Y., Wu, X. Q., 2010. The Generalizing Application of Four Judging Criterions for Gross Errors. Physical Experiment of College, 23(1): 66-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DWSL201001023.htm
      Xu, L. S., Li, Y. L., Cheng, C. G., 2002. Judging of the Deformation-Cracking Type and Grade about Surrounding Rock of Highway Tunnel. Journal of Chongqing Jiaotong University, 21(2): 16-20 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=6323928
      Zhang, G. Z., Deng, J. H., Wang, D., et al., 2021. Mechanism and Classification of Tectonic-Induced Large Deformation of Soft Rock Tunnels. Advanced Engineering Sciences, 53(1): 1-12 (in Chinese with English abstract).
      Zhang, Z. D., 2003. Discussion and Study on Large Deformation of Tunnel in Squeezing Ground. Modern Tunnelling Technology, 40(2): 5-12, 40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDSD200302001.htm
      Zhao, Y., 2012. Study on Deformation Mechanism and Control Technology of Weak Rock Surrounding Tunnel (Dissertation). Beijing Jiaotong University, Beijing (in Chinese with English abstract).
      中铁二局集团有限公司, 2000. 不良地质隧道的开挖及支护技术研究总报告及分项报告.
      中国国家标准局, 1985. 数据的统计处理和解释-正态样本异常值处理.
      陈仕阔, 周航, 廖昕, 等, 2022. 川藏铁路高地应力隧道减灾选线. 地球科学, 47(3): 803-817.
      程启月, 2010. 评测指标权重确定的结构熵权法. 系统工程理论与实践, 30(7): 1225-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201007012.htm
      丁远振, 谭忠盛, 马栋, 2017. 高地应力断层带软岩隧道变形特征与控制措施研究. 土木工程学报, 50(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S1023.htm
      何满潮, 景海河, 孙晓明, 2002. 软岩工程力学. 北京: 科学出版社.
      李天斌, 孟陆波, 王兰生, 2016. 高地应力隧道稳定性及岩爆、大变形灾害防治. 北京: 科学出版社, 572.
      刘志春, 朱永全, 李文江, 等, 2008. 挤压性围岩隧道大变形机理及分级标准研究. 岩土工程学报, 30(5): 690-697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200805014.htm
      任洋, 李天斌, 2011. 基于层次分析的可拓学理论围岩大变形预测方法及应用. 现代隧道技术, 48(4): 6-12, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201104003.htm
      王晓睿, 蔡松, 杨伟, 等, 2022. 既有建筑对极软岩地层中土压盾构的施工影响. 地球科学, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326
      熊艳艳, 吴先球, 2010. 粗大误差四种判别准则的比较和应用. 大学物理实验, 23(1): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSL201705028.htm
      徐林生, 李永林, 程崇国, 2002. 公路隧道围岩变形破裂类型与等级的判定. 重庆交通学院学报, 21(2): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200202004.htm
      张广泽, 邓建辉, 王栋, 等, 2021. 隧道围岩构造软岩大变形发生机理及分级方法. 工程科学与技术, 53(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202101001.htm
      张祉道, 2003. 关于挤压性围岩隧道大变形的探讨和研究. 现代隧道技术, 40(2): 5-12, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200302001.htm
      赵勇, 2012. 隧道软弱围岩变形机制与控制技术研究(博士学位论文). 北京: 北京交通大学.
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  585
    • HTML全文浏览量:  492
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-06
    • 网络出版日期:  2023-06-06
    • 刊出日期:  2023-05-25

    目录

      /

      返回文章
      返回