Terrestrial Heat Flow in Zhejiang Province and Its Significance of Geothermal Resources
-
摘要: 为深入了解浙江区域地热背景,本文整理了浙江53眼中深层地热井的连续测温资料,并实测、收集相关岩石热导率数据110组,最终筛选并计算了23个新的大地热流值,取值区间在61.7~87.9 mW/m2,平均值73.7 mW/m2,高于全国均值. 结果表明,在北东向和北西向深大断裂的控制下,形成了浙东北嘉兴‒慈溪‒宁波、浙西南遂昌‒兰溪‒浦江高热流值地热单元和浙中安吉‒新昌‒温岭低热流值地热单元. 上述地热单元的分布与浙江莫霍面、居里面等地壳结构的特征面分布特征基本一致,与浙江大型白垩纪断陷盆地和新生代沉积盆地在空间上吻合度较高,与现代地壳运动和构造活动性密切相关.Abstract: In order to deeply understand the regional geothermal background in Zhejiang, the continuous temperature measurement data of 53 deep geothermal wells in Zhejiang are sorted out, and 110 groups of related rock thermal conductivity data are measured and collected. Finally, 23 new terrestrial heat flow values are screened and calculated, with an average 73.7 mW/m2 of 61.7- 87.9 mW/m2, which is higher than the national average. The results show that controlled by NE-trending and NW-trending deep faults, there are Jiaxing-Cixi-Ningbo high heat flow geothermal unit in northeast Zhejiang, Suichang-Lanxi-Pujiang high heat flow geothermal unit in southwestern Zhejiang and Anji-Xinchang-Wenling low heat flow geothermal unit in central Zhejiang. The distribution of the above geothermal units is highly consistent with that of large Cretaceous faulted basins and Cenozoic sedimentary basins, and the analysis may be closely related to modern crustal movement and tectonic activity.
-
表 1 大地热流值数据质量分类
Table 1. Data quality classification table of large geothermal flow values
分类 质量级别 分类依据 A类 高质量 测温曲线属稳态热传导型, 岩石热导率数据或来自测试段岩心样品测试结果, 或通过测区综合热物性柱状图确定;热流计算段深度区间一般大于50 m B类 较高质量 资料情况基本同上, 但或是测温段(或热流计算段)长度较小;或是岩石热导率样品数量不足, 岩石热导率数据采用邻区测试结果或文献值 C类 较差质量或不明 测量结果不确定性较大或热流测试参数报道不齐, 无法判定其真实质量类别 D类 局部异常 测试结果明显存在浅层或局部因素的干扰, 或测点位于明显地热异常区 表 2 本次新增地热钻孔大地热流计算及质量评价综合
Table 2. Comprehensive table of geothermal heat flow calculation and quality evaluation of newly added geothermal boreholes
序号 井号 位置 计算深度(m) 主要岩性 地温梯度(℃/m) 热导率(W/m/K) 实测热流(mW/m2) 数据质量评价 评级 1 嘉热2号 120°58′32″E
30°48′48″N2 000~2 155 O3c泥岩、含泥质粉细砂岩 2.33 3.21 74.79 测温曲线传导型,地温梯度井底段准稳态拟合,岩性变化大,热导率取值参考文献值,不确定性较大 C 2 湘家荡1号 120°48′09″E
30°48′27″N1 900~2 000 S2t含硅质粉砂质泥岩 2.40 3.20 76.80 测温曲线传导型,地温梯度井底段准稳态拟合,岩性变化大,热导率取值参考文献值,不确定性较大 C 3 湘家荡JDZ2井 120°48′56″E
30°48′40″N1 100~1 200 C2h碳酸盐岩 2.20 3.20 70.40 测温曲线传导型,地温梯度井底段准稳态拟合,岩性变化小,热导率取值参考邻区及文献值 B 4 闲林RT5井 119°59′29″E
30°15′15″N1 795~1 805 ∈2y灰岩 2.41 3.00 72.36 测温曲线浅部微对流,井深较深,井底段影响小,地温梯度井底段准稳态拟合,岩性变化小,热导率取值参考邻区及文献值 B 5 闲林RT2井 119°59′55″E
30°15′22″N1 400~1 450 ∈3hy条带状灰岩 2.38 2.80 66.75 测温曲线传导型,中深部弱对流影响,地温梯度井底段准稳态拟合,岩性变化大,热导率取值参考文献值,不确定性较大 C 6 昌化4号井 119°7′22″E
30°13′05″N1 360~1 404 K1h玻屑熔结凝灰岩 2.43 2.90 70.35 测温曲线传导型,局部受摩擦热影响,地温梯度井底段准稳态拟合,凝灰岩岩性差异大,热导率取值参考相同岩性实测值及文献值,不确定性较大 C 7 千岛湖地热井 119°3′03″E
29°40′59″N1 400~1 450 Z2l白云岩、泥质白云岩 2.67 3.00 80.10 测温曲线浅部微对流,井深较深,井底段影响小,地温梯度井底段准稳态拟合,岩性明确,热导率取值参考邻区及文献值 B 8 桐庐DR1 119°40′40″E
29°51′37″N1 400~1 500 S2t岩屑长石石英砂岩 2.00 3.50 70.00 测温曲线传导型,地温梯度井底段准稳态拟合,岩性矿物含量不确定,变化大,热导率取值参考文献值,不确定性较大 C 9 长热1井 121°13′13″E
30°17′10″N836~1 695 E3ch泥质
粉砂岩2.78 2.90 80.53 测温曲线传导型,地温梯度井底段准稳态拟合,岩性明确,热导率取值参考邻区实测值 B 10 慈热1井 121°12′02″E
30°14′45″N1 700~1 791 K1泥岩、
粉砂岩3.69 2.38 87.92 测温曲线传导型,地温梯度井底段准稳态拟合,岩性明确,热导率取值参考邻区及文献值 B 11 白金汉爵 121°14′14″E
30°09′16″N2 000~2 200 K1凝灰岩 2.30 3.30 75.90 测温曲线传导型,地温梯度井底段准稳态拟合,凝灰岩岩性变化大,热导率取值参考浅部相同岩性实测值,不确定性较大 C 12 湿热1井 121°09′16″E
30°19′31″N2 380~2 475 K1玻屑
凝灰岩3.14 2.70 84.64 测温曲线传导型,地温梯度井底段准稳态拟合,岩性明确,热导率取值参考邻区及文献值 B 13 象山爵溪 121°58′17″E
29°28′07″N2 554~2 606 K1花岗岩 2.77 3.15 87.35 测温曲线浅部微对流,井深较深,井底段影响小,地温梯度井底段准稳态拟合,热导率取值参考邻区及文献值 B 14 西岙-1井 121°40′16″E
29°44′44″N900~1 075 K1流纹岩 2.88 2.85 82.08 测温曲线浅部微对流,井深较深,井底段影响小,地温梯度井底段准稳态拟合,流纹岩样品较少,热导率取值不确定性较大 C 15 诸暨五泄 120°1′38″E
29°42′39″N1 400~1 500 K1流纹斑岩 2.70 3.20 86.40 测温曲线传导型,地温梯度井底段准稳态拟合,岩性矿物含量不清,参考值较多,热导率取值参考邻区及文献值 C 16 汤溪TXRT1 119°21′50″E
29°00′47″N1 400~1 800 K1凝灰岩 2.50 3.30 82.50 测温曲线传导型,地温梯度井底段准稳态拟合,凝灰岩岩性变化大,热导率取值参考浅部相同岩性实测值及文献值,不确定性较大 C 17 中信堂DR2 120°17′32″E
29°07′33″N800~850 K1流纹质玻屑熔结凝灰岩 2.59 3.30 85.47 测温曲线传导型,地温梯度井底段准稳态拟合,凝灰岩岩性变化大,热导率取值参考浅部相同岩性实测值及文献值,不确定性较大 C 18 中信堂DR1 120°17′24″E
29°07′24″N800~850 K1流纹质玻屑熔结凝灰岩 2.56 3.30 84.48 测温曲线传导型,地温梯度井底段准稳态拟合,凝灰岩岩性变化大,热导率取值参考浅部相同岩性实测值及文献值,不确定性较大 C 19 银坑ZK10103 120°45′33″E
29°00′06″N840~900 K1流纹质晶屑玻屑凝灰岩 2.15 3.23 69.44 测温曲线中段对流,井底段受影响较小,地温梯度井底段准稳态拟合,凝灰岩岩性变化大,热导率取值参考浅部相同岩性实测值及文献值,不确定性较大 C 20 永嘉南陈 120°57′11″E
28°26′15″N20~1 700 K1流纹质晶屑玻屑凝灰岩 1.76 3.50 61.67 测温曲线传导型,地温梯度井底段准稳态拟合,凝灰岩岩性变化大,热导率取值参考浅部相同岩性实测值及文献值,不确定性较大 C 21 湖山RT4孔 118°58′51″E
28°36′23″N750~800 K1钾长
花岗斑岩3.40 2.51 85.34 测温曲线传导型,地温梯度井底段准稳态拟合,岩性明确,热导率取值参考邻区及文献值 B 22 金66井 119°9′20″E
29°06′42″N1 300~1 400 C2碳酸盐岩 2.56 3.20 81.92 测温曲线传导型,地温梯度井底段准稳态拟合,岩性明确,热导率取值参考邻区及文献值 B 23 秀山XRT4井 122°10′27″E
30°10′14″N1 400~1 495 K1霏细斑岩 2.02 3.50 70.52 测温曲线传导型,地温梯度井底段准稳态拟合,岩性明确,热导率取值参考邻区及文献值 B 注:前人29组大地热流值数据中A级6个、B级10个、C级13个,具体数据不在本文中列出,可参见《中国大陆地区大地热流数据汇编第三版》(胡圣标等,2001). -
Chapman, D. S., Furlong, K. P., 1977. Continental Heat Flow⁃Age Relationships. Eos, Transactions AGU, 58: 1240-1251. He, C. Y., 1987. Approach to Curie Point Isothermal Surface of Zhejiang Province. Computing Techniques for Geophysical and Geochemical Exploration, 9(3): 256-259 (in Chinese with English abstract). He, L. J., Hu, S. B., Wang, J. Y., 2001. Characteristics of Thermal Structure of Lithosphere in the Eastern Mainland of China. Progress in Natural Science, 11(9): 966-969 (in Chinese with English abstract). doi: 10.3321/j.issn:1002-008X.2001.09.013 Hu, S. B., He, L. J., Wang, J. Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geology, 44(5): 611-626 (in Chinese with English abstract). Hu, S. B., Huang, S. P., 2015. Land heat Flow in China. In: Wang, J. Y., et al., eds., Geothermal Science and Its Application. Science Press, Beijing, 64-122 (in Chinese). Jiang, G. Z., Gao. P., Rao, S., et al., 2016. Compilation of Heat Flowdata in the China Continental Area (4rd Edition). Chinese Journal of Geology, 59(8): 2892-2910 (in Chinese with English abstract). Kong, X. R., Xiong, S. B., Zhou, W. X., 1995. New Progress on Deep Geophysical Research in Zhejing: Geological Sections of Tunxi⁃Wenzhou and Zhuji⁃Linhai and the Achivements of Their Regioralgravity. Geology of Zhejiang, 11(1): 50-62 (in Chinese with English abstract). Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract). http://www.researchgate.net/publication/341970193_Conclusion Li, H. T., 2015. Evaluation of Dry and Hot Rock Resources in Zhejiang Mainland. Commemorating the 120th Anniversary of the Birth of Geologist Zhu Tingyi-Proceedings of the 2015 Annual Meeting of Zhejiang Geological Society, Hangzhou (in Chinese). Li, W. W., Rao, S., Tang, X. Y., et al., 2014. Borehole Temperature Logging and Temperature Field in the Xiongxian Geothermal Field, Hebei Province. Chinese Journal of Geology, 49(3): 850-863 (in Chinese with English abstract). Pang, Z. H., Hu, S. B., Wang, S. J., et al., 2015. Land Heat Flow in China. In: Wang, J. Y., et al., eds., Geothermal Science and Its Application. Science Press, Beijing, 257-376 (in Chinese). Pang, Z. H., Luo, J., Cheng, Y. Z., et al., 2020. Evaluation of Geological Conditions for the Development of Deep Geothermal Energy in China. Earth Science Frontiers, 27(1): 134-151 (in Chinese with English abstract). Ruan, W. C., Zhong, C. Y., Jiang, W. S., et al., 1994. Report on the Latest Geothermal Flow Data in Zhejiang Province. Chinese Science Bulletin, 39(10): 920-923 (in Chinese). doi: 10.1360/csb1994-39-10-920 Wang, Y. B., Hu, S. B., Nie, D. G., et al., 2019. Is the Tan⁃Lu Fault Zone a Thermal Anomaly Belt: Constraints from Heat Flow in Its Southern Section. Chinese Journal of Geophysics, 62(8): 3078-3094 (in Chinese with English abstract). Xiong, L. P., Hu, S. B., Wang, J. Y., 1993. Terrestrial Heat Flow Values in Southeastern China. Chinese Journal of Geophysics, 36(6): 784-790 (in Chinese with English abstract). Xu, M., Zhao, P., Zhu, C. Q., et al., 2010. Borehole Temperature Logging and Terrestrial Heat Flow Distribution in Jianghan Basin. Chinese Journal of Geology, 45(1): 317-323 (in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2010.01.026 Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4): 1052-1060 (in Chinese with English abstract). Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro⁃Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract). Zhang, S. Q., Li, X. F., Song, J., et al., 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436 (in Chinese with English abstract). 何长友, 1987. 浙江省居里面初探. 物化探计算技术, 9(3): 256-259. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT198703010.htm 何丽娟, 胡圣标, 汪集旸, 2001. 中国东部大陆地区岩石圈热结构特征. 自然科学进展, 11(9): 966-969. doi: 10.3321/j.issn:1002-008X.2001.09.013 胡圣标, 何丽娟, 汪集旸, 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611-626. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm 胡圣标, 黄少鹏, 2015. 中国陆地大地热流. 汪集旸, 等, 编. 地热学及其应用. 北京: 科学出版社, 64-122. 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm 孔祥儒, 熊绍伯, 周文星, 1995. 浙江省深部地球物理研究新进展: 屯溪‒温州、诸暨‒临海地学断面及区域重力研究成果. 浙江地质, 11(1): 50-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDZ199501005.htm 旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128 李海亭, 2015. 浙江大陆地区干热岩资源评估. 杭州: 纪念地质学家朱庭祜先生诞辰120周年——浙江省地质学会2015年学术年会. 李卫卫, 饶松, 唐晓音, 等, 2014. 河北雄县地热田钻井地温测量及地温场特征. 地质科学, 49(3): 850-863. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403013.htm 庞忠和, 胡圣标, 王社教, 2015. 中国陆地大地热流. 汪集旸, 等, 编. 地热学及其应用. 北京: 科学出版社, 257-376. 庞忠和, 罗霁, 程远志, 等, 2020. 中国深层地热能开采的地质条件评价. 地学前缘, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm 阮万才, 钟朝旸, 蒋维三, 等, 1994. 浙江省最新大地热流数据报道. 科学通报, 39(10): 920-923. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199410015.htm 王一波, 胡圣标, 聂栋刚, 等, 2019. 郯庐断裂带是热异常带吗: 来自断裂带南段热流的约束. 地球物理学报, 62(8): 3078-3094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201908028.htm 熊亮萍, 胡圣标, 汪集旸, 1993. 中国东南地区实测热流值. 地球物理学报, 36(6): 784-790. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199306011.htm 徐明, 赵平, 朱传庆, 等, 2010. 江汉盆地钻井地温测量和大地热流分布. 地质科学, 45(1): 317-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001027.htm 徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm 徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401 张森琦, 李旭峰, 宋健, 等, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094 -