• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    山西省袁家村铁矿成矿时代及成矿环境

    李家掀 胡天杨 刘磊

    李家掀, 胡天杨, 刘磊, 2023. 山西省袁家村铁矿成矿时代及成矿环境. 地球科学, 48(12): 4404-4426. doi: 10.3799/dqkx.2022.293
    引用本文: 李家掀, 胡天杨, 刘磊, 2023. 山西省袁家村铁矿成矿时代及成矿环境. 地球科学, 48(12): 4404-4426. doi: 10.3799/dqkx.2022.293
    Li Jiaxian, Hu Tianyang, Liu Lei, 2023. Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province. Earth Science, 48(12): 4404-4426. doi: 10.3799/dqkx.2022.293
    Citation: Li Jiaxian, Hu Tianyang, Liu Lei, 2023. Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province. Earth Science, 48(12): 4404-4426. doi: 10.3799/dqkx.2022.293

    山西省袁家村铁矿成矿时代及成矿环境

    doi: 10.3799/dqkx.2022.293
    基金项目: 

    国家自然科学基金面上项目 41972198

    详细信息
      作者简介:

      李家掀(1997-),男,博士,地质学专业.ORCID:0000-0002-0268-0180.E-mail:195011008@csu.edu.cn

      通讯作者:

      刘磊,教授,博士生导师,主要从事前寒武纪地质与矿床地球化学研究.E-mail: liu01@ustc.edu.cn

    • 中图分类号: P618.31

    Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province

    • 摘要: 为了进一步约束袁家村铁矿成矿年龄和成矿作用,揭示其对古海洋环境的指示,对采集自袁家村铁矿的BIFs样品进行碎屑锆石U-Pb年龄测定、全岩主微量元素分析及赤铁矿原位微量元素分析.其碎屑锆石U-Pb年龄可将袁家村铁矿沉积时代约束在2 200~2 235 Ma.主微量元素特征表明其受陆源碎屑干扰较小,成矿物质主要来源于海水与热液的混合,并且沉积过程中存在河流输入铁源的可能性.袁家村铁矿沉积在大氧化事件末期,其稀土配分模式特征存在明显的分组,同时存在负Ce异常和微弱的正Ce异常指示一个还原和氧化并存的环境,表明当时的古海洋环境特征为氧化还原分层的状态.说明大氧化事件后古海洋环境发生巨变,海水发生了一定程度的氧化,从原先单一的还原环境转变成了氧化还原分层的状态.

       

    • 图  1  山西吕梁区域地质简图(a)及其大地构造位置(b)

      a. 改编自万渝生(2000);b.据Wilde and Zhao(2005)

      Fig.  1.  Geological sketch map of Lüliang area in Shanxi Province (a) and its tectonic location (b)

      图  2  袁家村铁矿区域地质图(改编自姚培慧,1993)

      Fig.  2.  Geological map of the Yuanjiacun Fe oxide deposit (modified from Yao, 1993)

      图  3  样品野外及镜下照片

      a.袁家村铁矿采矿场,主要以赤铁矿相为主;b.袁家村铁矿赋存于吕梁群中,围岩主要为绢云母片岩;c.赤铁矿样品,可见有条带;d.富铁条带与富硅条带互层,单偏光;e.赤铁矿交代磁铁矿(Mt)假象分布,仍残存部分磁铁矿,反射光;f.赤赤铁矿(Hem)与石英(Qtz)构成主要矿物,可见有少量角闪石(Amp)与铁闪石(Gru),正交光;g.富铁条带中的赤铁矿交代磁铁矿,反射光;h.赤铁矿在石英边缘或被石英包裹,呈鲕状分布,可见有少量铁闪石(Gru);矿物缩写:Mt.磁铁矿;Hem.赤铁矿;Q.石英;Gru.铁滑石;Amp.角闪石

      Fig.  3.  Field photos and microscopic photos of samples

      图  4  袁家村样品碎屑锆石阴极发光图像

      Fig.  4.  Cathodoluminescence (CL) images for detrital zircons in the Yuanjiacun samples

      图  5  袁家村BIFs碎屑锆石年龄谱,年龄谱剔除了Th/U小于0.4及谐和度低于90%的数据点

      Fig.  5.  Binned frequency histogram of detrital zircon age for the Yuanjiacun BIFs, Th/U greater than 0.4 and the consistency higher than 90% of all data

      图  6  袁家村组碎屑锆石年龄谱,年龄谱剔除了Th/U小于0.4及谐和度低于90%的数据点

      其中n1采自变质砂岩,数据来源Wang et al.(2014a)n2原岩采自石英绢云母片岩,n3采自炭质板岩,n4采自长石石英岩,数据来源Liu et al.(2014)

      Fig.  6.  Binned frequency histogram of detrital zircon age for the Yuanjiacun Group, Th/U greater than 0.4 and the consistency higher than 90% of all data

      图  7  岩浆锆石与热液锆石微量元素判别图解

      a~d为4组年龄峰的碎屑锆石稀土元素,其中~2 520 Ma的数据包括 > 2 200 Ma的所有碎屑锆石(a),b~d分别为~1 908 Ma、~805 Ma、~261 Ma 3组年龄峰值的锆石数据,数据范围为1 200~2 200 Ma、600~1 200 Ma、 < 600 Ma,由于数据较多,图中只选取部分

      Fig.  7.  Discrimination diagrams for magmatic and hydrothermal zircons

      图  8  袁家村样品碎屑锆石稀土配分模式图(据Li,2005)

      Fig.  8.  Diagrams of REE distribution pattern of detrital zircon from Yuanjiacun sample (modified from Li, 2005)

      图  9  海水、热液及样品的REY配分模式图

      a.实心符号为氧化水体,空心为缺氧水体;NPDW.北太平洋2 400 m深度的海水样品(Alibo and Nozaki, 1999);Southern Ocean.南大西洋418 m、916 m和1 466 m深度海水的平均值(German et al., 1995),Black sea100 m、130 m和2 153 m深度的平均值(German,1991),Saanic Inlet萨尼奇湾深度215 m的海水(German,1989);b.高温热液与低温热液的稀土特征,数据来自Bau and Dulski(1996)Wheat(2002)Bolhar et al.(2004);c.袁家村稀土特征图,轻重稀土分异较大;d.袁家村稀土特征图,轻重稀土分异较小,曲线平缓;除了本文数据外,还加入了Wang et al.(2014b)一起讨论,图中用绿色线条表示,页岩标准化(PAAS)数值均为McLennan(1989)中的Post-Archean Australian Shale(PAAS)数值

      Fig.  9.  REY distribution patterns of seawater, hydrothermal solution and samples

      图  10  袁家村BIFs微量元素三端元混合模拟图

      a.Zr-Y/Ho判别图,区别碎屑物质对BIFs的干扰,来自Bolhar et al.(2004);b.Eu/Sm-Y/Ho判别图,大部分样品落在上陆壳、海水、热液三端元控制的区域,同时0.1%的热液参与就可以解释袁家村样品的Eu/Sm值;c.Eu/Sm-Sm/Yb判别图,用海水与热液两个端元的混合来限制样品,样品未落在曲线上表明存在其他的REY来源,可能为上陆壳;d.Sm/Yb-Y/Ho判别图,上陆壳端元未能较好的约束袁家村样品,这可能与陆源输入的方式有关.图据Alexander et al.(2008),高T流体、NPDW和上陆壳数据参考Bau and Dulski(1996)Alibo and Nozaki(1999),数据包括本文工作、Hou et al.(2014)Li et al.(2014)Wang et al.(2014b)

      Fig.  10.  Simulation diagrams of ternary mixing of trace elements in BIFS of the Yuanjiacun

      图  11  袁家村铁矿Pr-Ce判别图解

      数据来源除了本文数据外,还包括Hou et al.(2014)Li et al.(2014)Wang et al.(2014b);图据Bau and Dulski(1996)

      Fig.  11.  Pr-Ce discrimination diagram of the Yuanjiacun BIFs

      图  12  苏必利尔型铁建造REE+Y特征的时间变化趋势图解

      a.Pr异常(PrPAAS/(0.5(CePAAS+NdPAAS)));b.Ce异常(CePAAS/(0.5(PrPAAS+LaPAAS)));c.轻稀土与重稀土之比(Pr/Yb)PAAS;d.Y/Ho比率,灰色条条表示PAAS页岩数值范围,数据取自Planavsky et al.(2010)中的2.48 Ga(W-18-740A、KOEN-2、KU-9-537)与2.47 Ga(DDH75/1-466、RM8、RM9、DDH75/1),2.0 Ga为Frei et al.(2009)的19600-2845-3、19600-2845-1、19600-2960-4、19600-2960-2、19600-2964、25L88-13-3020-B、25L88-13-3020-A,2.3 Ga的样品为本文工作和Wang et al.(2014b)

      Fig.  12.  Diagrams of the temporal trend on superior-type iron formation

      表  1  袁家村铁矿BIF主微量元素分析结果(主量单位为%,微量为10-6)

      Table  1.   Major element (%) and rare earth element (10-6) compositions of the samples obtained from Yuanjiacun BIFs

      样品 15YJC3 15YJC5 15YJC6 15YJC7 15YJC9 15YJC11 15YJC12 15YJC13 15YJC15 15YJC17 15YJC18
      Rock-type BIF Specularite BIF Specularite BIF BIF Specularite Specularite BIF BIF BIF
      Location 10 10 10 10 10 10 10 10 2 2 2
      SiO2 54.1 63.0 47.7 42.4 37.3 43.8 50.9 45.5 56.2 48.0 58.6
      Al2O3 0.07 0.99 0.13 0.10 0.39 0.04 0.06 0.07 0.41 0.33 0.10
      Fe2O3 45.4 34.6 51.9 57.3 61.9 53.5 49.3 54.2 41.7 49.6 40.9
      MnO - 0.01 0.02 0.01 0.01 0.04 - - 0.02 0.01 0.01
      MgO 0.04 0.07 0.05 0.04 0.17 1.51 0.03 0.04 0.49 0.13 0.07
      CaO 0.09 0.16 0.03 0.05 0.04 1.92 0.02 0.03 0.07 0.64 0.03
      Na2O 0.02 0.02 0.02 0.02 0.01 0.03 0.01 0.02 0.04 0.03 0.02
      K2O - 0.02 - 0.01 - 0.01 - - 0.13 0.01 0.01
      TiO2 - 0.01 - - 0.01 - - - 0.01 0.01 -
      P2O5 0.02 0.09 0.01 0.04 0.06 0.13 0.02 0.02 0.02 0.48 0.04
      LOI 0.28 0.66 0.25 0.25 0.35 -1.02 0.08 0.08 0.82 0.98 0.29
      Total 100 99.7 100 100 100 100 100 100 99.9 100 100
      Ba 6.80 5.80 8.20 5.50 5.00 7.50 2.50 2.60 5.00 26.9 4.90
      Ce 3.50 14.5 3.30 2.50 4.30 2.70 2.00 2.50 2.60 9.90 1.10
      Cr 80.0 90.0 70.0 80.0 90.0 50.0 90.0 50.0 90.0 30.0 80.0
      Cs 0.08 0.11 0.01 0.04 0.08 0.17 - - 1.87 0.60 0.04
      Dy 1.20 1.98 0.58 0.45 1.28 0.45 0.50 0.54 0.22 2.27 0.58
      Er 0.91 1.19 0.31 0.32 1.08 0.34 0.43 0.35 0.17 1.46 0.45
      Eu 0.43 0.70 0.12 0.17 0.33 0.16 0.17 0.15 0.05 0.64 0.11
      Ga 1.10 2.40 0.60 1.00 1.10 0.60 1.00 1.10 1.50 1.10 1.20
      Gd 1.09 2.07 0.51 0.41 1.04 0.43 0.46 0.49 0.21 1.74 0.45
      Ho 0.30 0.39 0.11 0.11 0.32 0.13 0.12 0.16 0.05 0.51 0.13
      La 2.00 7.50 1.90 1.40 2.30 1.60 1.10 1.40 1.40 4.60 0.60
      Lu 0.14 0.14 0.06 0.05 0.18 0.06 0.07 0.08 0.06 0.17 0.06
      Nb 0.30 0.30 0.20 0.20 0.20 0.20 - - 0.20 0.40 0.20
      Nd 2.00 7.30 1.40 1.40 2.10 1.40 1.20 1.30 1.30 6.00 0.70
      Pr 0.41 1.91 0.35 0.36 0.54 0.34 0.23 0.30 0.32 1.34 0.14
      Rb 0.40 1.30 0.20 0.50 0.60 0.80 0.20 0.30 9.30 1.30 0.30
      Sm 0.51 1.64 0.31 0.31 0.62 0.31 0.27 0.31 0.17 1.34 0.31
      Sr 2.70 3.50 4.10 3.80 2.40 11.9 1.30 1.20 8.10 12.5 2.30
      Tb 0.22 0.31 0.10 0.07 0.19 0.08 0.07 0.06 0.03 0.28 0.09
      Th 0.10 0.21 - 0.06 0.18 - 0.05 0.06 0.22 0.10 0.07
      Tm 0.12 0.19 0.05 0.05 0.18 0.06 0.07 0.08 0.04 0.21 0.06
      U 0.72 0.69 0.25 0.62 0.28 - 0.55 0.90 0.07 0.10 0.21
      V 11.00 29.00 - 7.00 10.00 - 5.00 6.00 8.00 9.00 7.00
      W - 1.00 1.00 1.00 2.00 - 1.00 1.00 - 1.00 1.00
      Y 10.50 14.00 4.40 3.40 11.30 4.70 4.90 5.30 1.70 16.5 4.50
      Yb 0.77 1.09 0.31 0.24 0.93 0.35 0.41 0.47 0.22 0.95 0.45
      Zr 5.00 5.00 3.00 3.00 5.00 - 2.00 2.00 7.00 4.00 3.00
      Y/Ho 35.0 35.9 40.0 30.9 35.3 36.2 40.8 33.1 34.0 32.4 34.6
      Eu/Sm 0.84 0.43 0.39 0.55 0.53 0.52 0.63 0.48 0.29 0.48 0.35
      Sm/Yb 0.66 1.50 1.00 1.29 0.67 0.89 0.66 0.66 0.77 1.41 0.69
      (Y/Y*)PAAS 1.39 1.27 1.39 1.22 1.40 1.53 1.59 1.42 1.29 0.93 1.22
      (La/La*)PAAS 2.46 0.90 1.37 0.92 1.01 1.27 3.92 1.45 1.14 1.19 1.19
      (Ce/Ce*)PAAS 0.89 0.88 0.93 0.81 0.89 0.84 0.92 0.89 0.90 0.93 0.91
      (Pr/Pr*)PAAS 0.90 1.09 0.96 1.12 1.05 1.02 0.86 0.97 1.02 1.00 1.01
      (Eu/Eu*)PAAS 1.75 2.19 2.14 1.73 2.00 1.34 2.44 1.82 1.22 1.93 1.34
      (Gd/Gd*)PAAS 0.75 1.18 0.81 1.04 1.03 0.83 1.33 2.65 1.48 0.96 1.57
      (Sm/Yb)PAAS 0.34 0.76 0.51 0.66 0.34 0.45 0.33 0.34 0.39 0.64 0.72
      (Pr/Yb)PAAS 0.17 0.56 0.36 0.48 0.19 0.31 0.18 0.20 0.46 0.31 0.45
      (La/Yb)PAAS 0.19 0.51 0.45 0.43 0.18 0.34 0.20 0.22 0.47 0.20 0.36
      注:(La/La*)PAAS=(La)PAAS/(3×PrPAAS-2×NdPAAS); (Pr/Pr*)PAAS=2×(Pr)PAAS/(CePAAS+NdPAAS); (Ce/Ce*)PAAS=2×(Ce)PAAS/(LaPAAS+PrPAAS); (Y/Y*)PAAS=2×(Y)PAAS/(DyPAAS+HoPAAS),据Bolhar et al.(2004); (Eu/Eu*)PAAS=EuPAAS/SQRT(Sm×Gd)PAAS, 据Bau and Dulski(1996);所有页岩标准化(PAAS)数值均为McLennan(1989)中的Post-Archean Australian Shale(PAAS)数值.
      下载: 导出CSV

      表  2  袁家村铁矿赤铁矿微量元素分析结果(10-6)

      Table  2.   Trace element (10-6) compositions of the hematite in Yuanjiacun BIFs

      Element Mg Mn Al Ti V Cr Co Ga
      15YJC3-1 111 2.06 3 396 39.7 13.7 17.9 0.88 1.03
      15YJC3-2 157 4.71 162 32.4 14.0 19.8 1.71 0.69
      15YJC3-3 106 14.7 280 36.9 18.1 19.0 3.18 0.71
      15YJC3-5 123 2.01 88.6 36.9 15.0 3.60 1.43 0.55
      15YJC3-6 168 3.42 115 38.0 13.5 4.50 1.44 0.62
      15YJC3-7 130 5.20 95.9 34.1 13.3 5.04 1.28 0.63
      15YJC3-8 188 0.80 183 11.9 4.03 5.20 0.90 0.47
      15YJC3-9 112 2.01 260 16.8 5.07 4.47 0.97 0.63
      15YJC3-10 101 0.88 87.9 24.1 7.57 2.80 1.21 0.77
      15YJC9-1 338 25.2 97.3 49.0 6.37 2.50 0.40 0.48
      15YJC9-2 302 7.05 1658 30.5 5.23 23.1 1.08 0.64
      15YJC9-3 258 7.42 72.3 29.4 4.01 4.10 0.70 0.73
      15YJC9-4 396 10.3 328 33.5 4.11 7.73 2.03 0.20
      15YJC9-5 315 11.4 149 27.9 4.20 4.95 1.59 0.78
      15YJC9-6 473 6.51 145 27.5 4.06 21.0 1.15 0.68
      15YJC9-7 420 6.69 294 50.0 6.85 31.3 1.63 0.43
      15YJC9-8 483 19.4 78.1 34.1 5.21 13.2 1.28 0.45
      15YJC9-9 885 158 2538 52.6 7.37 31.5 9.55 0.47
      15YJC9-10 399 12.0 1081 39.7 5.89 59.4 2.09 0.60
      15YJC6-1 96.7 7.27 27.4 2.70 1.30 3.00 0.50 0.20
      15YJC6-2 100 15.4 21.6 3.81 1.39 5.00 0.87 0.28
      15YJC6-3 466 2.74 43.9 6.02 1.81 57.3 0.60 0.20
      15YJC6-4 936 3.43 179 9.61 1.82 11.0 0.94 0.30
      15YJC6-5 172 5.25 471 29.5 2.50 43.2 0.80 0.39
      15YJC6-6 47.2 7.24 71.1 2.15 0.85 8.88 0.59 0.17
      15YJC6-7 124 3.29 271 4.01 1.73 74.3 1.18 0.20
      15YJC6-8 349 0.82 73.9 4.75 1.58 7.64 0.50 0.20
      15YJC6-9 132 15.5 41.5 2.60 1.46 4.57 0.60 0.20
      15YJC6-10 149 7.27 115 2.90 1.75 24.4 0.70 0.20
      15YJC6-11 151 1.05 150 2.90 1.76 3.90 0.70 0.30
      15YJC6-12 153 90.8 498 2.90 1.50 36.2 1.22 0.36
      15YJC6-13 158 0.67 570 3.20 1.33 13.7 0.80 0.30
      15YJC6-14 140 2.85 36.2 2.80 1.39 7.57 0.60 0.20
      15YJC6-15 148 3.98 50.4 3.84 1.36 6.61 0.77 0.20
      15YJC6-16 113 25.6 135 6.51 1.61 5.74 0.62 0.20
      15YJC6-17 765 2.97 34.6 3.20 2.07 4.10 0.76 0.30
      下载: 导出CSV
    • Alexander, B.W., Bau, M., Andersson, P., et al., 2008. Continentally-Derived Solutes in Shallow Archean Seawater: Rare Earth Element and Nd Isotope Evidence in Iron Formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72(2): 378-394. https://doi.org/10.1016/j.gca.2007.10.028
      Alibo, D.S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. https://doi.org/10.1016/s0016-7037(98)00279-8
      Barley, M.E., Bekker, A., Krapež, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1-2): 156-171. https://doi.org/10.1016/j.epsl.2005.06.062
      Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55. https://doi.org/10.1016/0301-9268(95)00087-9
      Bau, M., Koschinsky, A., 2009. Oxidative Scavenging of Cerium on Hydrous Fe Oxide: Evidence from the Distribution of Rare Earth Elements and Yttrium between Fe Oxides and Mn Oxides in Hydrogenetic Ferromanganese Crusts. Geochemical Journal, 43(1): 37-47. https://doi.org/10.2343/geochemj.1.0005
      Bolhar, R., Kamber, B.S., Moorbath, S., et al., 2004. Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures. Earth and Planetary Science Letters, 222(1): 43-60. https://doi.org/10.1016/j.epsl.2004.02.016
      Dong, H., 2018. Study on Mineralogical and Geochemical Characteristics of Different Genesis Types of Hematite in the Middle-Lower Yangtze River Valley Metallogenic Belt (Dissertation). Hefei University of Technology, Hefei(in Chinese with English abstract).
      Elderfield, H.R., Whitfield, M., Burton, J.D., 1988. The Oceanic Chemistry of the Rare-Earth Elements. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 325(1583): 105-126. https://doi.org/10.1098/rsta.1988.0046
      Frei, R., Gaucher, C., Poulton, S.W., et al., 2009. Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes. Nature, 461: 250-253. https://doi.org/10.1038/nature08266
      Geng, Y.S., Wan, Y.S., Shen, Q.H., et al., 2000. Chronological Framework of the Early Precambrian Important Events in the Luliang Area, Shanxi Province. Acta Geologica Sinica, 74(3): 216-223(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2000.03.003
      Geng, Y.S., Wan, Y.S., Yang, C.H., 2003. The Palaeoproterozoic Rift-Type Volcanism in Luliangshan Area, Shanxi Province, and Its Geological Significance. Acta Geosicientia Sinica, 24(2): 97-104(in Chinese with English abstract).
      German, C.R., Elderfield, H., 1989. Rare Earth Elements in Saanich Inlet, British Columbia, a Seasonally Anoxic Basin. Geochimica et Cosmochimica Acta, 53(10): 2561-2571. https://doi.org/10.1016/0016-7037(89)90128-2
      German, C.R., Holliday, B.P., Elderfield, H., 1991. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553-3558. https://doi.org/10.1016/0016-7037(91)90055-a
      German, C.R., Masuzawa, T., Greaves, M.J., et al., 1995. Dissolved Rare Earth Elements in the Southern Ocean: Cerium Oxidation and the Influence of Hydrography. Geochimica et Cosmochimica Acta, 59(8): 1551-1558. https://doi.org/10.1016/0016-7037(95)00061-4
      Gross, G., 1980. A Classification of Iron Formations Based on Depositional Environments. Canadian Mineralogist, 18: 215-222. https://doi.org/10.1016/s0304-3991(79)80026-1
      Heimann, A., Johnson, C.M., Beard, B.L., et al., 2010. Fe, C, and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5 Ga Marine Environments. Earth and Planetary Science Letters, 294(1-2): 8-18. https://doi.org/10.1016/j.epsl.2010.02.015
      Hou, K.J., 2014. Formation Mechanism of Different Types of Banded Iron Formations of China: Constraints from Iron, Silicon, Oxygen and Sulfur Isotopes (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Hou, K.J., Li, Y.H., Gao, J.F., et al., 2014. Geochemistry and Si-O-Fe Isotope Constraints on the Origin of Banded Iron Formations of the Yuanjiacun Formation, Lüliang Group, Shanxi, China. Ore Geology Reviews, 57: 288-298. https://doi.org/10.1016/j.oregeorev.2013.09.018
      Huston, D.L., Logan, G.A., 2004. Barite, BIFs and Bugs: Evidence for the Evolution of the Earth's Early Hydrosphere. Earth and Planetary Science Letters, 220(1-2): 41-55. https://doi.org/10.1016/s0012-821x(04)00034-2
      Isley, A.E., Abbott, D.H., 1999. Plume-Related Mafic Volcanism and the Deposition of Banded Iron Formation. Journal of Geophysical Research: Solid Earth, 104(B7): 15461-15477. https://doi.org/10.1029/1999jb900066
      James, H.L., 1954. Sedimentary Facies of Iron-Formation. Economic Geology, 49(3): 235-293. https://doi.org/10.2113/gsecongeo.49.3.235
      Klein, C., Beukes, N.J., 1989. Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84(7): 1733-1774. https://doi.org/10.2113/gsecongeo.84.7.1733
      Konhauser, K.O., Planavsky, N.J., Hardisty, D.S., et al., 2017. Iron Formations: A Global Record of Neoarchaean to Palaeoproterozoic Environmental History. Earth-Science Reviews, 172: 140-177. https://doi.org/10.1016/j.earscirev.2017.06.012
      Li, C.M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 32(3): 161-174(in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2009.03.001
      Li, W.Q., Beard, B.L., Johnson, C.M., 2015. Biologically Recycled Continental Iron is a Major Component in Banded Iron Formations. Proceedings of the National Academy of Sciences of the United States of America, 112(27): 8193-8198. https://doi.org/10.1073/pnas.1505515112
      Li, Y.H., Hou, K.J., Wan, D.F., et al., 2014. Precambrian Banded Iron Formations in the North China Craton: Silicon and Oxygen Isotopes and Genetic Implications. Ore Geology Reviews, 57: 299-307. https://doi.org/10.1016/j.oregeorev.2013.09.011
      Liu, C.H., Zhao, G.C., Liu, F.L., et al., 2014. Geochronological and Geochemical Constraints on the Lüliang Group in the Lüliang Complex: Implications for the Tectonic Evolution of the Trans-North China Orogen. Lithos, 198-199: 298-315. https://doi.org/10.1016/j.lithos.2014.04.003
      Liu, C.H., Zhao, G.C., Liu, F.L., et al., 2021. The Timing of Crustal Thickening Constrained by Metamorphic Zircon U-Pb-Hf and Trace Element Signatures in the Lüliang Complex, Trans-North China Orogen. Precambrian Research, 367: 106440. https://doi.org/10.1016/j.precamres.2021.106440
      Liu, J.Z., Zhang, F.Q., Ouyang, Z.Y., et al., 2001. Geochemistry and Geochronology of Metamorphic Basic Volcanic Rocks in Luliangshanjiehekou Group, Shanxi Province. Science China: Earth Sciences, 31(2): 111-118(in Chinese).
      Liu, S.W., Pan, Y.M., Xie, Q.L., et al., 2005. Geochemistry of the Paleoproterozonic Nanying Granitic Gneisses in the Fuping Complex: Implications for the Tectonic Evolution of the Central Zone, North China Craton. Journal of Asian Earth Sciences, 24(5): 643-658. https://doi.org/10.1016/j.jseaes.2003.10.010
      Liu, S.W., Zhang, J., Li, Q.G., et al., 2012. Geochemistry and U-Pb Zircon Ages of Metamorphic Volcanic Rocks of the Paleoproterozoic Lüliang Complex and Constraints on the Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173-190. https://doi.org/10.1016/j.precamres.2011.07.006
      Liu, S.W., Zhao, G.C., Wilde, S.A., et al., 2006. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3-4): 205-224. https://doi.org/10.1016/j.precamres.2006.04.003
      McLennan, S.M., 1989. Chapter 7: Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Geochemistry and Mineralogy of Rare Earth Elements. Berlin, Boston, 169-200. https://doi.org/10.1515/9781501509032-010
      Nozaki, Y., Zhang, J., Amakawa, H., 1997. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 148(1-2): 329-340. https://doi.org/10.1016/s0012-821x(97)00034-4
      Ohmoto, H., Watanabe, Y., Yamaguchi, K.E., et al., 2006. Chemical and Biological Evolution of Early Earth: Constraints from Banded Iron Formations. Memoir of the Geological Society of America, 198: 291-331 https://doi.org/10.1130/2006.1198(17)
      Planavsky, N., Bekker, A., Rouxel, O.J., et al., 2010. Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited: New Perspectives on the Significance and Mechanisms of Deposition. Geochimica et Cosmochimica Acta, 74(22): 6387-6405. https://doi.org/10.1016/j.gca.2010.07.021
      Slack, J.F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255(1-2): 243-256. https://doi.org/10.1016/j.epsl.2006.12.018
      Tong, Y.P., 2019. Geological Characteristics and Chronology of the Yuanjiacun Iron Ore Deposit in Shanxi Province(Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Walker, R.J., Horan, M.F., Shearer, C.K., et al., 2004. Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion. Earth and Planetary Science Letters, 224(3-4): 399-413. https://doi.org/10.1016/j.epsl.2004.05.036
      Wan, Y.S., Geng, Y.S., Shen, Q.H., et al., 2000. Khondalite Series—Geochronology and Geochemistry of the Jiehekou Group in Lüliang Area, Shanxi Province. Acta Petrologica Sinica, 16(1): 49-58(in Chinese with English abstract).
      Wang, C.L., Zhang, L.C., Lan, C.Y., et al., 2014a. Petrology and Geochemistry of the Wangjiazhuang Banded Iron Formation and Associated Supracrustal Rocks from the Wutai Greenstone Belt in the North China Craton: Implications for Their Origin and Tectonic Setting. Precambrian Research, 255: 603-626. https://doi.org/10.1016/j.precamres.2014.08.002
      Wang, C.L., Zhang, L.C., Lan, C.Y., et al., 2014b. Rare Earth Element and Yttrium Compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang Area and Their Implications for the Great Oxidation Event (GOE). Science China: Earth Sciences, 57(10): 2469-2485. https://doi.org/10.1007/s11430-014-4896-2
      Wang, H.C., Miao, P.S., Kang, J.L., et al., 2020. New Evidence for the Formation Age of the Lüliang Group. Acta Petrologica Sinica, 36(8): 2313-2330 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.08.03
      Wang, J.Y., Li, Z.D., Li, G.Y., et al., 2020. Formation Age, Geochemical Signatures and Geological Significance of the Hejiao Iron Deposit, Inner Mongolia. Earth Science, 45(6): 2135-2151(in Chinese with English abstract).
      Wheat, C.G., Mottl, M.J., Rudnicki, M., 2002. Trace Element and REE Composition of a Low-Temperature Ridge-Flank Hydrothermal Spring. Geochimica et Cosmochimica Acta, 66(21): 3693-3705. https://doi.org/10.1016/s0016-7037(02)00894-3
      Wilde, S.A., Zhao, G.C., 2005. Archean to Paleoproterozoic Evolution of the North China Craton. Journal of Asian Earth Sciences, 24(5): 519-522. https://doi.org/10.1016/j.jseaes.2004.06.004
      Yao, P.H., 1993. China Iron Mine Chronicle. Metallurgical Industry Press, Beijing(in Chinese).
      Yu, J.H., Wang, D.Z., Wang, C.Y., et al., 1997. Geochemical Characteristics and Petrogenesis of the Early Proterozoic Bimodal Volcanic Rocks from Lyuliang Group, Shanxi Province. Acta Petrologica Sinica, 13(1): 59-70(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.1997.01.005
      Yu, J.H., Wang, D.Z., Wang, C.Y., et al., 2004. Paleoproterozoic Granitic Magmatism and Metamorphism in Middle Part of Lüliang Range, Shanxi Province. Geological Journal of China Universities, 10(4): 500-513(in Chinese with English abstract).
      Zhai, M.G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.01.004
      Zhai, M.G., 2011. Craton and the Formation of North China Land Block. Science China: Earth Sciences, 41(8): 1037-1046 (in Chinese).
      Zhang, L.C., Peng, Z.D., Zhai, M.G., et al., 2020. Tectonic Setting and Genetic Relationship between BIF and VMS in the Qingyuan Neoarchean Greenstone Belt, Northern North China Craton. Earth Science, 45(1): 1-16(in Chinese with English abstract).
      董赫, 2018. 长江中下游成矿带不同成因类型赤铁矿矿物学和地球化学特征研究(硕士学位论文). 合肥: 合肥工业大学.
      耿元生, 万渝生, 沈其韩, 等, 2000. 吕梁地区早前寒武纪主要地质事件的年代框架. 地质学报, 74(3): 216-223.
      耿元生, 万渝生, 杨崇辉, 2003. 吕梁地区古元古代的裂陷型火山作用及其地质意义. 地球学报, 24(2): 97-104.
      侯可军, 2014. 我国不同类型条带状硅铁建造形成机制的铁硅氧硫同位素地球化学制约(博士学位论文). 北京: 中国地质大学.
      李长民, 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 32(3): 161-174.
      刘建忠, 张福勤, 欧阳自远, 等, 2001. 山西吕梁山界河口群变质基性火山岩的地球化学及年代学研究. 中国科学(D辑), 31(2): 111-118.
      佟悦鹏, 2019. 山西袁家村铁矿矿床地质特征及年代学研究(硕士学位论文). 长春: 吉林大学.
      万渝生, 耿元生, 沈其韩, 等, 2000. 孔兹岩系: 山西吕梁地区界河口群的年代学和地球化学. 岩石学报, 16(1): 49-58.
      王惠初, 苗培森, 康健丽, 等, 2020. 吕梁群时代归属新证据. 岩石学报, 36(8): 2313-2330.
      王佳营, 李志丹, 李光耀, 等, 2020. 内蒙古合教BIF型铁矿的形成时代、地球化学特征及地质意义. 地球科学, 45(6): 2135-2151. doi: 10.3799/dqkx.2019.211
      姚培慧, 1993. 中国铁矿志. 北京: 冶金工业出版社.
      于津海, 王德滋, 王赐银, 等, 1997. 山西吕梁群和其主变质作用的锆石U-Pb年龄. 地质论评, 43(4): 403-408. doi: 10.3321/j.issn:0371-5736.1997.04.009
      于津海, 王德滋, 王赐银, 等, 2004. 山西吕梁山中段元古代花岗质岩浆活动和变质作用. 高校地质学报, 10(4): 500-513.
      张连昌, 彭自栋, 翟明国, 等, 2020. 华北克拉通北缘新太古代清原绿岩带BIF与VMS共生矿床的构造背景及成因联系. 地球科学, 45(1): 1-16. doi: 10.3799/dqkx.2019.224
    • dqkxzx-48-12-4404-附表.docx
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  465
    • HTML全文浏览量:  330
    • PDF下载量:  80
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-07
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回