• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地震作用下抗滑桩—预应力锚索框架组合结构受力机制

    陈建峰 杜长城 陈思贤 石振明 彭铭

    陈建峰, 杜长城, 陈思贤, 石振明, 彭铭, 2022. 地震作用下抗滑桩—预应力锚索框架组合结构受力机制. 地球科学, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325
    引用本文: 陈建峰, 杜长城, 陈思贤, 石振明, 彭铭, 2022. 地震作用下抗滑桩—预应力锚索框架组合结构受力机制. 地球科学, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325
    Chen Jianfeng, Du Changcheng, Chen Sixian, Shi Zhenming, Peng Ming, 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325
    Citation: Chen Jianfeng, Du Changcheng, Chen Sixian, Shi Zhenming, Peng Ming, 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325

    地震作用下抗滑桩—预应力锚索框架组合结构受力机制

    doi: 10.3799/dqkx.2022.325
    基金项目: 

    国家重点研发项目 2019YFC1509700

    详细信息
      作者简介:

      陈建峰(1972-), 男, 教授, 博士生导师, 工学博士, 从事地质工程方向研究.ORCID: 0000-0001-8266-4705.E-mail: jf_chen@tongji.edu.cn

      通讯作者:

      杜长城, E-mail: 1161422811@qq.com

    • 中图分类号: P642

    Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading

    • 摘要:

      为了解抗滑桩—预应力锚索框架组合结构在地震作用下的受力机制,基于四川省东北部某滑坡治理工程,采用MIDAS/GTS有限元程序建立抗滑桩—预应力锚索框架数值模型,利用位移时程曲线法对加固边坡进行稳定安全系数计算,而后输入不同峰值地震加速度(peak ground accelerations,PGA)的Wolong地震波,分析了加固边坡的加速度响应、桩锚结构内力变化以及荷载分担规律.研究结果表明,加固边坡的稳定安全系数满足规范要求,在地震作用下其上部存在潜在浅层滑面,中部和下部存在潜在深层滑面,与静力条件下加固边坡的潜在滑面分布不同,这是加速度高程放大效应所致;随着输入地震波PGA增大,加速度高程放大效应明显加强,且抗滑桩桩身弯矩和剪力增大,但其最大值出现位置不变,桩身正、负弯矩最大值分别位于距桩顶约0.7L和0.4L处,最大正、负剪力分别位于距桩顶约0.9L和0.7L处,实际工程中需注意防范抗滑桩在滑面附近发生破坏;同时随着输入地震波PGA增大,桩锚承担的荷载逐渐增大,但抗滑桩分担的下滑力比例增大,而锚索分担的下滑力比例减小,故实际工程设计中不应固定桩锚荷载分担比例.

       

    • 图  1  滑坡概貌

      Fig.  1.  Overview of the landslide

      图  2  支护结构布置剖面

      Fig.  2.  Layout of retaining structures

      图  3  三维数值模型

      Fig.  3.  Three⁃dimensional numerical model

      图  4  输入地震波

      a.加速度时程曲线; b.Fourier谱

      Fig.  4.  Input seismic acceleration

      图  5  位移监测点布置示意图

      Fig.  5.  Layout of displacement monitoring points

      图  6  监测点位移时程曲线图

      a.折减系数k = 1.17时各监测点位移时程曲线;b.折减系数k = 1.18时各监测点位移时程曲线

      Fig.  6.  Monitoring point displacement versus time

      图  7  地震作用下边坡等效塑性应变云图

      k = 1.18,t = 50 s,PGA = 0.10 g

      Fig.  7.  Equivalent plastic strain contour of the slope

      图  8  加速度监测点布置示意图

      Fig.  8.  Layout of acceleration monitoring points

      图  9  各监测点PGA放大系数

      Fig.  9.  PGA amplification factor of monitoring points

      图  10  抗滑桩弯矩时程曲线(深度25 m处)

      Fig.  10.  Bending moment of anti⁃slip pile versus time(at 25 m depth)

      图  11  不同PGA下抗滑桩的内力变化

      a.弯矩图;b.剪力图;t=50 s

      Fig.  11.  Internal forces of anti-slip piles for different PGAs(t = 50 s)

      图  12  不同PGA下锚索最大轴力变化(t = 50 s)

      Fig.  12.  Maximum axial forces of anchor cables for different PGAs(t = 50 s)

      图  13  地震作用后加固边坡的等效塑性应变云图

      PGA = 0.20 g,t = 50 s,k = 1

      Fig.  13.  Equivalent plastic strain contour of the reinforced slope

      图  14  抗滑桩和锚索框架荷载分担示意图

      Fig.  14.  Schematic diagram of load sharing between anti⁃slip piles and anchor cables

      图  15  不同PGA下桩锚荷载的分担比(t = 50 s)

      Fig.  15.  Proportion of load shared by anti⁃slip piles and anchor cables for different PGAs(t = 50 s) $ {F}_{c}=\frac{1}{S}\sum \left[{T}_{{i}_{2}}+{T}_{{i}_{1}}\mathrm{t}\mathrm{a}\mathrm{n}\phi \right] $, (6)

      表  1  边坡岩土体计算参数

      Table  1.   Parameters of the slope materials

      材料 重度$ \gamma $(kN•m-3) 弹性模量E(MPa) 泊松比υ 内摩擦角φ(º) 粘聚力c(kPa)
      含碎石粉质粘土 19 24 0.35 15.5 23
      强风化泥质页岩 21 65 0.3 19 46
      中风化泥质页岩 23.5 450 0.25 29 120
      中风化粉砂质页岩 23.5 1 800 0.25 35 298
      下载: 导出CSV

      表  2  抗滑桩单元计算参数

      Table  2.   Parameters of the anti⁃slide piles

      材料 重度$ \gamma $(kN•m3) 弹性模量E(MPa) 泊松比υ 法向接触刚度En(MPa) 切向接触刚度Et(MPa)
      抗滑桩 24 30 000 0.2 1 800 200
      下载: 导出CSV

      表  3  锚索单元计算参数

      Table  3.   Parameters of the anchor cables

      材料 重度$ \gamma $(kN•m3) 弹性模量E(MPa) 泊松比υ 灌浆长度(m) 未灌浆长度(m) 预应力值(kN)
      锚索 78 195 000 0.2 8 27~52 400
      下载: 导出CSV

      表  4  Rayleigh阻尼参数

      Table  4.   Parameters of Rayleigh damping

      阻尼类型 质量参与系数α 刚度阻尼系数β 第一主振型周期T1(s) 第二主振型周期T2(s)
      瑞利阻尼 1.47 0.04 1.28 0.85
      下载: 导出CSV
    • Abi, E., Zheng, Y.R., Lai, J., et al., 2016. Study on Supporting Properties of Double-Row Piles with Anchor in Slide of Paifang Dam. Chinese Journal of Underground Space and Engineering, 12(4): 1033-1038(in Chinese with English abstract).
      Chen, J.F., Chen, S.X., Du, C.C., et al., 2021. Research on the Mechanical Mechanism of Composite Structure of Anti-Slide Pile and Anchor Cable Frame Beam. Journal of Railway Engineering Society, 38(5): 7-12(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2021.05.002
      Fu, X., Fan, G., Liu, F.C., et al., 2015. Shaking Table Tests on the Acceleration Response of an Anti-Dip Stratified Rock Slope with Composite Retaining Structure. China Earthquake Engineering Journal, 37(3): 823-828(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2015.03.0823
      Fu, X., Zhang, J.J., Zhou, L.R., 2017. Shaking Table Test of Seismic Response of Slope Reinforced by Combination of Anti-Slide Piles and Multi-Frame Foundation Beam with Anchor Cable. Rock and Soil Mechanics, 38(2): 462-470(in Chinese with English abstract).
      He, C., Tang, H.M., Shen, P.W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract).
      Lai, J., Li, A.H., Zheng, Y.R., et al., 2014. Dynamic Stability Analysis of Slopes Reinforced by Anchor Anti-Slide Pile. China Earthquake Engineering Journal, 36(4): 924-930(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2014.04.0924
      Lai, J., Liu, Y., Xin, J.P., et al., 2020. Shaking Table Test and Numerical Analysis on Reinforced Slope at Dali West Railway Station. Journal of Zhejiang University(Engineering Science), 54(5): 870-878(in Chinese with English abstract).
      Li, D.F., Wang, L.J., 2016. Synergism Analysis of Bedding Slope with Piles and Anchor Cable Support under Sine Wave Vehicle Load. Advances in Materials Science & Engineering. http://doi.org/10.1155/2016/5753970
      Li, H.B., Xiao, K.Q., Liu, Y.Q., 2007. Factor of Safety Analysis of Bedding Rock Slope under Seismic Load. Chinese Journal of Rock Mechanics and Engineering, 26(12): 2385-2394(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.12.002
      Ministry of Natural Resources of the People's Republic of China, 2020. Code for the Design of Landslide Stabilization: GB/T 38509-2020. China Standard Press, Beijing(in Chinese).
      Tang, Y., 2010. Seismic Damage Analysis of Slope Engineering Facilities in Wen Chuan Earthquake (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract).
      Zhang, L.M., Yue, J.G., Zhang, J.J., et al., 2020. Seismic Behavior of the Composite Retaining Structures in Case of Nuclear Power Plants in High Soft-Rock Slopes under Strong Earthquakes. China Earthquake Engineering Journal, 42(3): 742-750(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2020.03.742
      Zheng, Y.R., Ye, H.L., Huang, R.Q., et al., 2010. Study on the Seismic Stability Analysis of a Slope. Journal of Earthquake Engineering and Engineering Vibration, 30(2): 173-180(in Chinese with English abstract).
      Zhou, D.P., Zhang, J.J., Tang, Y., 2010. Seismic Damage Analysis of Road Slopes in Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(3): 565-576(in Chinese with English abstract).
      Zhu, X., Tang, Y., 2022. Failure Precursory Characteristics of Slope Model with Locked Section. Earth Science, 47(6): 1957-1968(in Chinese with English abstract).
      阿比尔的, 郑颖人, 赖杰, 等, 2016. 牌坊坝滑坡双排桩+锚索支护性能研究. 地下空间与工程学报, 12(4): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201604027.htm
      陈建峰, 陈思贤, 杜长城, 等, 2021. 抗滑桩-锚索框架组合结构受力机制研究. 铁道工程学报, 38(5): 7-12. doi: 10.3969/j.issn.1006-2106.2021.05.002
      付晓, 范刚, 刘飞成, 等, 2015. 组合支护结构作用下反倾层状岩质边坡加速度响应振动台试验研究. 地震工程学报, 37(3): 823-828. doi: 10.3969/j.issn.1000-0844.2015.03.0823
      付晓, 张建经, 周立荣, 2017. 多级框架锚索和抗滑桩联合作用下边坡抗震性能的振动台试验研究. 岩土力学, 38(2): 462-470. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702021.htm
      何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      赖杰, 李安红, 郑颖人, 等, 2014. 锚杆抗滑桩加固边坡工程动力稳定性分析. 地震工程学报, 36(4): 924-930. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201404025.htm
      赖杰, 刘云, 辛建平, 等, 2020. 大理西站支护边坡振动台试验及数值模拟. 浙江大学学报(工学版), 54(5): 870-878. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202005004.htm
      李海波, 肖克强, 刘亚群, 2007. 地震荷载作用下顺层岩质边坡安全系数分析. 岩石力学与工程学报, 26(12): 2385-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200712004.htm
      汤涌, 2010. 汶川大地震边坡工程设施震害分析(硕士学位论文). 成都: 西南交通大学.
      张卢明, 岳建国, 张建经, 等, 2020. 强震作用下核电厂顺层软岩高边坡组合支挡结构抗震性能研究. 地震工程学报, 42(3): 742-750. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202003020.htm
      郑颖人, 叶海林, 黄润秋, 等, 2010. 边坡地震稳定性分析探讨. 地震工程与工程振动, 30(2): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201002028.htm
      周德培, 张建经, 汤涌, 2010. 汶川地震中道路边坡工程震害分析. 岩石力学与工程学报, 29(3): 565-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003019.htm
      中华人民共和国自然资源部, 2020. 滑坡防治设计规范: GB/T 38509-2020. 北京: 中国标准出版社.
      朱星, 唐垚, 2022. 锁固段边坡模型破坏前兆特征. 地球科学, 47(6): 1957-1968. doi: 10.3799/dqkx.2021.204
    • 加载中
    图(15) / 表(4)
    计量
    • 文章访问数:  769
    • HTML全文浏览量:  492
    • PDF下载量:  81
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-01
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回