Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism
-
摘要: 现有的基于数据驱动的滑坡位移预测模型大多是基于时间序列数据的单点建模,不能考虑整个边坡的变形相关性和滑坡变形的全局建模.为了克服这一缺点,本研究提出了一种基于时空注意(spatial-temporal attention,STA)机制的深度学习模型,该模型将卷积神经网络(convolutional neural network,CNN)与长短时记忆(long short-term memory)神经网络相结合.通过CNN和卷积注意力模块提取滑坡位移的空间变形特征,利用时间注意机制和LSTM模型从外部因素的时间序列数据中捕获重要的历史信息.注意力机制输出的注意权重值可以揭示滑坡变形的时间-空间特征.以三峡库区泡桐湾滑坡为例,对该模型的性能进行了验证.结果表明,STA-CNN-LSTM模型预测的均方根误差(RMSE)和平均绝对百分比误差(MAPE)与传统灰狼算法优化的支持向量机(GWO-SVM)模型相比分别下降了9.28%和13.88%.模型因子权重计算结果表明,在监测期内随着时间的推移,降雨对泡桐湾滑坡变形的影响逐渐增加,而库水位的影响逐渐减小.Abstract: Accurate displacement prediction plays an important role in landslide early warning. However, the majority of the existing data-driven models focus on single-point modeling based on time series data which cannot consider the deformation correlation in the whole slope. To overcome this drawback, this study proposed a spatial-temporal attention (STA) mechanism-based deep learning model which combined the convolutional neural network (CNN) with the long short-term memory (LSTM) neural network. A convolutional block attention module (CBAM) combined with CNN was developed to extract the spatial deformation characteristics of the slope. A temporal attention module and LSTM model were used to learn the significant historical information from the input external conditions time series data. The model also allowed to output the tempo-spatial attention weights to reveal the tempo-spatial characteristics of landslide deformation. The Paotongwan landslide with step-like behavior displacement in the Three Gorges Reservoir Area (TGRA) of China was used to validate the model performance. The results show that, the root mean square error (RMSE) and the mean average percentage error (MAPE) of the STA-CNN-LSTM model decreased 9.28% and 13.88%, respectively, compared with grey wolf optimization optimized support vector machine (GWO-SVM). The attention weight results calculated by STA-CNN-LSTM demonstrate that rainfall had a larger impact on the deformation of the Paotongwan landslide at the beginning of the monitoring while the influence of reservoir water level decreased with ongoing of the monitoring.
-
典型元古代环斑花岗岩均产于稳定的地盾, 指示特定的非造山构造环境及超大陆裂解事件, 在芬兰、瑞典、乌克兰等国外以及我国北京密云等地的前寒武地层中相继发现, 近年来受到国内外学者广泛关注和深入研究, 并对环斑花岗岩和环斑结构进行了定义(宋彪, 1992; Rämö and Haapala, 1995; Rämö et al., 1995; 郁建华等, 1996; Rämö and Haapala, 1996; Haapala and Rämö, 1999; Väino and Flodén, 1999).
狭义的环斑结构指的是像芬兰南部维堡环斑花岗岩体中的那种结构, 其特征是卵形的钾长石巨晶具有奥长石-中长石外壳, 也有一些卵球形的钾长石巨晶不具外壳; 钾长石和石英均有2期, 自形成早期的石英是高温的.广义的环斑结构则泛指钾长石巨晶具有斜长石外壳, 钾长石巨晶可以是卵球的, 也可以是自形的, 斜长石外壳可从钠长石(An6) 到中长石(An36).
我国学者卢欣祥等(1999)通过多年研究发现, 在秦岭-昆仑造山带, 沿古缝合带分布着相当数量的环斑或环斑状花岗岩体, 主要为与造山作用有关的印支期环斑花岗岩(卢欣祥等, 1996, 1999).近期, 柴达木北缘鹰峰环斑花岗岩的研究对于环斑花岗岩及秦岭造山带演化等具有重要意义(肖庆辉等, 2003).本文主要对鹰峰环斑花岗岩的环斑结构及地球化学特征进行了初步研究, 并探讨了其形成的构造环境.
1. 岩体地质特征及其时代
鹰峰环斑花岗岩位于柴达木盆地北缘, 柴北缘断裂带的北侧, 也就是柴达木地块与南祁连地体之间的柴北缘构造带, 形成时代为(1 772±33) Ma (肖庆辉等, 2003).鹰峰岩体出露面积约20多km2, 为复式杂岩体, 主要由环斑花岗岩及辉长岩脉组成, 二者构成典型的双峰式岩套.
2. 环斑结构特征
球斑-环斑长石主要为钾长石, 大小1~5 cm不等, 一般为2~3 cm, 含量达60%以上(实际面统计结果).钾长石斑晶边缘有一圈1~1.5 mm的斜长石环边, 形成较典型的环斑结构, 基质由细粒-微粒的石英组成, 受后期构造较明显, 石英有明显的重结晶及定向构造.
钾长石斑晶: 由几个颗粒(成分同为钾长石) 形成聚斑, 中心有一斜长石的内核(图 1a), 斑晶表面具不均匀的高岭土化, 条纹构造明显, 条纹分布且有规律.条纹主要为钠长石, 可见聚片双晶, 干涉色I级黄(薄片稍厚), 格子双晶发育.不同颗粒间有一圈厚度为0.01 mm左右的交代边.钾长石可见包裹有斜长石颗粒和石英颗粒(图 1b, 1c).局部可见钾长石和石英组成的文象交生结构, 钾长石受构造影响, 内部见有较多裂隙, 裂隙中充填有后期(或同期) 进入的钠长石.钠长石沿裂隙穿过2~3个颗粒.
钾长石边缘具斜长石环边(图 1d, 1e), 聚片双晶发育, 绢云母化、高岭土化较强(图 1e).
基质为细粒-微粒结构, 较大斜长石、石英颗粒基质无变形, 较小的石英、角闪石变质强, 具重结晶、定向排列(图 1f), 多平行于斑晶颗粒, 可能为钾长石斑晶在生长过程中对基质造成挤压而形成.
3. 环斑花岗岩地球化学特征
3.1 岩石化学
鹰峰环斑花岗岩以高钾为特征, w (K2O) 达5×10-2以上, w (Na2O) 为3.9×10-2, w (CaO) 为1.8×10-2, w (TiO2) 为0.88×10-2, w (K2O)/w (Na2O) > 1.3, w (K2O)/w (Na2O+K2O) > 0.57, 而w (SiO2) 含量并不高, 平均为67%, w (A)/w (CNK) 平均为0.94, w (A)/w (NK) 约为1.20, w (A)/w (NK)-w (A)/w (CNK) 图解表明属准铝质(图 2).表 1反映出, 本区环斑花岗岩岩石化学特征总体上与A型花岗岩特征相似.
表 1 鹰峰环斑花岗岩主元素组成Table Supplementary Table Major element compositions of rapakivi granites in Yingfeng3.2 微量元素和稀土元素
稀土总量较高, ∑REE达(565~585) ×10-6, Ce含量达210×10-6以上, Zr含量达265×10-6以上, 岩石Ga含量高达25×10-6以上, 10 000*Ga/Al高达3.4以上, 远远高出其他类型花岗岩, 属轻稀土富集型, 但Eu (0.75~4.3) ×10-6轻度亏损(表 2).稀土分布曲线并非呈特征的“海鸥”型, 在图 3 (Pearce, 1983) 上表现为较陡的右倾型, 轻、重稀土分异明显.
表 2 鹰峰环斑花岗岩稀土元素、微量元素组成Table Supplementary Table Rare earth and trace element compositions of rapakivi granites in Yingfeng微量元素富集Ba、U、Th、Ce、Hf、Sm, 亏损Sr、Ta、Nb、Zr、Y, 且不含F, 在微量元素蛛网图(图 4b) (Taylor and McLennan, 1985) 上呈明显的Ba、Rb、Th、Ce、Hf、Sm峰和Sr、Ta、Nb、Zr、Y谷, 显示了准铝质A型花岗岩的一般特征.w (Rb)/w (Sr) (0.17~0.6)、w (Rb)/w (Ba) (0.03~0.24) 很低, 反映了岩石的分异演化程度不高.
3.3 鹰峰环斑花岗岩具A型特征
分别对w (Na2O)-w (K2O) (4a) (Collins et al., 1982)、w (Rb)/w (Nb)-w (Y)/w (Nb) (图 5) (Whalen, 1987; Eyb, 1992)和w (La)-w (La)/w (Sm) (图 6) (Trenil, 1978) 进行图解, 结果是: w (Na2O)-w (K2O) 全部落入A型花岗岩区; 鹰峰环斑花岗岩w (La)/w (Sm)-w (La) 呈水平线, 具A型特征(I型花岗岩为倾斜线) 主要以分离结晶作用为主; w (Rb)/w (Nb)-w (Y)/w (Nb) 中样品全部落入A1亚区.上述表明本区花岗岩具A型特征, 且属于A1亚型.
另外Whalen (1987)认为w (Ga)/w (Al) 比值高是A型花岗岩的典型特征, 故鹰峰环斑花岗岩具典型A型花岗岩特征.
4. 构造环境分析
微量元素和稀土元素的地球化学行为, 对于研究花岗岩形成的构造环境具有重要意义. (1) w (K2O)-w (Na2O) (图 3)、w (Rb)/w (Nb)-w (Y)/w (Nb) (图 5)、w (La)/w (Sm)-w (La) (图 6) 图解和高Ga/Al比值表明本区花岗岩具典型A型花岗岩特征, 且属于A1亚型.指示其岩浆来源深, 碱度大, 岩体小, 多与碱性侵入岩、火山岩共生, 环状杂岩体, 大陆或大洋板块内地壳隆起或裂谷拉张环境产物(Trenil, 1978; Collins et al., 1982; Whalen, 1987; Eyb, 1992). (2) 由w (Ce)/w (Gd)-w (Ce)/w (Yb)和w (Gd)/w (Yb)-w (La)/w (Yb) 协变关系(图 7) (Pearce et al., 1984) 表明, 本区的红色环斑花岗岩和灰色环斑花岗岩具有较好的相关性, 说明它们在成因环境上互有联系. (3) w (Nb)-w (Y) (图 8a)和w (Rb)-w (Y+Nb) (图 8b) (Pearce et al., 1984) 图解表明, 本区样品均落入板内花岗岩区或两者的过渡区, 反映构造环境从火山弧向近似板内的方向演化, 即从较活动的挤压环境, 向温度的拉张环境演化.
5. 结论与讨论
(1) 鹰峰环斑花岗岩出露于柴达木地块与南祁连地体之间的柴北缘造山带. (2) 鹰峰环斑花岗岩的年龄为(1 772±33) Ma. (3) 结构特征: 钾长石斑晶由几个颗粒(成分同为钾长石) 形成聚斑, 中心有一斜长石内核, 斑晶表面具不均匀的高岭土化, 条纹构造明显, 条纹分布且有规律.基质由细粒-微粒的石英组成, 受后期构造较明显, 石英有明显的重结晶及定向构造. (4) 地球化学特征: 岩石化学组成以高钾为特征, A/CNK < 1, A/NK > 1, 属准铝质; 微量元素组成上富集Ba、U、Th、Ce、Hf、Sm, 亏损Sr、Ta、Nb、Zr、Y, Rb/Sr (0.17~0.6)和Rb/Ba (0.03~0.24) 很低, 岩石分异演化程度不高; 稀土元素: ∑REE、Ce、Zr含量高, Ga含量高达25×10-6以上, 远远高出其他类型花岗岩, 但Eu含量(0.75~4.3) ×10-6轻度亏损, 属轻稀土富集型. (5) 环斑花型花岗岩, 应是一种“干岩浆”, 通常产于挤压造山作用以后的区域拉伸构造环境, 往往是岩石去根作用的产物.通过对其地球化学特征综合分析表明, 鹰峰环斑花岗岩是发生在板内的一种岩浆作用, 是下地壳的麻粒岩受底侵或拆沉作用地幔上涌影响发生部分熔融, 然后经过分异演化形成了碱性的“干”岩浆, 并在后碰撞的拉伸构造环境下侵位(卢欣祥, 2000).同时伴随温度的降低, 钠质的斜长石从钾长石中出溶, 并迁移到钾长石的边沿, 形成了具环斑结构的A1型花岗岩.
上述表明, 鹰峰环斑花岗岩是具环斑结构和A1型花岗岩特征的典型的元古宙环斑花岗岩体, 岩浆组合具双峰式特征.同时, 鹰峰环斑花岗岩产出于柴达木地块与南祁连地体之间的柴北缘造山带, 可以视为中元古代全球超大陆裂解事件的标志(Xiao et al., 2003).
本文在撰写过程中得到张克信、朱云海等老师的热情帮助和支持, 在此一并致谢! -
表 1 不同模型计算的泡桐湾滑坡位移预测结果的误差
Table 1. Errors of the predicted results for the Paotongwan landslide obtained from different models
监测点 RMSE(mm) MAPE(%) GWO-SVM 1CNN-LSTM CNN-LSTM STA-CNN-LSTM GWO-SVM 1CNN-LSTM CNN-LSTM STA-CNN-LSTM WS01 13.16 11.33 10.76 9.06 4.49 4.32 4.10 2.88 WS02 11.57 11.01 12.17 10.13 3.05 3.25 3.81 2.96 WS03 13.52 12.31 13.47 13.56 5.66 4.96 5.48 5.45 WS04 14.18 14.13 11.21 11.18 4.46 5.82 4.75 4.37 WS05 16.87 16.25 16.12 16.17 9.75 7.53 8.15 6.90 WS06 14.09 18.29 13.89 15.02 6.74 9.94 5.83 6.81 平均值 13.90 13.89 13.10 12.61 5.69 5.97 5.35 4.90 -
Chen, C. Y., Chen, T. C. C., Yu, W. H., et al., 2005. Rainfall Duration and Debris-Flow Initiated Studies for Real-Time Monitoring. Environmental Geology, 47(5): 715-724. https://doi.org/10.1007/s00254-004-1203-0 Corsini, A., Mulas, M., 2017. Use of ROC Curves for Early Warning of Landslide Displacement Rates in Response to Precipitation (Piagneto Landslide, Northern Apennines, Italy). Landslides, 14(3): 1241-1252. https://doi.org/10.1007/s10346-016-0781-8 Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018 Deng, C. J., Wang, K. W., Yuan, Q. S., et al., 2015. Stability of Reservoir Slope under Repetitive Variation of Reservoir Water Level. Journal of Yangtze River Scientific Research Institute, 32(4): 96-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5485.2015.04.019 Ding, Y. K., Zhu, Y. L., Feng, J., et al., 2020. Interpretable Spatio-Temporal Attention LSTM Model for Flood Forecasting. Neurocomputing, 403: 348-359. https://doi.org/10.1016/j.neucom.2020.04.110 Guo, Z. Z., Chen, L. X., Gui, L., et al., 2020a. Landslide Displacement Prediction Based on Variational Mode Decomposition and WA-GWO-BP Model. Landslides, 17(3): 567-583. https://doi.org/10.1007/s10346-019-01314-4 Guo, Z. Z., Chen, L. X., Yin, K. L., et al., 2020b. Quantitative Risk Assessment of Slow-Moving Landslides from the Viewpoint of Decision-Making: A Case Study of the Three Gorges Reservoir in China. Engineering Geology, 273: 105667. https://doi.org/10.1016/j.enggeo.2020.105667 Hakim, W. L., Rezaie, F., Nur, A. S., et al., 2022. Convolutional Neural Network (CNN) with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon, South Korea. Journal of Environmental Management, 305: 114367. https://doi.org/10.1016/j.jenvman.2021.114367 Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 Huang, D., Gu, D. M., 2017. Influence of Filling-Drawdown Cycles of the Three Gorges Reservoir on Deformation and Failure Behaviors of Anaclinal Rock Slopes in the Wu Gorge. Geomorphology, 295: 489-506. https://doi.org/10.1016/j.geomorph.2017.07.028 Huang, D., Luo, S. L., Zhong, Z., et al., 2020. Analysis and Modeling of the Combined Effects of Hydrological Factors on a Reservoir Bank Slope in the Three Gorges Reservoir Area, China. Engineering Geology, 279: 105858. https://doi.org/10.1016/j.enggeo.2020.105858 Li, S. H., Wu, N., 2021. A New Grey Prediction Model and Its Application in Landslide Displacement Prediction. Chaos, Solitons & Fractals, 147: 110969. https://doi.org/10.1016/j.chaos.2021.110969 Li, X. Z., Kong, J. M., 2014. Application of GA-SVM Method with Parameter Optimization for Landslide Development Prediction. Natural Hazards and Earth System Sciences, 14(3): 525-533. https://doi.org/10.5194/nhess-14-525-2014 Li, Y. J., Xu, Q., He, Y. S., et al., 2017. An ARMA-(LASSO-ELM)-Copula Framework for Landslide Displacement Prediction and Threshold Computing of the Displacement of Step-Like Landslides. Chinese Journal of Rock Mechanics and Engineering, 36(S2): 4075-4084 (in Chinese with English abstract). Liu, Y. Q., Zhang, Q., Song, L. H., et al., 2019. Attention-Based Recurrent Neural Networks for Accurate Short-Term and Long-Term Dissolved Oxygen Prediction. Computers and Electronics in Agriculture, 165: 104964. https://doi.org/10.1016/j.compag.2019.104964 Luo, W. Q., Ji, Y. L., Wang, C. Y., et al., 2016. Research on Seemingly Unrelated Regressions Model of Landslide Displacement Prediction of Multiple Monitoring Points. Chinese Journal of Rock Mechanics and Engineering, 35(S1): 3051-3056 (in Chinese with English abstract). http://www.researchgate.net/publication/303919174_Research_on_seemingly_unrelated_regressions_model_of_landslide_displacement_prediction_of_multiple_monitoring_points Ma, H. T., Zhang, Y. H., Yu, Z. X., 2021. Research on the Identification of Acceleration Starting Point in Inverse Velocity Method and the Prediction of Sliding Time. Chinese Journal of Rock Mechanics and Engineering, 40(2): 355-364 (in Chinese with English abstract). Ma, X. Y., Wang, L. M., Qi, K. L., et al., 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752 (in Chinese with English abstract). Ma, Z. J., Mei, G., Prezioso, E., et al., 2021. A Deep Learning Approach Using Graph Convolutional Networks for Slope Deformation Prediction Based on Time-Series Displacement Data. Neural Computing and Applications, 33(21): 14441-14457. https://doi.org/10.1007/s00521-021-06084-6 Miao, F. S., Wu, Y. P., Xie, Y. H., et al., 2017. Research on Progressive Failure Process of Baishuihe Landslide Based on Monte Carlo Model. Stochastic Environmental Research and Risk Assessment, 31(7): 1683-1696. https://doi.org/10.1007/s00477-016-1224-8 Mirjalili, S., Mirjalili, S. M., Lewis, A., 2014. Grey Wolf Optimizer. Advances in Engineering Software, 69: 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 Ren, Q. B., Li, M. C., Li, H., et al., 2021. A Novel Deep Learning Prediction Model for Concrete Dam Displacements Using Interpretable Mixed Attention Mechanism. Advanced Engineering Informatics, 50: 101407. https://doi.org/10.1016/j.aei.2021.101407 Shang, M., Liao, F., Ma, R., et al., 2021. Quantitative Correlation Analysis on Deformation of Baijiabao Landslide between Rainfall and Reservoir Water Level. Journal of Engineering Geology, 29(3): 742-750 (in Chinese with English abstract). Song, K., Chen, L. Y., Liu, Y. L., et al., 2022. Dynamic Mechanism of Rain Infiltration in Deep-Seated Landslide Reactivate Deformation. Earth Science, 47(10): 3665-3676 (in Chinese with English abstract). Song, K., Yan, E. C., Zhu, D. P., et al., 2011. Base on Permeability of Landslide and Reservoir Water Change to Research Variational Regularity of Landslide Stability. Rock and Soil Mechanics, 32(9): 2798-2802 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.09.039 Su, X. J., Zhou, W. X., Li, C. J., et al., 2022. Interpretable Offshore Wind Power Output Forecasting Based on Long Short-Term Memory Neural Network with Dual-Stage Attention. Automation of Electric Power Systems, 46(7): 141-151 (in Chinese with English abstract). Wang, Z. W., Li, D. Y., 2005. Application of 3S Technology in Landslide Monitoring. Journal of Yangtze River Scientific Research Institute, 22(5): 33-36 (in Chinese with English abstract). Woo, S., Park, J., 2018. CBAM: Convolutional Block Attention Module. Proceedings of the European Conference on Computer Vision (ECCV), Munich, 3-19. Wu, Q., Zhou, C. B., Huang, F. M., et al., 2022. Optimization of the Landslide Identification Method Based on a Dual Attention Mechanism. Bulletin of Geological Science and Technology, 41(2): 246-253 (in Chinese with English abstract). Xia, M., Ren, G. M., Ma, X. L., 2013. Deformation and Mechanism of Landslide Influenced by the Effects of Reservoir Water and Rainfall, Three Gorges, China. Natural Hazards, 68(2): 467-482. https://doi.org/10.1007/s11069-013-0634-x Xu, C., Liu, B. G., Liu, K. Y., et al., 2011. Intelligent Analysis Model of Landslide Displacement Time Series Based on Coupling PSO-GPR. Rock and Soil Mechanics, 32(6): 1669-1675 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.06.013 Xu, F., Fan, C. J., Xu, X. J., et al., 2018. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model. Journal of Shanghai Jiao Tong University, 52(10): 1388-1395, 1416 (in Chinese with English abstract). Xu, S. L., Niu, R. Q., 2018. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China. Computers & Geosciences, 111: 87-96. https://doi.org/10.1016/j.cageo.2017.10.013 Yin, Y. P., Huang, B. L., Wang, W. P., et al., 2016. Reservoir-Induced Landslides and Risk Control in Three Gorges Project on Yangtze River, China. Journal of Rock Mechanics and Geotechnical Engineering, 8(5): 577-595. https://doi.org/10.1016/j.jrmge.2016.08.001 Yin, Y. P., Wang, H. D., Gao, Y. L., et al., 2010. Real-Time Monitoring and Early Warning of Landslides at Relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7(3): 339-349. https://doi.org/10.1007/s10346-010-0220-1 Zhang, K., Zhang, K., Bao, R., et al., 2021. Intelligent Prediction of Landslide Displacements Based on Optimized Empirical Mode Decomposition and K-Mean Clustering. Rock and Soil Mechanics, 42(1): 211-223 (in Chinese with English abstract). Zheng, J., 2006. Methods and Standards of Landslide Stability Evaluation. The Chinese Journal of Geological Hazard and Control, 17(3): 53-57 (in Chinese with English abstract). Zhou, C., Yin, K. L., Cao, Y., et al., 2018. Displacement Prediction of Step-Like Landslide by Applying a Novel Kernel Extreme Learning Machine Method. Landslides, 15(11): 2211-2225. https://doi.org/10.1007/s10346-018-1022-0 邓成进, 王孔伟, 袁秋霜, 等, 2015. 库水长期升降作用下库岸边坡稳定性研究. 长江科学院院报, 32(4): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201504022.htm 李骅锦, 许强, 何雨森, 等, 2017. "阶跃式" 滑坡位移预测及阈值分析的ARMA-(LASSO-ELM)-Copula模型. 岩石力学与工程学报, 36(S2): 4075-4084. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2041.htm 罗文强, 冀雅楠, 王淳越, 等, 2016. 多监测点滑坡变形预测的似乎不相关模型研究. 岩石力学与工程学报, 35(S1): 3051-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1052.htm 马海涛, 张亦海, 于正兴, 2021. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究. 岩石力学与工程学报, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm 马欣悦, 王梨名, 祁昆仑, 等, 2021. 基于多尺度循环注意力网络的遥感影像场景分类方法. 地球科学, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365 尚敏, 廖芬, 马锐, 等, 2021. 白家包滑坡变形与库水位、降雨相关性定量化分析研究. 工程地质学报, 29(3): 742-750. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103017.htm 宋琨, 陈伦怡, 刘艺梁, 等, 2022. 降雨诱发深层老滑坡复活变形的动态作用机制. 地球科学, 47(10): 3665-3676. doi: 10.3799/dqkx.2022.184 宋琨, 晏鄂川, 朱大鹏, 等, 2011. 基于滑体渗透性与库水变动的滑坡稳定性变化规律研究. 岩土力学, 32(9): 2798-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109043.htm 苏向敬, 周汶鑫, 李超杰, 等, 2022. 基于双重注意力LSTM神经网络的可解释海上风电出力预测. 电力系统自动化, 46(7): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT202207016.htm 王志旺, 李端有, 2005.3S技术在滑坡监测中的应用. 长江科学院院报, 22(5): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200505010.htm 吴琪, 周创兵, 黄发明, 等, 2022. 基于双重注意力机制的滑坡识别方法优化. 地质科技通报, 41(2): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202025.htm 徐冲, 刘保国, 刘开云, 等, 2011. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型. 岩土力学, 32(6): 1669-1675. 徐峰, 范春菊, 徐勋建, 等, 2018. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测. 上海交通大学学报, 52(10): 1388-1395, 1416. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm 张凯, 张科, 保瑞, 等, 2021. 基于优化经验模态分解和聚类分析的滑坡位移智能预测研究. 岩土力学, 42(1): 211-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101024.htm 郑静, 2006. 滑坡稳定性评价的方法及标准. 中国地质灾害与防治学报, 17(3): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200603014.htm -