Cross Project Conversion Relationship of Key Parameters of TBM Rock Breaking
-
摘要: TBM信息化施工中采集了海量数据,通过数据挖掘建立机器学习模型,是实现TBM智能化的前提.然而在TBM新建工程初期,由于数据量稀少导致机器学习模型预测效果不佳;同时由于TBM设备结构和刀盘直径存在差异,基于历史工程训练得到的机器学习模型也并不适用于新建工程.为了解决这一瓶颈问题,基于单刀受力分析、经验方法和扭剪实验模型等多种换算关系推导得到了仅与刀具数量和刀盘直径有关的物理不变量,利用由不变量组成的转换方案,可以对新建工程数据进行转换;之后针对围岩分类和机器学习模型上的应用效果,比选出最佳的破岩关键参数转换方案;进而采用遗传算法,以比选得到的转换方案不变量作为初值,迭代搜索出适合当前工程的最优转换方案不变量.研究结果表明,引绰工程(新建工程)数据经过不变量的转换后输入到引松工程(历史工程)机器学习模型,其刀盘扭矩T和刀盘推力F预测结果的拟合优度R2分别达到了0.84和0.70.本研究采用该转换方案不变量,可将不同工程的TBM施工数据归一化,将其统一到同一个框架下进行分析,实现了基于历史工程数据训练得到的机器学习模型指导新建工程施工.研究结果可为TBM机器学习模型跨工程应用提供参考.Abstract: A large amount of data have been collected in TBM information construction, and the establishment of machine learning model through data mining is the premise of realizing TBM intelligence. However, at the initial stage of TBM construction, the prediction performance of machine learning model is poor due to the lack of data; At the same time, due to the differences in TBM equipment structure and cutterhead diameter, the machine learning model based on historical projects training is not suitable for new projects. In order to solve this bottleneck problem, the physical invariants only related to the number of cutters and the diameter of the cutter head are derived from the force analysis of a single cutter, the empirical method and the torsional shear experimental model. The new projects data can be converted by using the conversion scheme composed of invariants; Then, the conversion scheme of key parameters of rock breaking with the best application performance in surrounding rock classification and machine learning model is selected; Then, the genetic algorithm is used to iteratively search the optimal conversion scheme invariant which is suitable for the current project. The research results show that the data of Yinchao project (new project) are input into the machine learning model of Yinsong project (historical project) after "invariant" conversion, and the prediction performance R2 of cutterhead torque T and cutterhead thrust F reach 0.84 and 0.70 respectively. By using this conversion scheme invariant, the TBM construction data of different projects can be normalized and analyzed under the same framework, and the machine learning model trained based on historical project data is realized to guide the construction of new projects. The research results can provide reference for the cross project application of TBM machine learning model.
-
表 1 引松工程和引绰工程TBM设备设计参数
Table 1. Design parameters of TBM equipment of Yinsong project and Yinchao project
项目名称 引松工程 引绰工程 设备名称 永吉号 草原平安号 TBM型式 开敞式 开敞式 刀盘直径D (mm) 7 930 5 200 额定刀盘推力F (kN) 23 260 11 340 额定刀盘扭矩T (kN·m) 8 410 3 340 最大刀盘转速nmax (r/min) 7.6 11.45 滚刀数量N (把) 56 34 摩擦阻力Ff (kN) 5 000 4 000 摩擦扭矩Tf (kN·m) 200 50 表 2 TBM破岩关键参数
Table 2. Key parameters of rock breaking
参数 类型 备注 刀盘转速n (r/min) 控制参数 刀盘在掘进状态下的旋转速度,受TBM操作手控制 推进速度v (mm/min) 控制参数 主推油缸的伸出速度,受TBM操作手控制 贯入度p (mm/r) 衍生参数 刀盘每掘进一周的掘进进尺 刀盘扭矩T (kN·m) 响应参数 刀盘在掘进状态下产生的总扭矩 刀盘推力F (kN) 响应参数 由主机油缸施加给主机大梁的向前推进力 注:贯入度p为衍生参数,其计算公式为:p = v/n. 表 3 破岩关键参数候选转换方案汇总
Table 3. Summary of candidate conversion schemes for key parameters of rock breaking
组别 转换方案 刀盘转速n 刀盘扭矩T 刀盘推力F 不变量符号 转换关系 不变量符号 转换关系 不变量符号 转换关系 试验组 ① $ {n}_{V} $ $ \frac{{n}_{1}}{{n}_{2}}=\frac{{D}_{2}}{{D}_{1}} $ $ {f}_{r}^{k} $ $ \frac{{T}_{1}}{{T}_{2}}=\frac{{D}_{1}{N}_{1}}{{D}_{2}{N}_{2}} $ $ \overline{{f}_{n}} $ $ \frac{{F}_{1}}{{F}_{2}}=\frac{{N}_{1}}{{N}_{2}} $ ② $ {n}_{V} $ $ \frac{{n}_{1}}{{n}_{2}}=\frac{{D}_{2}}{{D}_{1}} $ $ {S}_{T} $ $ \frac{{T}_{1}}{{T}_{2}}=\frac{{D}_{1}^{2}}{{D}_{2}^{2}} $ $ {S}_{F} $ $ \frac{{F}_{1}}{{F}_{2}}=\frac{{N}_{1}}{{N}_{2}} $ ③ $ {n}_{V} $ $ \frac{{n}_{1}}{{n}_{2}}=\frac{{D}_{2}}{{D}_{1}} $ $ {C}_{u} $ $ \frac{{T}_{1}}{{T}_{2}}=\frac{{D}_{1}^{3}}{{D}_{2}^{3}} $ $ {p}_{p} $ $ \frac{{F}_{1}}{{F}_{2}}=\frac{{D}_{1}^{2}}{{D}_{2}^{2}} $ 对照组 ④ $ {n}_{0} $ $ {n}_{1}={n}_{2} $ $ {f}_{r}^{k} $ $ \frac{{T}_{1}}{{T}_{2}}=\frac{{D}_{1}{N}_{1}}{{D}_{2}{N}_{2}} $ $ \overline{{f}_{n}} $ $ \frac{{F}_{1}}{{F}_{2}}=\frac{{N}_{1}}{{N}_{2}} $ ⑤ $ {n}_{0} $ $ {n}_{1}={n}_{2} $ $ {S}_{T} $ $ \frac{{T}_{1}}{{T}_{2}}=\frac{{D}_{1}^{2}}{{D}_{2}^{2}} $ $ {S}_{F} $ $ \frac{{F}_{1}}{{F}_{2}}=\frac{{N}_{1}}{{N}_{2}} $ ⑥ $ {n}_{0} $ $ {n}_{1}={n}_{2} $ $ {C}_{u} $ $ \frac{{T}_{1}}{{T}_{2}}=\frac{{D}_{1}^{3}}{{D}_{2}^{3}} $ $ {p}_{p} $ $ \frac{{F}_{1}}{{F}_{2}}=\frac{{D}_{1}^{2}}{{D}_{2}^{2}} $ 表 4 不同围岩等级条件下的破岩关键参数均值统计
Table 4. Mean statistics of key parameters of rock breaking under different surrounding rock grades
名称 Ⅱ类围岩 Ⅲ类围岩 Ⅳ类围岩 Ⅴ类围岩 引松 引绰 引松 引绰 引松 引绰 引松 引绰 刀盘推力$ F $(kN) 15 181.72 8 641.82 13 987.69 8 504.79 10 236.44 7 746.12 10 160.86 7 594.79 刀盘扭矩$ T $(kN·m) 2 782.66 1 059.12 2 609.13 962.56 1 910.83 727.17 1 912.56 589.80 刀盘转速n (r/min) 6.92 8.72 6.7 8.53 5.66 7.99 5.01 8.02 表 5 以比选值为初值的遗传算法优选结果
Table 5. Optimization results of genetic algorithm with comparison value as initial value
刀盘转速n 刀盘扭矩T 刀盘推力F $ {n}_{V}\mathrm{比}\mathrm{选} $值 $ {n}_{V}\mathrm{优}\mathrm{选} $值 $ {S}_{T}\mathrm{比}\mathrm{选} $值 $ {S}_{T}\mathrm{优}\mathrm{选} $值 $ {S}_{F}\mathrm{比}\mathrm{选} $值 $ {S}_{F}\mathrm{优}\mathrm{选} $值 0.66 0.81 2.34 2.27 1.65 1.83 表 6 三种转换关系跨工程机器学习模型应用效果
Table 6. Application performance of three conversion relations across project machine learning model
应用方案 转换关系 评价指标 R2 MAPE 刀盘扭矩T 刀盘推力F 刀盘扭矩T 刀盘推力F 直接泛化应用 ‒ ‒0.37 ‒5.53 28.8% 46.4% 按照不变量比选值转换 $ {n}_{V}= $0.66, $ {S}_{T} $=2.34, $ {S}_{F}= $1.65 0.80 0.68 8.6% 8.4% 按照不变量优选值转换 $ {n}_{V}= $0.81, $ {S}_{T} $=2.27, $ {S}_{F}= $1.83 0.84 0.70 8.2% 7.8% -
Chen, K., Sun, Z. C., Li, T., et al., 2018. TBM Design and Construction. People's Communications Press, Beijing (in Chinese). Du, L. J., Qi, Z. C., Han, X. L., et al., 2015. Prediction Method for the Boreability and Performance of Hard Rock TBM Based on Boring Data on Site. Journal of China Coal Society, 40(6): 1284-1289 (in Chinese with English abstract). Du, Y. L., Du, L. J., 2012. Full-Section Rock Tunnel Boring Machine-System Principle and Integrated Design. Huazhong University of Science and Technology, Wuhan (in Chinese). General Administration of Quality Supervision, Inspection and Quarantine of the People' Republic of China, Standardization Administration of China, 2017. Full Face Tunnel Boring Machine—Open Type Hard Rock Tunnel Boring Machine. GB/T 34652-2017 (in Chinese). Guo, D., Li, J. H., Jiang, S. H., et al., 2022. Intelligent Assistant Driving Method for Tunnel Boring Machine Based on Big Data. Acta Geotechnica, 17(4): 1019-1030. https://doi.org/10.1007/s11440-021-01327-1 Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106 (in Chinese with English abstract). Jing, L. J., Li, J. B., Zhang, N., et al., 2021. A TBM Advance Rate Prediction Method Considering the Effects of Operating Factors. Tunnelling and Underground Space Technology, 107: 103620. https://doi.org/10.1016/j.tust.2020.103620 Laughton, C., 1998. Evaluation and Prediction of Tunnel Boring Machine Performance in Variable Rock Masses (Dissertation). The University of Texas at Austin, Austin. Li, J. B., Wu, Y. Y., Li, P. Y., et al., 2021. TBM Tunneling Parameters Prediction Based on Locally Linear Embedding and Support Vector Regression. Journal of Zhejiang University (Engineering Science), 55(8): 1426-1435 (in Chinese with English abstract). Liu, H. R., Zhao, C. X., Li, X., et al., 2016. Study on a Neural Network Optimization Algorithm Based on Improved Genetic Algorithm. Chinese Journal of Scientific Instrument, 37(7): 1573-1580 (in Chinese with English abstract). doi: 10.3969/j.issn.0254-3087.2016.07.017 Liu, J. D., 2020. Perception Methods for Bad Geology Based on Shield Tunneling Parameters (Dissertation). Shijiazhuang Tiedao University, Shijiazhuang (in Chinese with English abstract). Liu, Q. S., Wang, X. Y., Huang, X., et al., 2020. Prediction Model of Rock Mass Class Using Classification and Regression Tree Integrated AdaBoost Algorithm Based on TBM Driving Data. Tunnelling and Underground Space Technology, 106: 103595. https://doi.org/10.1016/j.tust.2020.103595 Liu, S. Y., Chen, Z. Y., Zhang, Y. P., et al., 2021. Back Analysis of the TBM Collapse Section Based on Convolutional Neural Networks. Chinese Journal of Solid Mechanics, 42(3): 287-301 (in Chinese with English abstract). Liu, Z. B., Li, L., Fang, X. L., et al., 2021. Hard-Rock Tunnel Lithology Prediction with TBM Construction Big Data Using a Global-Attention-Mechanism-Based LSTM Network. Automation in Construction, 125: 103647. https://doi.org/10.1016/j.autcon.2021.103647 Liu, Z. J., 2009. Cutterhead Design Methods of Rock Tunnel Boring Machine (Dissertation). Dalian University of Technology, Dalian (in Chinese with English abstract). National Industry Standard Preparation Group of the People's Republic of China, 2017. GB/T 34652-2017 Full- Section Tunnel Boring Machine Open Rock Tunnel Boring Machine. China Quality Inspection Press, Beijing (in Chinese with English abstract). Song, K. Z., Yuan, D. J., Wang, M. S., 2005. Discussion on Cutterhead Rotation Speed of Tunnel Boring Machine (TBM). Construction Machinery, (8): 63-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZJX200508025.htm Wang, D. T., Chen, G. M., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506 (in Chinese with English abstract). Wang, S. J., Wang, Y. J., Li, X., et al., 2021. Big Data-Based Boring Indexes and Their Application during TBM Tunneling. Advances in Civil Engineering, 2621931. https://doi.org/10.1155/2021/2621931 Wu, X. L., Zhang, X. P., Li, Q. S., et al., 2020. Prediction and Classification of Rock Mass Boreability in TBM Tunnel. Rock and Soil Mechanics, 41(5): 1721-1729, 1739 (in Chinese with English abstract). Xu, C., Liu, X. L., Wang, E. Z., et al., 2021. Prediction of Tunnel Boring Machine Operating Parameters Using Various Machine Learning Algorithms. Tunnelling and Underground Space Technology, 109: 103699. https://doi.org/10.1016/j.tust.2020.103699 Yao, M., Li, X., Yuan, J. D., et al., 2023. Deep Learning Characterization Method of Rock Mass Conditions Based on TBM Rock Breaking Data. Earth Science, 48(5): 1908-1922 (in Chinese with English abstract). Yu, Y. Y., Chen, Y., Li, T. Y., 2014. Improved Genetic Algorithm for Solving TSP. Control and Decision, 29(8): 1483-1488 (in Chinese with English abstract). Zhang, W. G., Li, H. R., Wu, C. Z., et al., 2021. Soft Computing Approach for Prediction of Surface Settlement Induced by Earth Pressure Balance Shield Tunneling. Underground Space, 6(4): 353-363. https://doi.org/10.1016/j.undsp.2019.12.003 Zhang, W. G., Li, Y. Q., Wu, C. Z., et al., 2022. Prediction of Lining Response for Twin Tunnels Constructed in Anisotropic Clay Using Machine Learning Techniques. Underground Space, 7(1): 122-133. https://doi.org/10.1016/j.undsp.2020.02.007 Zhu, M. Q., Zhu, H. H., Wang, X., et al., 2020. Study on CART-Based Ensemble Learning Algorithms for Predicting TBM Tunneling Parameters and Classing Surrounding Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1860-1871 (in Chinese with English abstract). 陈馈, 孙振川, 李涛, 等, 2018. TBM设计与施工. 北京: 人民交通出版社. 杜立杰, 齐志冲, 韩小亮, 等, 2015. 基于现场数据的TBM可掘性和掘进性能预测方法. 煤炭学报, 40(6): 1284-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506009.htm 杜彦良, 杜立杰, 2012. 全断面岩石隧道掘进机‒系统原理与集成设计. 武汉: 华中科技大学. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. 全断面隧道掘进机敞开式岩石隧道掘进机. GB/T 34652-2017. 郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360 李建斌, 武颖莹, 李鹏宇, 等, 2021. 基于局部线性嵌入和支持向量机回归的TBM施工参数预测. 浙江大学学报(工学版), 55(8): 1426-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202108003.htm 刘浩然, 赵翠香, 李轩, 等, 2016. 一种基于改进遗传算法的神经网络优化算法研究. 仪器仪表学报, 37(7): 1573-1580. doi: 10.3969/j.issn.0254-3087.2016.07.017 刘建东, 2020. 基于盾构掘进参数的不良地质感知方法研究(硕士学位论文). 石家庄: 石家庄铁道大学. 刘诗洋, 陈祖煜, 张云旆, 等, 2021. 基于卷积神经网络对TBM塌方段的反演分析. 固体力学学报, 42(3): 287-301. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202103008.htm 刘志杰, 2009. 岩石隧道掘进机刀盘设计方法研究(硕士学位论文). 大连: 大连理工大学. 中华人民共和国国家行业标准编写组, 2017. GB/T 34652-2017全断面隧道掘进机敞开式岩石隧道掘进机. 北京: 中国质检出版社. 宋克志, 袁大军, 王梦恕, 2005. 隧道掘进机(TBM)刀盘转速的讨论. 建筑机械, (8): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX200508025.htm 王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506. doi: 10.3799/dqkx.2021.070 吴鑫林, 张晓平, 刘泉声, 等, 2020. TBM岩体可掘性预测及其分级研究. 岩土力学, 41(5): 1721-1729, 1739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005031.htm 姚敏, 李旭, 原继东, 等, 2023. 基于TBM破岩数据的岩体条件深度学习表征方法. 地球科学, 48(5): 1908-1922. doi: 10.3799/dqkx.2022.281 于莹莹, 陈燕, 李桃迎, 2014. 改进的遗传算法求解旅行商问题. 控制与决策, 29(8): 1483-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201408023.htm 朱梦琦, 朱合华, 王昕, 等, 2020. 基于集成CART算法的TBM掘进参数与围岩等级预测. 岩石力学与工程学报, 39(9): 1860-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009012.htm -