• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖南冷水江锡矿山尾矿库细菌富集群落与辉锑矿的相互作用及其群落演替

    王宇鑫 邬梦晓俊 王纬琦 李旻 雷静文 王红梅

    王宇鑫, 邬梦晓俊, 王纬琦, 李旻, 雷静文, 王红梅, 2023. 湖南冷水江锡矿山尾矿库细菌富集群落与辉锑矿的相互作用及其群落演替. 地球科学, 48(11): 4311-4320. doi: 10.3799/dqkx.2022.287
    引用本文: 王宇鑫, 邬梦晓俊, 王纬琦, 李旻, 雷静文, 王红梅, 2023. 湖南冷水江锡矿山尾矿库细菌富集群落与辉锑矿的相互作用及其群落演替. 地球科学, 48(11): 4311-4320. doi: 10.3799/dqkx.2022.287
    Wang Yuxin, Wu Mengxiaojun, Wang Weiqi, Li Min, Lei Jingwen, Wang Hongmei, 2023. Interaction between Stibnite and Microbial Communities Enriched from Tailings at Xikuangshan Coupling with Bacterial Community Succession. Earth Science, 48(11): 4311-4320. doi: 10.3799/dqkx.2022.287
    Citation: Wang Yuxin, Wu Mengxiaojun, Wang Weiqi, Li Min, Lei Jingwen, Wang Hongmei, 2023. Interaction between Stibnite and Microbial Communities Enriched from Tailings at Xikuangshan Coupling with Bacterial Community Succession. Earth Science, 48(11): 4311-4320. doi: 10.3799/dqkx.2022.287

    湖南冷水江锡矿山尾矿库细菌富集群落与辉锑矿的相互作用及其群落演替

    doi: 10.3799/dqkx.2022.287
    基金项目: 

    国家自然基金项目 41877320

    国家自然基金项目 42007306

    国家自然基金项目 42077220

    详细信息
      作者简介:

      王宇鑫(2001-),男,中南大学在读研究生,环境工程专业. E-mail:862975699@qq.com

      通讯作者:

      王红梅,E-mail: wanghmei04@163.com

    • 中图分类号: P593

    Interaction between Stibnite and Microbial Communities Enriched from Tailings at Xikuangshan Coupling with Bacterial Community Succession

    • 摘要: 为了从群落水平上探讨细菌对辉锑矿的溶解释放作用,从湖南锡矿山尾矿库尾矿渣中富集了细菌群落,开展了其与辉锑矿相互作用的实验研究.通过湿化学方法检测实验过程中pH和锑含量的变化、用16S rRNA高通量测序检测实验过程中细菌群落的变化,用X射线粉晶衍射仪(XRD)检测微生物与矿物相互作用后矿物相的变化,进而揭示群落水平上微生物与辉锑矿相互作用的机制及相互作用过程中细菌群落的演替.结果表明在好氧条件下细菌群落可以以乳酸钠为碳源进行异养生长,造成溶液pH的升高,进而导致辉锑矿的溶解.实验初期辉锑矿溶解释放的三价锑迅速被氧化成五价锑,但第9 d之后三价锑开始在溶液中积累,在实验结束时浓度比五价锑略高.溶液中五价锑的浓度在第12 d之前持续上升,之后下降,直至实验结束.溶液中锑含量的升高,对细菌群落进行了强烈的筛选作用.实验过程中细菌群落均以对As/Sb等多种重金属具有抗性的草螺菌属(Herbaspirillum)占绝对优势,但其相对丰度在第11 d之后有所下降.具有锑氧化能力的细菌类群如副球菌属(Paracoccus)、博斯氏菌属(Bosea)等在群落中的相对丰度较低,导致辉锑矿溶解释放出来的三价锑不能被完全氧化.XRD结果显示辉锑矿与细菌群落作用后生成了含有五价锑的锑酸钠,这与溶液中五价锑浓度的下降相吻合.该结果为进一步理解锡矿山自然环境中细菌群落对含锑矿物的溶解、锑的氧化、迁移和转化的影响提供了新的认识.

       

    • 图  1  微生物群落与辉锑矿相互作用过程中溶液理化参数随时间的变化

      a. pH变化;b. 总锑、三价锑和五价锑浓度变化;c. SO42-浓度变化

      Fig.  1.  Variation of physicochemical parameters in the solution versus time during the interaction between microbial communities and stibnite

      图  2  与辉锑矿相互作用过程中细菌群落的组成及多样性的变化

      细菌群落在纲水平(a)和属水平(b)上相对丰度随培养时间的变化;c. 微生物菌群α-多样性指数变化,其中橙色表示Chao1指数,蓝色表示香农‒威纳指数;d.与辉锑矿作用过程中微生物菌群群落的非度量多维尺度分析

      Fig.  2.  Variations of microbial composition and diversity indexes during the interaction between microbial communities and stibnite

      图  3  环境因子与细菌群落之间的冗余分析

      Fig.  3.  Redundancy analysis of microbial communities and environmental variables

      图  4  细菌群落与辉锑矿相互作用前后矿物相的XRD图谱

      a.未处理的辉锑矿粉末;b.实验组;c.对照组

      Fig.  4.  XRD spectrum of mineral phases before and after the interaction with microbial communities

      图  5  微生物/细菌群落对含锑矿物/固体废弃物的释放、氧化及次生矿物生成的作用机制

      Fig.  5.  Mechanism of the release, oxidation and re-deposition of antimony from Sb-bearing minerals and solid waste mediated by microorganisms/microbial communities

      表  1  微生物菌群与辉锑矿相互作用前后固体样品中矿物组成的XRD半定量结果

      Table  1.   Semi-quantification of mineral composition in the solution before and after the interaction with microbial communities

      Sb2S3 SiO2 NaSbO3
      原始辉锑矿粉末 97.2% 2.8% -
      实验组 83.8% 15.1% 1.1%
      对照组 96.1% 3.9% -
      下载: 导出CSV

      表  2  Bosea sp. AS-1、Paracoccus sp. XT0.6和菌群与辉锑矿相互作用有关参数的对比

      Table  2.   Parameter comparison of the interactions between stibnite with Bosea sp. AS-1, Paracoccus sp. XT0.6 and microbial communities

      菌株名称或菌群 体系结束时的pH 是否产生次生矿物 次生矿物名称及分子式 锑的释放率(%) 释放后锑的氧化率(%)
      XT0.6 9.3 水钠锑矿(NaSb(OH)6) 12.5 100
      AS-1 6.8 / 5.8 100
      富集菌群 9.1 锑酸钠(NaSbO3) 10.7 50.1
      下载: 导出CSV
    • Ali, A., Li, M., Su, J., et al., 2022. Brevundimonas diminuta Isolated from Mines Polluted Soil Immobilized Cadmium (Cd2+) and Zinc (Zn2+) through Calcium Carbonate Precipitation: Microscopic and Spectroscopic Investigations. Science of Total Environment, 813: 152668. https://doi.org/10.1016/j.scitotenv.2021.152668
      Biver, M., Shotyk, W., 2012. Stibnite (Sb2S3) Oxidative Dissolution Kinetics from pH 1 to 11. Geochimica et Cosmochimica Acta, 79: 127-139. https://doi.org/10.1016/j.gca.2011.11.033
      Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Gut Microbes, 7(5): 335-336. https://doi.org/10.1038/nmeth.f.303
      Edgar, R. C., 2013. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Frontiers in Plant Science, 10(10): 996-998. https://doi.org/10.1038/nmeth.2604
      Edgar, R. C., Haas, B. J., Clemente, J. C., et al., 2011. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics, 27(16): 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
      Fang, Q., Huang, T., Wang, N., et al., 2021. Effects of Herbaspirillum sp. P5-19 Assisted with Alien Soil Improvement on the Phytoremediation of Copper Tailings by Vetiveria zizanioides L. Environmental Science and Pollution Research, 28(45): 64757-64768.
      Fu, Z., Wu, F., Mo, C., et al., 2016. Comparison of Arsenic and Antimony Biogeochemical Behavior in Water, Soil and Tailings from Xikuangshan, China. Science of the Total Environment, 539: 97-104. https://doi.org/10.1016/j.scitotenv.2015.08.146
      Govarthanan, M., Lee, G. W., Park, J. H., et al., 2014. Bioleaching Characteristics, Influencing Factors of Cu Solubilization and Survival of Herbaspirillum sp. GW103 in Cu Contaminated Mine Soil. Chemosphere, 109: 42-48. https://doi.org/10.1016/j.chemosphere.2014.02.054
      Hamamura, N., Fukushima, K., Itai, T, 2013. Identification of Antimony- and Arsenic-Oxidizing Bacteria Associated with Antimony Mine Tailing. Microbes and Environments, 28(2): 257-263. https://doi.org/10.1264/jsme2.me12217
      Hamamura, N., Nakajima, N., Yamamura, S., 2020. Draft Genome Sequence of the Antimony-Oxidizing Pseudomonas sp. Strain SbOxS1, Isolated from Stibnite Mine Tailing Soil. Microbiology Resource Announcements, 9(49): e01218-20. https://doi.org/10.1128/MRA.01218-20
      He, M., Wang, X., Wu, F., et al., 2012. Antimony Pollution in China. Science of Total Environment, 421/422: 41-50. https://doi.org/10.1016/j.scitotenv.2011.06.009
      Jiang, N., Li, X. Q., Zhou, A. G., et al., 2020. Effect of pH Value and Fe(Ⅲ) on the Oxidative Dissolution of Stibnite. Bulletin of Geological Science and Technology, 39(4): 76-84 (in Chinese with English abstract).
      Li, J., Wang, Q., Li, M., et al., 2015. Proteomics and Genetics for Identification of a Bacterial Antimonite Oxidase in Agrobacterium tumefaciens. Environmental Science & Technology, 49(10): 5980-5989. https://doi.org/10.1021/es506318b
      Li, J., Wang, Q., Zhang, S. Z., et al., 2013. Phylogenetic and Genome Analyses of Antimony-Oxidizing Bacteria Isolated from Antimony Mined Soil. International Biodeterioration & Biodegradation, 76: 76-80. https://doi.org/10.1016/j.ibiod.2012.06.009
      Li, Y. B., Lin, H. Z., Gao, P., et al., 2022. Synergistic Impacts of Arsenic and Antimony Co-Contamination on Diazotrophic Communities. Microbial Ecology, 84(1): 44-58. https://doi.org/10.1007/s00248-021-01824-6
      Lialikova, N. N., 1974. Stibiobacter senarmontii: A New Microorganism Oxidizing Antimony. Iranian Journal of Public Health, 43(6): 941-948.
      Lu, X., Zhang, Y., Liu, C., et al., 2018. Characterization of the Antimonite- and Arsenite-Oxidizing Bacterium Bosea sp. AS-1 and Its Potential Application in Arsenic Removal. Journal of Hazardous Materials, 359: 527-534. https://doi.org/10.1016/j.jhazmat.2018.07.112
      Magoč, T., Salzberg, S. L, 2011. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics, 27(21): 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
      Multani, R. S., Feldmann, T., Demopoulos, G. P., 2016. Antimony in the Metallurgical Industry: A Review of Its Chemistry and Environmental Stabilization Options. Hydrometallurgy, 164: 141-153. https://doi.org/10.1016/j.hydromet.2016.06.014
      Praburaman, L., Park, S. H., Cho, M., et al., 2017. Significance of Diazotrophic Plant Growth-Promoting Herbaspirillum sp. GW103 on Phytoextraction of Pb and Zn by Zea Mays L. Environmental Science and Pollution Research, 24(3): 3172-3180.
      Quast, C., Pruesse, E., Yilmaz, P., et al., 2012. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Research, 41(D1): D590-D596. https://doi.org/10.1093/nar/gks1219
      Rathi, M., Yogalakshmi, K. N., 2021. Brevundimonas diminuta MYS6 Associated Helianthus annuus L. for Enhanced Copper Phytoremediation. Chemosphere, 263: 128195. https://doi.org/10.1016/j.chemosphere.2020.128195
      Rhine, E. D., Phelps, C. D., Young, L. Y., 2006. Anaerobic Arsenite Oxidation by Novel Denitrifying Isolates. Environmental Microbiology, 8(5): 899-908. https://doi.org/10.1111/j.1462-2920.2005.00977.x
      Sforza, E., Pastore, M., Sanchez, S. S., et al., 2018. Bioaugmentation as a Strategy to Enhance Nutrient Removal: Symbiosis between Chlorella protothecoides and Brevundimonas diminuta. Bioresource Technology Reports, 4: 153-158. https://doi.org/10.1016/j.biteb.2018.10.007
      Shi, Z., Cao, Z., Qin, D., et al., 2013. Correlation Models between Environmental Factors and Bacterial Resistance to Antimony and Copper. PLoS One, 8(10): e78533. https://doi.org/10.1371/journal.pone.0078533
      Singh, N., Marwa, N., Mishra, S. K., et al., 2016. Brevundimonas Diminuta Mediated Alleviation of Arsenic Toxicity and Plant Growth Promotion in Oryza Sativa L. Ecotoxicology and Environmental Safety, 125: 25-34. https://doi.org/10.1016/j.ecoenv.2015.11.020
      Singh, S., Kumar, V., Gupta, P., et al., 2021. The Synergy of Mercury Biosorption through Brevundimonas sp. IITISM22: Kinetics, Isotherm, and Thermodynamic Modeling. Journal of Hazardous Materials, 415: 125653. https://doi.org/10.1016/j.jhazmat.2021.125653
      Skeaff, J. M., Beaudoin, R., Wang, R., et al., 2013. Transformation/Dissolution Examination of Antimony and Antimony Compounds with Speciation of the Transformation/Dissolution Solutions. Integrated Environmental Assessment and Management, 9(1): 98-113. https://doi.org/10.1002/ieam.1339
      Sun, X. X., Kong, T. L., Häggblom, M. M., et al., 2020. Chemolithoautotropic Diazotrophy Dominates the Nitrogen Fixation Process in Mine Tailings. Environmental Science & Technology, 54(10): 6082-6093. https://doi.org/10.1021/acs.est.9b07835
      Sun, X. X., Li, B. Q., Han, F., et al., 2019. Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients. Microbial Ecology, 78(3): 589-602. https://doi.org/10.1007/s00248-019-01327-5
      Terry, L. R., Kulp, T. R., Wiatrowski, H., et al., 2015. Microbiological Oxidation of Antimony (Ⅲ) with Oxygen or Nitrate by Bacteria Isolated from Contaminated Mine Sediments. Applied and Environmental Microbiology, 81(24): 8478-8488. https://doi.org/10.1128/AEM.01970-15
      Torma, A. E., Gabra, G. G, 1977. Oxidation of Stibnite by Thiobacillus Ferrooxidans. Antonie van Leeuwenhoek, 43(1): 1-6. https://doi.org/10.1007/BF02316204
      Wang, N. N., Zhang, S. H., He, M. C, 2018. Bacterial Community Profile of Contaminated Soils in a Typical Antimony Mining Site. Environmental Science and Pollution Research, 25(1): 141-152. https://doi.org/10.1007/s11356-016-8159-y
      Wang, Q., Garrity, G. M., Tiedje, J. M., et al., 2007. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Mucosal Immunology, 73(16): 5261-5267. https://doi.org/10.1128/aem.00062-07
      Xiang, L., Liu, C., Liu, D., et al., 2022. Antimony Transformation and Mobilization from Stibnite by an Antimonite Oxidizing Bacterium Bosea sp. AS-1. Journal of Environmental Sciences (China), 111: 273-281. https://doi.org/10.1016/j.jes.2021.03.042
      Xiao, E. Z., Krumins, V., Dong, Y. R., et al., 2016. Microbial Diversity and Community Structure in an Antimony-Rich Tailings Dump. Applied Microbiology and Biotechnology, 100(17): 7751-7763. https://doi.org/10.1007/s00253-016-7598-1
      Zhang, G. P., Ouyang, X. X., Li, H. X., et al., 2016. Bioremoval of Antimony from Contaminated Waters by a Mixed Batch Culture of Sulfate-Reducing Bacteria. International Biodeterioration and Biodegradation, 115: 148-155. https://doi.org/10.1016/j.ibiod.2016.08.007
      江南, 李小倩, 周爱国, 等, 2020. pH值和氧化剂对硫化锑氧化溶解的影响机制. 地质科技通报, 39(4): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004010.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  274
    • HTML全文浏览量:  305
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-10
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回