• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    古沉积盆地下切引发的泥石流侵蚀和波状流动耦合过程

    吕立群 周冠宇 马超 黄锋 皋子琪

    吕立群, 周冠宇, 马超, 黄锋, 皋子琪, 2023. 古沉积盆地下切引发的泥石流侵蚀和波状流动耦合过程. 地球科学, 48(9): 3389-3401. doi: 10.3799/dqkx.2022.329
    引用本文: 吕立群, 周冠宇, 马超, 黄锋, 皋子琪, 2023. 古沉积盆地下切引发的泥石流侵蚀和波状流动耦合过程. 地球科学, 48(9): 3389-3401. doi: 10.3799/dqkx.2022.329
    Lü Liqun, Zhou Guanyu, Ma Chao, Huang Feng, Gao Ziqi, 2023. Coupling Process of Debris Flow Erosion and Wavy Flow Caused by Incision on Paleosedimentary Basin. Earth Science, 48(9): 3389-3401. doi: 10.3799/dqkx.2022.329
    Citation: Lü Liqun, Zhou Guanyu, Ma Chao, Huang Feng, Gao Ziqi, 2023. Coupling Process of Debris Flow Erosion and Wavy Flow Caused by Incision on Paleosedimentary Basin. Earth Science, 48(9): 3389-3401. doi: 10.3799/dqkx.2022.329

    古沉积盆地下切引发的泥石流侵蚀和波状流动耦合过程

    doi: 10.3799/dqkx.2022.329
    基金项目: 

    国家自然科学基金项目 41907229

    第二次青藏高原综合科学考察项目 2019QZKK0903

    详细信息
      作者简介:

      吕立群(1986-),男,讲师,硕士生导师,主要从事山地灾害研究. ORCID: 0000-0002-4430-3594. E-mail: lvliqunqinghua@126.com

    • 中图分类号: P532

    Coupling Process of Debris Flow Erosion and Wavy Flow Caused by Incision on Paleosedimentary Basin

    • 摘要: 青藏高原的持续抬升导致黄河干流下切,带动支流大河坝河溯源下切,使得同德盆地由沉积区变为侵蚀区,泥石流开始群发,研究群发机理对古沉积盆地泥石流的防灾减灾意义重大.通过野外监测结合室内水槽试验,系统分析了同德盆地卵石夹砂沉积层的土力学性质,切沟发育阶段和泥石流的侵蚀、运动过程.卵石夹砂沉积层分选好,磨圆度高,无胶结,利于水流下切和物源能量的累积.大河坝河溯源下切,卵石夹砂物源能量往大河坝河上游传递,导致大河坝河不同河段的切沟发育阶段和泥石流发育趋势不同.卵石夹砂沉积层的厚度和下切深度决定了泥石流的侵蚀强度和发育趋势.水流下切、泥石流侵蚀、卵石夹砂分选和崩滑堵溃过程造成了泥石流龙头能量来源的间歇性和周期性,助推了龙头运动的波动性.

       

    • 图  1  同德盆地,黄河和大河坝河之间的位置关系(a);最大和最小高程(b;改自Craddock et al., 2010); 大河坝河分段:沉积段,过渡段,山区段(c)

      Fig.  1.  Tongde sedimentary basin, Yellow River and its tributary Daheba River (a); maximum and minimum elevation (b; modified by Craddock et al., 2010); three reaches: the sedimentary basin reach, the transition reach, and the mountain reach (c)

      图  2  泥石流沟的地貌特征

      a. 大河坝河河谷;b. 泥石流沟流域形状;c. 监测沟道;d. 监测断面;e. 泥石流扇;f. 洪积扇

      Fig.  2.  Geomorphic characteristics of debris flow gully

      图  3  试验模型

      a.侧视图;单位:m;b.断面图;c.龙头和龙身

      Fig.  3.  Experimental model

      图  4  大河坝河泥石流分布

      Fig.  4.  Debris flow distribution

      图  5  泥石流分布密度和沉积层厚度与河流下切深度之间的关系

      Fig.  5.  Debris flow density, sediment thickness and incision depth

      图  6  泥石流和山洪集水面积和沟道坡降

      Fig.  6.  Gully gradient vs. gully drainage area for debris-flow and non-debris-flow gullies

      图  7  野外监测泥石流龙头速度(拉格朗日法)

      Fig.  7.  Velocity of the head of the debris flow based on a Lagrangian analysis

      图  8  野外监测泥石流经过某断面(见图 2d)的速度和侵蚀率(欧拉法)

      Fig.  8.  Velocity of the body of the debris flow while passing through section (indicated in Fig.2d) based on an Eulerian analysis

      图  9  泥石流龙头和龙身洪峰高度

      Fig.  9.  Height of debris flow head and flood on the body

      图  10  泥石流龙头体积和密度

      Fig.  10.  Volume and density of debris flow head

      图  11  泥石流沟内崩滑体

      a. 暴发前崩滑体;b. 暴发后崩滑体;c. 暴发前堰塞体;d. 暴发后残留堰塞体

      Fig.  11.  Gully morphology and sediment availability in the gully

      图  12  泥石流侵蚀厚度

      Fig.  12.  Erosion thickness by debris flow

      图  13  大河坝河泥石流分布与坡降指数之间的关系

      Fig.  13.  Debris flow distribution and SL/K

      图  14  大河坝河泥石流剩余地形高度

      Fig.  14.  Excess topography vs. gully drainage area for debris-flow and flood gullies

      图  15  泥石流龙头高度、孔压和正压力

      Fig.  15.  The debris head height, pore pressure and total normal pressure

      图  16  泥石流龙头阻力、洪峰推力和龙头加速度

      Fig.  16.  Head resistance, push press by the body and acceleration of the head

      图  17  泥石流侵蚀下切和波状运动耦合示意

      Fig.  17.  Schematic diagram of coupling of debris flow incision and motion

    • Berger, C., McArdell, B. W., Schlunegger, F., 2011. Direct Measurement of Channel Erosion by Debris Flows, Illgraben, Switzerland. Journal of Geophysical Research: Earth Surface, 116(F1): F01002. https://doi.org/10.1029/2010JF001722
      Blöthe, J. H., Korup, O., Schwanghart, W., 2015. Large Landslides Lie Low: Excess Topography in the Himalaya-Karakoram Ranges. Geology, 43(6): 523-526. https://doi.org/10.1130/g36527.1
      Chen, H. K., Tang, H. M., Xian, X. F., et al., 2009. Studies and Harnessing for Debris Flow Disaster along the Sichuan-Tibet Highway in Sichuan Province. Journal of Disaster Prevention and Mitigation Engineering, 29(2): 126-132 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-2132.2009.02.002
      Chen, J., Cui, Z. J., Dai, F. C., et al., 2011. Genetic Mechanism of the Major Debris-Flow Deposits at Benzilan-Dari Segment, the Upper Jinsha River. Journal of Mountain Science, 29(3): 312-319 (in Chinese with English abstract).
      Craddock, W. H., Kirby, E., Harkins, N. W., et al., 2010. Rapid Fluvial Incision along the Yellow River during Headward Basin Integration. Nature Geoscience, 3(3): 209-213. https://doi.org/10.1038/ngeo777
      Cui, P., 2014. Atlas of Mountain Hazards and Soil Erosion in the Upper Yangtze. Science Press, Beijing (in Chinese).
      Cui, P., He, S. M., Yao, L. K., et al., 2011. Formation Mechanism and Risk Control in Wenchuan Earthquake of Mountain Disasters. Science Press, Beijing (in Chinese).
      Du, J., Wang, Z. Y., Li, Z. W., et al., 2014. A Preliminary Study on Spinulose Stream Networks in the Tongde Basin of the Yellow River Source. Journal of Arid Land Resources and Environment, 28(2): 129-135 (in Chinese with English abstract).
      Duan, S. S., Yao, L. K., 2019. The Influence of the Qinghai‑Tibet Plateau Uplift Rate on Hazard Inducing Environment of Glacier Debris Flow. 2019 Annual Meeting of Chinese Geoscience Union, Beijing (in Chinese).
      Fan, X. M., Dai, L. X., Zhong, Y. J., et al., 2021. Recent Research on the Diexi Paleo-Landslide: Dam and Lacustrine Deposits Upstream of the Minjiang River, Sichuan, China. Earth Science Frontiers, 28(2): 71-84 (in Chinese with English abstract).
      Feng, Q. Q., 2020. The Formation Environment and Disaster Trend Research with Debris Flow in Bingzhongluo-Pihe of Nujiang River (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Gao, Z. M., Ding, M. T., Yang, G. H., et al., 2021. Hazard Assessment of Debris Flow along Zire-Bomi Section of sichuan-Tibet Railway. Journal of Engineering Geology, 29(2): 478-485 (in Chinese with English abstract).
      Hu, X. W., Jin, T., Yin, W. Q., et al., 2020. The Characteristics of Forest Fire Burned Area and Susceptibility Assessment of Post-Fire Debris Flow in Jingjiu Township, Xichang City. Journal of Engineering Geology, 28(4): 762-771 (in Chinese with English abstract).
      Huang, J. C., Yang, S., Pan, H. L., et al., 2014. Debris Flow Characteristics in Bailong River Basin. Bulletin of Soil and Water Conservation, 34(1): 311–315 (in Chinese with English abstract).
      Imaizumi, F., Hayakawa, Y. S., Hotta, N., et al., 2017. Relationship between the Accumulation of Sediment Storage and Debris-Flow Characteristics in a Debris-Flow Initiation Zone, Ohya Landslide Body, Japan. Natural Hazards and Earth System Sciences, 17(11): 1923-1938. https://doi.org/10.5194/nhess-17-1923-2017
      Jiang, Z. X., 2002. Differential Distribution Regularity of Collapse-Landslides and Debris Flows along Palong Zangbu River Valley in Tibet. Geographical Research, 21(4): 495-503 (in Chinese with English abstract).
      Kean, J. W., McCoy, S. W., Tucker, G. E., et al., 2013. Runoff-Generated Debris Flows: Observations and Modeling of Surge Initiation, Magnitude, and Frequency. Journal of Geophysical Research: Earth Surface, 118(4): 2190-2207. https://doi.org/10.1002/jgrf.20148
      Korup, O., Densmore, A. L., Schlunegger, F., 2010. The Role of Landslides in Mountain Range Evolution. Geomorphology, 120(1-2): 77-90. https://doi.org/10.1016/j.geomorph.2009.09.017
      Kühni, A., Pfiffner, O. A., 2001. The Relief of the Swiss Alps and Adjacent Areas and Its Relation to Lithology and Structure: Topographic Analysis from a 250-m DEM. Geomorphology, 41(4): 285-307. https://doi.org/10.1016/S0169-555X(01)00060-5
      Lan, H. X., Peng, J. B., Zhu, Y. B., et al., 2022. Research on Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin. Science in China (Series D), 52(2): 199-221 (in Chinese).
      Li, J. J., Fang, X. M., Ma, H. Z., et al., 1996. Geomorphological and Environmental Evolution in the Upper Reaches of the Yellow River during the Late Cenozoic. Science in China (Series D), 26(4): 316-322 (in Chinese).
      Li, M. S., 2015. Research on Formation Conditions and Forecast the Dangerous Area of Debris Flow in the Zaduo County along Lancang River (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Li, X., Huang, J. C., Xu, H. J., et al., 2016. The Characteristics Analysis of Debris Flow Fan in Nujiang Alpine Canyon Region. Journal of Yunnan University (Natural Sciences Edition), 38(5): 750-757 (in Chinese with English abstract).
      Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984 (in Chinese with English abstract).
      Liang, X. Y., Xu, M. Z., Lü, L. Q., et al., 2020. Geomorphological Characteristics of Debris Flow Gullies on the Edge of the Qinghai-Tibet Plateau. Acta Geographica Sinica, 75(7): 1373-1385 (in Chinese with English abstract).
      Liu, Z. J., Sun, Y. J., 2007. Uplift of the Qinghai-Tibet Plateau and Formation, Evolution of the Yellow River. Geography and Geo-Information Science, 23(1): 79-82, 91 (in Chinese with English abstract).
      Luo, R. Z., Xu, Z. M., 2016. Basin Morphology Characteristics of the Giant Debris Flow in the Dongyuege Gully near the Nujiang River. Hydrogeology & Engineering Geology, 43(6): 141-147 (in Chinese with English abstract).
      Lü, L. Q., 2017. Research on the Initiation and Motion of Gully Debris Flows in Tibetan Plateau (Dissertation). Tsinghua University, Beijing (in Chinese with English abstract).
      Lü, L. Q., Cui, P., Wang, Z. Y., 2015. Experimental Study on the Intermittent Surges of Two-Phase Debris Flow. Journal of Sichuan University (Engineering Science Edition), 47(5): 67-72 (in Chinese with English abstract).
      Lü, L. Q., Wang, Z. Y., Cui, P., 2016a. Mechanism of the Intermittent Motion of Two-Phase Debris Flows Head and the Energy Character. Journal of Hydraulic Engineering, 47(8): 1035-1044 (in Chinese with English abstract).
      Lü, L. Q., Wang, Z. Y., Xu, M. Z., et al., 2016b. Geomorphic Characters of Debris Flow Fans along Nu River and the River Blocking Mechanisms. Journal of Hydraulic Engineering, 47(10): 1245-1252 (in Chinese with English abstract).
      Lü, L. Q., Wang, Z. Y., Cui, P., et al., 2017. Role of Bank Erosion on the Gully Debris Flow Initiation and Motion. Advances in Water Science, 28(4): 553-563 (in Chinese with English abstract).
      Lü, L. Q., Wang, Z. Y., Cui, P., et al., 2017. The Role of Bank Erosion on the Initiation and Motion of Gully Debris Flows. Geomorphology, 285: 137-151. https://doi.org/10.1016/j.geomorph.2017.02.008
      Lü, L. Q., Wang, Z. Y., Cui, P., et al., 2018. Role of Bank Erosion on the Unsteady Dynamics of Debris Flow Motion. Advances in Water Science, 29(2): 213-220 (in Chinese with English abstract).
      Lü, L. Q., Wang, Z. Y., Meng, Z., 2022. Coupling Process of Debris Flow Erosion and Wavy Flow Caused by Incision on Paleosedimentary Basin. Earth Science, Online (in Chinese with English abstract). http://kns.cnki.net/kcms/detail/42.1874.P.20220425.1150.006.html
      Lü, L. Q., Xu, M. Z., Wang, Z. Y., et al., 2021. Impact of Densely Distributed Debris Flow Dams on River Morphology of the Grand Canyon of the Nu River (Upper Salween River) at the East Margin of the Tibetan Plateau. Landslides, 18(3): 979-991. https://doi.org/10.1007/s10346-020-01536-x
      Lü, L. Q., Xu, M. Z., Wang, Z. Y., et al., 2022. A Field Investigation on Debris Flows in the Incised Tongde Sedimentary Basin on the Northeastern Edge of the Tibetan Plateau. Catena, 208: 105727. https://doi.org/10.1016/j.catena.2021.105727
      Mangeney, A., Roche, O., Hungr, O., et al., 2010. Erosion and Mobility in Granular Collapse over Sloping Beds. Journal of Geophysical Research: Earth Surface, 115(F3): F03040. https://doi.org/10.1029/2009JF001462
      Meng, X. M., Chen, G., Guo, P., et al., 2013. Research of Landslides and Debris Flows in Bailong River Basin: Progrss and Prospect. Marine Geology & Quaternary Geology, 33(4): 1-15 (in Chinese with English abstract).
      Moeyersons, J., Tréfois, P., Lavreau, J., et al., 2004. A Geomorphological Assessment of Landslide Origin at Bukavu, Democratic Republic of the Congo. Engineering Geology, 72(1-2): 73-87. https://doi.org/10.1016/j.enggeo.2003.06.003
      Moeyersons, J., Trefois, P., Nahimana, L., et al., 2010. River and Landslide Dynamics on the Western Tanganyika Rift Border, Uvira, D. R. Congo: Diachronic Observations and a GIS Inventory of Traces of Extreme Geomorphologic Activity. Natural Hazards, 53(2): 291-311. https://doi.org/10.1007/s11069-009-9430-z
      Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 457-466 (in Chinese with English abstract).
      Phan-Thien, N., Dudek, J, 1982. Pulsating Flow of a Plastic Fluid. Nature, 296(5860): 843-844. https://doi.org/10.1038/296843a0
      Pratt-Sitaula, B., Garde, M., Burbank, D. W., et al., 2007. Bedload-to-Suspended Load Ratio and Rapid Bedrock Incision from Himalayan Landslide-Dam Lake Record. Quaternary Research, 68(1): 111-120. https://doi.org/10.1016/j.yqres.2007.03.005
      Su, P. C., Wei, F. Q., 2014. Landslides and Debris Flow Hazards and Danger Zonation along the Lancang River. Resources Science, 36(2): 273-281 (in Chinese with English abstract).
      Suwa, H., Yamakoshi, T., 1999. Sediment Discharge by Storm Runoff at Volcanic Torrents Affected by Eruption. Zeitschrift Für Geomorphologie, 114: 63-88.
      Tang, C., 2005. Susceptibility Spatial Analysis of Debris Flows in the Nujiang River Basin of Yunnan. Geographical Research, 24(2): 178-185, 322 (in Chinese with English abstract).
      Tang, C., Huang, R. Q., Huang, D., et al., 2006. Impacts of Debris Flows on the Reservoir of a Hydropower Station in the Meigu River of Jinshajiang. Journal of Engineering Geology, 14(2): 145-151 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2006.02.001
      Turowski, J. M., Rickenmann, D., 2009. Tools and Cover Effects in Bedload Transport Observations in the Pitzbach, Austria. Earth Surface Processes and Landforms, 34(1): 26-37. https://doi.org/10.1002/esp.1686
      Wang, Z. Y., 2014. Integrated Management of Water, Sediment and Ecology of Rivers. Science Press, Beijing (in Chinese).
      Wang, Z. Y., Lin, B. N., Zhang, X. Y., 1990. Instability of Non-Newtonian Open Channel Flow. Acta Mechanica Sinica, 22(3): 266-275 (in Chinese with English abstract).
      Whitehouse, I. E., 1983. Distribution of Large Rock Avalanche Deposits in the Central Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics, 26(3): 271-279. https://doi.org/10.1080/00288306.1983.10422240
      Xu, H. J., 2016. Study on Debris-Flow Activity Patterns and Hazard Driving Forces of the Alpine Valley Area in Nujiang River Basin (Dissertation). Yunnan University, Kunming (in Chinese with English abstract).
      Xu, Q., 2010. The 13 August 2010 Catastrophic Debris Flows in Sichuan Province: Characteristics, Genetic Mechanism and Suggestions. Journal of Engineering Geology, 18(5): 596-608 (in Chinese with English abstract).
      Xu, Q., Fan, X. M., Huang, R. Q., et al., 2009. Landslide Dams Triggered by the Wenchuan Earthquake, Sichuan Province, South West China. Bulletin of Engineering Geology and the Environment, 68(3): 373-386. https://doi.org/10.1007/s10064-009-0214-1
      Yang, D. Y., Wu, S. G., Wang, Y. F., 1996. On River Terraces of the Upper Reaches of the Huanghe River and Change of the River System. Scientia Geographica Sinica, 16(2): 137-143 (in Chinese with English abstract).
      Yuan, D. Y., Zhang, P. Z., Liu, B. C., et al., 2004. Geometrical Imagery and Tectonic Transformation of Late Quaternary Active Tectonics in Northeastern Margin of Qinghai-Xizang Plateau. Acta Geologica Sinica, 78(2): 270-278 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2004.02.017
      Zhang, C., Wang, Q., Chen, J. P., et al., 2011. Evaluation of Debris Flow Risk in Jinsha River Based on Combined Weight Process. Rock and Soil Mechanics, 32(3): 831-836 (in Chinese with English abstract).
      Zhang, P. Z., Wang, M., Gan, W. J., et al., 2003. Slip Rates along Major Active Faults from GPS Measurements and Constraints on Contemporary Continental Tectonics. Earth Science Frontiers, 10(S1): 81-92 (in Chinese with English abstract).
      Zhao, Z. M., Liu, B. C., 2005. The Primary Perspective of Longyang Gorge Formation. Northwestern Geology, 38(2): 24-32 (in Chinese with English abstract).
      陈洪凯, 唐红梅, 鲜学福, 等, 2009. 川藏公路四川段泥石流灾害研究与治理. 防灾减灾工程学报, 29(2): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200902005.htm
      陈剑, 崔之久, 戴福初, 等, 2011. 金沙江奔子栏-达日河段大型泥石流堆积扇的成因机制. 山地学报, 29(3): 312-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201103010.htm
      崔鹏, 2014. 长江上游山地灾害与水土流失地图集. 北京: 科学出版社.
      崔鹏, 何思明, 姚令侃, 等, 2011. 汶川地震山地灾害形成机理与风险控制. 北京: 科学出版社.
      杜俊, 王兆印, 李志威, 等, 2014. 黄河源同德盆地刺状水系初步研究. 干旱区资源与环境, 28(2): 129–135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201402023.htm
      段书苏, 姚令侃, 2019. 青藏高原隆升速度对冰川泥石流孕灾环境的影响. 北京: 2019年中国地球科学联合学术年会.
      范宣梅, 戴岚欣, 钟育瑾, 等, 2021. 岷江上游叠溪古滑坡坝-堰塞湖研究进展. 地学前缘, 28(2): 71-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102007.htm
      冯倩倩, 2020. 怒江丙中洛-匹河乡河段泥石流成生环境及其灾生趋势研究(硕士学位论文). 成都: 成都理工大学.
      高泽民, 丁明涛, 杨国辉, 等, 2021. 川藏铁路孜热-波密段泥石流灾害危险性评价. 工程地质学报, 29(2): 478-485. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102017.htm
      胡卸文, 金涛, 殷万清, 等, 2020. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价. 工程地质学报, 28(4): 762-771. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004010.htm
      黄江成, 杨顺, 潘华利, 等, 2014. 白龙江流域泥石流特征分析. 水土保持通报, 34(1): 311-315. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201401060.htm
      蒋忠信, 2002. 西藏帕隆藏布河谷崩塌滑坡、泥石流的分布规律. 地理研究, 21(4): 495-503. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200204011.htm
      兰恒星, 彭建兵, 祝艳波, 等, 2022. 黄河流域地质地表过程与重大灾害效应研究与展望. 中国科学(D辑), 52(2): 199-221. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202202001.htm
      李吉均, 方小敏, 马海洲, 等, 1996. 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学(D辑), 26(4): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604004.htm
      李茂山, 2015. 澜沧江上游杂多县城段泥石流形成条件与危险范围预测研究(硕士学位论文). 西安: 长安大学.
      李旭, 黄江成, 徐慧娟, 等, 2016. 怒江高山峡谷区泥石流堆积扇特征分析. 云南大学学报(自然科学版), 38(5): 750-757. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201605010.htm
      李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
      梁馨月, 徐梦珍, 吕立群, 等, 2020. 基于地貌特征的青藏高原边缘泥石流沟分类. 地理学报, 75(7): 1373-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202007005.htm
      刘志杰, 孙永军, 2007. 青藏高原隆升与黄河形成演化. 地理与地理信息科学, 23(1): 79-82, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200701018.htm
      罗荣章, 徐则民, 2016. 怒江东月各特大泥石流流域几何形态学特征. 水文地质工程地质, 43(6): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606023.htm
      吕立群, 2017. 青藏高原泥石流的形成运动过程研究(博士学位论文). 北京: 清华大学.
      吕立群, 崔鹏, 王兆印, 2015. 两相泥石流的非恒定特性研究. 四川大学学报(工程科学版), 47(5): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201505010.htm
      吕立群, 王兆印, 崔鹏, 2016a. 两相泥石流龙头的非恒定运动过程及能量特征. 水利学报, 47(8): 1035-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201608009.htm
      吕立群, 王兆印, 崔鹏, 等, 2017. 沟岸侧蚀对泥石流形成和运动过程的影响. 水科学进展, 28(4): 553-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201704009.htm
      吕立群, 王兆印, 崔鹏, 等, 2018. 沟岸侧蚀对泥石流不稳定动力过程的影响. 水科学进展, 29(2): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201802008.htm
      吕立群, 王兆印, 孟哲, 2022. 基于树木年代学的迫龙沟泥石流灾害历史重建. 地球科学, 在线发表. http://kns.cnki.net/kcms/detail/42.1874.P.20220425.1150.006.html
      吕立群, 王兆印, 徐梦珍, 等, 2016b. 怒江泥石流扇地貌特征与扇体堵江机理研究. 水利学报, 47(10): 1245-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201610004.htm
      孟兴民, 陈冠, 郭鹏, 等, 2013. 白龙江流域滑坡泥石流灾害研究进展与展望. 海洋地质与第四纪地质, 33(4): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201304004.htm
      彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403017.htm
      苏鹏程, 韦方强, 2014. 澜沧江流域滑坡泥石流空间分布与危险性分区. 资源科学, 36(2): 273-281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201402008.htm
      唐川, 2005. 云南怒江流域泥石流敏感性空间分析. 地理研究, 24(2): 178-185, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200502003.htm
      唐川, 黄润秋, 黄达, 等, 2006. 金沙江美姑河牛牛坝水电站库区泥石流对工程影响分析. 工程地质学报, 14(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602000.htm
      王兆印, 2014. 河流水沙生态综合管理. 北京: 科学出版社.
      王兆印, 林秉南, 张新玉, 1990. 非牛顿体不稳定流的研究. 力学学报, 22(3): 266-275. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199003001.htm
      徐慧娟, 2016. 怒江流域高山峡谷区泥石流活动规律及成灾驱动力研究(硕士学位论文). 昆明: 云南大学.
      许强, 2010. 四川省8·13特大泥石流灾害特点、成因与启示. 工程地质学报, 18(5): 596-608. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201005003.htm
      杨达源, 吴胜光, 王云飞, 1996. 黄河上游的阶地与水系变迁. 地理科学, 16(2): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199602005.htm
      袁道阳, 张培震, 刘百篪, 等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换. 地质学报, 78(2): 270-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200402016.htm
      张晨, 王清, 陈剑平, 等, 2011. 金沙江流域泥石流的组合赋权法危险度评价. 岩土力学, 32(3): 831-836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201103033.htm
      张培震, 王敏, 甘卫军, 等, 2003. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约. 地学前缘, 10(S1): 81-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1013.htm
      赵振明, 刘百篪, 2005. 对龙羊峡形成的初步认识. 西北地质, 38(2): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200502003.htm
    • 加载中
    图(17)
    计量
    • 文章访问数:  488
    • HTML全文浏览量:  477
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-21
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回