• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于长短期记忆神经网络的实时地震烈度预测模型

    胡进军 丁祎天 张辉 靳超越 汤超

    胡进军, 丁祎天, 张辉, 靳超越, 汤超, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
    引用本文: 胡进军, 丁祎天, 张辉, 靳超越, 汤超, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
    Hu Jinjun, Ding Yitian, Zhang Hui, Jin Chaoyue, Tang Chao, 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
    Citation: Hu Jinjun, Ding Yitian, Zhang Hui, Jin Chaoyue, Tang Chao, 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338

    基于长短期记忆神经网络的实时地震烈度预测模型

    doi: 10.3799/dqkx.2022.338
    基金项目: 

    国家自然科学基金重点项目 U1939210

    中国地震局工程力学研究所基本科研业务费专项 2021EEEVL0103

    详细信息
      作者简介:

      胡进军(1978-),男,研究员,博士生导师,研究方向为地震动模型和强度指标工作. ORCID: 0000-0001-7151-0049. E-mail: hujinjun@iem.ac.cn

      通讯作者:

      胡进军,E-mail: hujinjun@iem.ac.cn

    • 中图分类号: P315

    A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network

    • 摘要: 实时烈度预测可在破坏性地震波到达前,根据P波估计地震可能造成的最大影响.预警对象可以采取措施,降低可能造成的损失.P波位移幅值是一种有效估计地震动峰值的参数,然而单个或多个参数难以全面表征地震动中的信息.同时,参数的计算需要确定时间窗大小,无法实现连续预测.为了解决上述问题,提出了一种基于长短期记忆网络的实时地震烈度预测模型.基于2010-2021年K-NET数据构建模型,并选取2022年3月MJMA7.3地震事件作为案例验证模型.结果表明,P波到达后可以在记录的每个时间步预测烈度,P波到达3 s时在测试集中准确率为96.47%.提出的LSTM模型改善了烈度预测的准确性和连续性,可为地震预警、应急响应等提供科学依据.

       

    • 图  1  台站在训练集、测试集(a)和案例集(c)以及震中位置在训练集、测试集(b)和案例集(d)上的分布

      Fig.  1.  Distribution of stations on training set, test set (a) and case set (c), and location of the epicenters on training set, test set (b) and case set (d)

      图  2  地震动数据的分布

      a.震级‒数量分布;b.仪器地震烈度‒数量分布

      Fig.  2.  Distribution of ground motion

      图  3  震级和震源距关系

      Fig.  3.  Magnitude and source distance relationship

      图  4  选取的输入特征和标签

      Fig.  4.  Selected input features and labels

      图  5  LSTM单元在时间t时刻的示意

      Fig.  5.  Schematic diagram of the LSTM cell at time t

      图  6  LSTM网络架构

      Fig.  6.  Architecture of LSTM Network

      图  7  P波到达后MSE(a)和准确率(b)随时间变化的关系

      Fig.  7.  Relationship of MSE (a) and accuracy (b) with time after P-wave arrival

      图  8  3 s时间窗时的预测值和观测值

      a. LSTM模型;b. Pd模型的对比

      Fig.  8.  Comparison of predicted and observed values at 3-second time window

      图  9  案例中震源(a)和台站的位置以及烈度的空间分布(b)和数据分布(c)

      Fig.  9.  Location of the epicenter and stations(a), and spatial distribution (b) and data distribution (c) of intensities on case set

      图  10  台站被触发后烈度估计的误差与时间之间的关系

      Fig.  10.  Relationship between the intensity estimation errors and the time after the station is triggered

      图  11  (a)~(l)分别为不同烈度下仪器地震烈度的预测值和观测值随时间变化的关系

      Fig.  11.  (a) to (l) are the predicted and observed values of the instrumental seismic intensity with time for different intensities

      表  1  不同LSTM网络结构的MSE和训练时间(验证集)

      Table  1.   MSE and training time for different LSTM network structures (validation set)

      No. 网络层数 隐层单元数量 MSE 训练时间
      1 1 8 828.350 6 13 477.373 6
      2 1 16 667.354 3 14 354.786 8
      3 1 32 569.153 7 16 753.753 1
      4 1 64 448.534 1 13 578.841 5
      5 1 128 392.617 7 6 252.108 5
      6 2 8 355.553 5 22 833.113 7
      7 2 16 328.543 4 23 788.3574
      8 2 32 267.564 8 22 879.357 4
      9 2 64 228.820 8 20 708.898 1
      10 2 128 224.943 3 22 326.148 8
      11 3 8 297.358 7 32 443.092 9
      12 3 16 276.548 6 34 512.365 7
      13 3 32 257.789 3 33 574.789 3
      14 3 64 234.638 5 32 876.654 7
      15 3 128 238.049 9 29 957.053 3
      16 4 8 295.915 5 39 464.159 2
      17 4 16 268.465 1 40 873.546 1
      18 4 32 243.165 7 37 453.312 8
      19 4 64 225.267 7 33 316.395 8
      20 4 128 226.192 1 38 112.503 2
      注:其他超参数的值为:Learning rate=10-3 Batch size=50; Maximum iterations=100 (Early stop=30).
      下载: 导出CSV

      表  2  不同阶段模型的计算效率

      Table  2.   Computational efficiency of models at different stages

      阶段 时间
      输入信息计算时间 忽略
      训练模型时间(共47 304样本) 1.78×101 s
      测试模型时间(共9 166样本) 3.153 3×101
      案例数据集上测试模型时间(每个样本) 3.440×10-3 s
      下载: 导出CSV

      表  3  3秒时间窗时Pd和LSTM模型的评价指标

      Table  3.   Evaluation metrics for Pd and LSTM models at 3-second time windows

      评价指标 Pd方法 LSTM方法
      准确率(%) 90.17 96.47
      MSE 0.379 5 0.369 1
      下载: 导出CSV
    • Carranza, M., Buforn, E., Colombelli, S., et al., 2013. Earthquake Early Warning for Southern Iberia: A P Wave Threshold‐Based Approach. Geophysical Research Letters, 40: 4588-4593. https://doi.org/10.1002/grl.50903
      Chen, Y. L., Jin, X., 2016. A Continuous Real⁃Time Method for Seismic Intensity Prediction. Earthquake Engineering and Engineering Dynamics, 36(6): 22-29 (in Chinese with English abstract).
      Chu, D. P., Wan, B., Li, H., et al., 2021. Geological Entity Recognition Based on ELMO⁃C0NN⁃BiLSTM⁃CRF Model. Earth Science, 46(8): 3039-3048 (in Chinese with English abstract). doi: 10.12090/j.issn.1006-6616.2021.27.03.035
      Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, 7: 197-387. https://doi.org/10.1561/2000000039
      Festa, G., Zollo, A., Lancieri, M., 2008. Earthquake Magnitude Estimation from Early Radiated Energy. Geophysical Research Letters, 35(22): L22307. https://doi.org/10.1029/2008GL035576
      Graves, A., Fernández, S., Gomez, F., et al., 2006. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In: Proceedings of the 23rd International Conference on Machine Learning. Association for Computing Machinery, New York, 369-376. https://doi.org/10.1145/1143844.1143891
      Hochreiter, S., Schmidhuber, J., 1997. Long Short⁃Term Memory. Neural Computation, 9: 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
      Hoshiba, M., Kamigaichi, O., Saito, M., et al., 2008. Earthquake Early Warning Starts Nationwide in Japan. EOS, Transactions American Geophysical Union, 89: 73-74. https://doi.org/10.1029/2008EO080001
      Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80: 717. https://doi.org/10.1785/gssrl.80.5.717
      Kanamori, H., 2005. Real⁃Time Seismology and Earthquake Damage Mitigation. Annu. Rev. Earth Planet. Sci. , 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
      Kingma, D. P., Ba, J., 2014. ADAM: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980
      Kunugi, T., Aoi, S., Nakamura, H., et al., 2013. An Improved Approximating Filter for Real⁃Time Calculation of Seismic Intensity. Zisin, 2: 223-230. https://doi.org/10.4294/zisin.65.223
      Liu, R. S., Xiong, M. P., Ma, Q., et al., 2021. Vulnerability Study for High Voltage Electrical Equipment in Substations Based on Instrumental Seismic Intensity. Journal of Natural Disasters, 30(2): 14-23 (in Chinese with English abstract).
      Nazeri, S., Shomali, Z. H., Colombelli, S., et al., 2017. Magnitude Estimation Based on Integrated Amplitude and Frequency Content of the Initial P Wave in Earthquake Early Warning Applied to Tehran, Iran. Bulletin of the Seismological Society of America, 107: 1432-1438. https://doi.org/10.1007/978⁃3⁃642⁃55903⁃7_92
      Otake, R., Kurima, J., Goto, H., et al., 2020. Deep Learning Model for Spatial Interpolation of Real‐Time Seismic Intensity. Seismological Research Letters, 91: 3433-3443. https://doi.org/10.1785/0220200006
      Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New Τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44: 1724-1731. http://www.researchgate.net/profile/Peng_Chaoyong/publication/313653194_New_t_c_regression_relationship_derived_from_all_P-wave_time_windows_for_rapid_magnitude_estimation/links/59d21862a6fdcc181ad5e238/New-t-c-regression-relationship-derived-from-all-P-wave-time-windows-for-rapid-magnitude-estimation.pdf
      Reimers, N., Gurevych, I., 2017. Optimal Hyperparameters for Deep LSTM⁃Networks for Sequence Labeling Tasks. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016GL071672
      Sheen, D. H., Park, J. H., Chi, H. C., et al., 2017. The First Stage of an Earthquake Early Warning System in South Korea. Seismological Research Letters, 88: 1491-1498. https://doi.org/10.1785/0220170062
      Sherstinsky, A., 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short⁃Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena, 404: 132306. https://doi.org/10.1016/j.physd.2019.132306
      Srivastava, N., Hinton, G., Krizhevsky, A., et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15: 1929-1958. http://pdfs.semanticscholar.org/6c8b/30f63f265c32e26d999aa1fef5286b8308ad.pdf
      Suárez, G., Espinosa Aranda, J. M., Cuéllar, A., et al., 2018. A Dedicated Seismic Early Warning Network: The Mexican Seismic Alert System (SASMEX). Seismological Research Letters, 89: 382-391. https://doi.org/10.1785/0220170184
      Sun, D. Z., Zhang, R. P., Sun, B. T., 2018. Discussion on the Application of Instrumental Intensity for Seismic Intensity Assessment. Building Structure, 48(S2): 279-283 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JCJG2018S2057.htm
      Wang, S., Jiang, J., 2015. Learning Natural Language Inference with LSTM. In: Proceedings of the Human Language Technologies: The 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg. https://doi.org/10.48550/arXiv.1512.08849
      Wang, Y., Li, X., Li, L., et al., 2022. New Magnitude Proxy for Earthquake Early Warning Based on Initial Time Series and Frequency. Seismological Research Letters, 93: 216-225. https://doi.org/10.1785/0220210106
      Wang, Z., Zhao, B., 2018. Method of Accurate⁃Fast Magnitude Estimation for Earthquake Early Warning: Trial and Application for the 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, 109: 227-234. https://doi.org/10.1016/j.soildyn.2018.03.006
      Wu, Y., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95: 1181-1185. https://doi.org/10.1785/0120040193
      Wu, Y. M., Zhao, L., 2006. Magnitude Estimation Using the First Three Seconds P‐Wave Amplitude in Earthquake Early Warning. Geophysical Research Letters, 33(16): L16312. https://doi.org/10.1029/2006GL026871
      Xie, Y., Ebad Sichani, M., Padgett, J. E., et al., 2020. The Promise of Implementing Machine Learning in Earthquake Engineering: A State⁃of⁃the⁃Art Review. Earthquake Spectra, 36: 1769-1801. https://doi.org/10.1177/8755293020919419
      Xu, Y., Lu, X., Cetiner, B., et al., 2021. Real‐Time Regional Seismic Damage Assessment Framework Based on Long Short‐Term Memory Neural Network. Computer‐Aided Civil and Infrastructure Engineering, 36: 504-521. https://doi.org/10.1080/13632469.2020.1826371
      Yamamoto, S., Rydelek, P., Horiuchi, S., et al., 2008. On the Estimation of Seismic Intensity in Earthquake Early Warning Systems. Geophysical Research Letters, 35(7): L07302. https://doi.org/10.1029/2007GL033034
      Yu, Y., Si, X., Hu, C., et al., 2019. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31: 1235-1270. https://doi.org/10.1162/neco_a_01199
      Zhang, W., Li, H., Li, Y., et al., 2021. Application of Deep Learning Algorithms in Geotechnical Engineering: A Short Critical Review. Artificial Intelligence Review, 54: 5633-5673. https://doi.org/10.1007/s10462⁃021⁃09967⁃1
      Zhang, W., Phoon, K., 2022. Editorial for Advances and Applications of Deep Learning and Soft Computing in Geotechnical Underground Engineering. Elsevier, 14: 671-673. https://doi.org/10.1016/j.jrmge.2022.01.001
      Zhao, Z., Zheng, P., Xu, S., et al., 2019. Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30: 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
      Zhu, J., Li, S., Song, J., et al., 2021. Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network. Frontiers in Earth Science, 9: 341. https://doi.org/10.3389/feart.2021.653226
      Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold⁃Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183: 963-974. https://doi.org/10.1111/j.1365⁃246X.2010.04765.x
      Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
      陈以伦, 金星, 2016. 一种持续实时预测仪器地震烈度的方法. 地震工程与工程振动, 36(6): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201606003.htm
      储德平, 万波, 李红, 等, 2021. 基于ELMO⁃CNN⁃BiLSTM⁃CRF模型的地质实体识别. 地球科学, 46(8): 3039-3048. doi: 10.3799/dqkx.2020.309
      刘如山, 熊明攀, 马强, 等, 2021. 基于仪器地震烈度的变电站高压电气设备易损性研究. 自然灾害学报, 30(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202102002.htm
      孙得璋, 张仁鹏, 孙柏涛, 2018. 浅谈仪器烈度在地震烈度评定中的应用. 建筑结构, 48(S2): 279-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2018S2057.htm
      左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  618
    • HTML全文浏览量:  513
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-19
    • 网络出版日期:  2023-06-06
    • 刊出日期:  2023-05-25

    目录

      /

      返回文章
      返回