• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    琼东南盆地超深水浅部气藏地球物理识别技术

    黄时卓 李芳 宋鹏 胡斌 孙万元

    黄时卓, 李芳, 宋鹏, 胡斌, 孙万元, 2024. 琼东南盆地超深水浅部气藏地球物理识别技术. 地球科学, 49(1): 313-323. doi: 10.3799/dqkx.2022.339
    引用本文: 黄时卓, 李芳, 宋鹏, 胡斌, 孙万元, 2024. 琼东南盆地超深水浅部气藏地球物理识别技术. 地球科学, 49(1): 313-323. doi: 10.3799/dqkx.2022.339
    Huang Shizhuo, Li Fang, Song Peng, Hu Bin, Sun Wanyuan, 2024. Geophysical Identification Technology of Ultra Deep Water and Shallow Gas Reservoirs in Qiongdongnan Basin. Earth Science, 49(1): 313-323. doi: 10.3799/dqkx.2022.339
    Citation: Huang Shizhuo, Li Fang, Song Peng, Hu Bin, Sun Wanyuan, 2024. Geophysical Identification Technology of Ultra Deep Water and Shallow Gas Reservoirs in Qiongdongnan Basin. Earth Science, 49(1): 313-323. doi: 10.3799/dqkx.2022.339

    琼东南盆地超深水浅部气藏地球物理识别技术

    doi: 10.3799/dqkx.2022.339
    基金项目: 

    中国海洋石油有限公司综合科研项目 KJZH-2021-0002-00

    详细信息
      作者简介:

      黄时卓(1990-),男,工程师,研究方向为油气勘察及天然气水合物地球物理. ORCID:0000-0003-3308-3469. E-mail:huangshzh7@cnooc.com.cn

    • 中图分类号: P631.4

    Geophysical Identification Technology of Ultra Deep Water and Shallow Gas Reservoirs in Qiongdongnan Basin

    • 摘要: 浅部气赋存于浅部成岩强度低的未固结岩石内,其岩石物理特征、地震反射特征都区别于深层已成岩岩石. 为建立浅部气藏地球物理识别技术,笔者利用浅层测井数据分析该盆地浅层岩性、流体性质对岩石速度、密度、纵横波速度比的影响,明确浅部气层敏感弹性参数. 在此基础上,利用颗粒接触岩石物理模型进行浅层岩石物理建模,获得了浅部气层和水层的纵波速度、AVO特征随孔隙度变化模板. 在此基础上,利用地震正演手段查明了浅部气层地震反射特征,明确了浅部气层识别标志,并从地震反射结构特征、反演弹性参数特征、AVO特征入手实现了浅部气层的识别. 首次将Direct Hydrocarbon Identifier by Induced Polarization(DHIP)勘探技术应用于浅部气藏饱和度预测,实现了研究区浅部气藏饱和度定性预测. 该套浅部气藏评价技术是目前琼东南盆地浅层勘探的首次应用,对该盆地后续浅部气藏勘探具有建设性意义.

       

    • 图  1  琼东南盆地构造单元划分

      Fig.  1.  The tection units of Qiongdongnan Basin

      图  2  浅部地层纵波速度(a)和阻抗(b)随孔隙度变化模板

      Fig.  2.  Variation of P-wave velocity (a) and impedance (b) with porosity in shallow formation

      图  3  浅部地层含气饱和度(a)和AVO(b)模板

      Fig.  3.  Shallow formation gas saturation(a) and AVO(b)templates

      图  4  L22井测井曲线

      Fig.  4.  Logging curves of L22

      图  5  浅部地层纵波速度(a)和阻抗(b)随深度变化模板及弹性参数(c)交会图

      Fig.  5.  Variation of P-wave velocity (a) and impedance (b) with depth in shallow formation and cross plot of elastic parameters (c) of target layer

      图  6  浅层(a)、深层(b)不同流体不同孔隙地震正演模板

      Fig.  6.  Seismic forward modeling template of different fluids and pores in shallow (a) and deep (b) layers

      图  7  浅部薄层单斜构造气水界面正演

      Fig.  7.  Forward modeling of gas water interface in shallow thin monoclinic structure

      图  8  不同含气饱和度浅部气层正演模板

      Fig.  8.  Forward modeling template of shallow gas reservoir with different gas saturation

      图  9  地震剖面(a)与最小振幅属性图(b)

      Fig.  9.  Seismic profile (a) and minimum amplitude attribute (b)

      图  10  地震气水界面图

      Fig.  10.  Seismic gas water interface diagram

      图  11  反演纵波阻抗、纵横波速度比剖面和单点AVO分析图

      Fig.  11.  Inversion of P-wave impedance and P-wave velocity ratio profile and single point AVO analysis

      图  12  浅部地层电阻率及地震剖面

      Fig.  12.  Shallow formation resistivity and seismic profile

      表  1  浅层砂岩矿物组分及弹性参数

      Table  1.   Mineral compositions and elastic parameters of shallow sandstone

      矿物组分 体模量K 剪切模量G 密度
      (g/cm3)
      体积分数(%)
      石英 36.6 45 2.65 35
      云母 62 41 2.68 11
      长石 76 26 2.71 13
      方解石 77 32 2.71 9
      白云石 94.9 45 2.87 10
      硬石膏 56.1 33.6 2.96 7
      粘土 20.9 6.85 2.58 15
      下载: 导出CSV

      表  2  浅层泥岩矿物组分及弹性参数

      Table  2.   Mineral compositions and elastic parameters of shallow mudstone

      矿物组分 体模量K 剪切模量G 密度
      (g/cm3)
      体积分数(%)
      石英 36.6 45 2.65 10
      云母 62 41 2.68 11
      长石 76 26 2.71 13
      方解石 77 32 2.71 9
      白云石 94.9 45 2.87 10
      硬石膏 56.1 33.6 2.96 7
      粘土 20.9 6.85 2.58 40
      下载: 导出CSV
    • Deng, Y., Liu, S. Y., Li, Y. S., et al., 2019. Application of Time-Frequency Analysis Technology in Evaluation of Channel in Ledong Area. Earth Science, 44(8): 2619-2626 (in Chinese with English abstract).
      Du, H., Shi, W. Z., Liang, J. Q., et al., 2021. Genesis of Mass Transport Deposits and Their Effect on Gas Hydrate Accumulation in the Qiongdongnan Basin. Oil Geophysical Prospecting, 56(4): 869-881, 676 (in Chinese with English abstract).
      He, J. X., Ning, Z. J., Zhao, B., et al., 2022. Preliminary Analysis and Prediction of Strategic Replacement Area for Gas Hydrate Exploration in South China Sea. Earth Science, 47(5): 1549-1568 (in Chinese with English abstract).
      He, Y. L., Liang, J. Q., Shi, W. Z., et al., 2022. Influencing Factors and Accumulation Modes of Gas Hydrate in South Low Uplift and Its Surrounding Area of Qiongdongnan Basin. Earth Science, 47(5): 1711-1727 (in Chinese with English abstract).
      Huang, S. Z., Song, P., Zhu, J. T., et al., 2021. Research on the Method for Gas Hydrate Identification Based on Broadband Seismic in Deep Water Areas. Marine Geology Frontiers, 37(7): 52-59 (in Chinese with English abstract).
      Li, L., Zhang, C., Yan, C., et al., 2021. Characteristics and Genetic Mechanism of a Large-Scale Submarine Gravity-Driven System in Huaguang Depression, Qiongdongnan Basin. Earth Science, 46(10): 3707-3716 (in Chinese with English abstract).
      Liu, J., Yang, R., Zhang, J. H., et al., 2019. Gas Hydrate Accumulation Conditions in the Huaguang Depression of Qiongdongnan Basin and Prediction of Favorable Zones. Marine Geology & Quaternary Geology, 39(1): 134-142 (in Chinese with English abstract).
      Liu, S. Y., Sun, W. Y., Deng, Y., et al., 2019. Research and Application of Oil and Gas Detection Technology in Frequency Domain in Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2603-2608 (in Chinese with English abstract).
      Liu, X. X., Yin, X. Y., Luan, X. W., 2018. Seismic Rock Physical Modelling for Gas Hydrate-Bearing Sediments. Scientia Sinica Terrae, 48(9): 1248-1266 (in Chinese). doi: 10.1360/N072017-00302
      Song, P., 2021. Shallow Migration and Accumulation Systems in the Deep Water Areas of the Qiongdongnan Basin and Their Control on Natural Gas Hydrate Accumulation. Marine Geology Frontiers, 37(7): 11-21 (in Chinese with English abstract).
      Tang, J., 2008. The Forecasting and Identifying Techniques for Shallow Gas Reservoirs-Case Study of Chenqi12 Wellblock in Chenjiazhuang Arch. Petroleum Geology and Recovery Efficiency, 15(4): 52-54 (in Chinese with English abstract).
      Wang, H., Li, H. M., Wei, W., et al., 2015. Gas Reservoir Prediction in Shallow-Fluvial Facies. Oil Geophysical Prospecting, 50(6): 1166-1172, 1034 (in Chinese with English abstract).
      Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract).
      Wang, X. J., Wu, S. G., Wang, D. W., et al., 2010. The Role of Polygonal Faults in Fluid Migration and Gas Hydrate Reservoir Forming in Southeast Hainan Basin. Oil Geophysical Prospecting, 45(1): 122-128, 164, 174 (in Chinese with English abstract).
      Xie, X. N., Chen, Z. H., Sun, Z. P., et al., 2012. Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South China Sea. Earth Science, 37(4): 627-634 (in Chinese with English abstract).
      Yang, T., Jiang, S. Y., Ge, L., et al., 2013. Geochemical Characteristics of Pore Water of HP-1PC Sediments in Qiongdongnan Basin, Northern South China Sea and Its Indicative Significance for Natural Gas Hydrate. Scientia Sinica Terrae, 43(3): 329-338 (in Chinese). doi: 10.1360/zd-2013-43-3-329
      Yin, X. Y., Liu, X. X, 2016. Research Status and Progress of the Seismic Rock-Physics Modeling Methods. Geophysical Prospecting for Petroleum, 55(3): 309-325 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2016.03.001
      Yin, X. Y., Zong, Z. Y., Wu, G. C., 2015. Study on Seismic Fluid Identification Driven by Petrophysics. Scientia Sinica Terrae, 45(1): 8-21 (in Chinese). doi: 10.1360/zd-2015-45-1-8
      You, L., Liu, C., Zhong, J., et al., 2017. Petrography- Geochemistry and Source Significance of Submarine Fan from West Area of Qiongdongnan Basin. Earth Science, 42(9): 1531-1540 (in Chinese with English abstract).
      You, L., Zhong, J., Zhang, Y. Z., et al., 2018. Petrography-Geochemistry and Source Significance of Western Canyon Channel of Northern South China Sea. Earth Science, 43(2): 514-524 (in Chinese with English abstract).
      Zhang, J. Q., Liu, Z. F., Liu, X. W., et al., 2021. Self- Adaptive Rock Physics Modeling Method for Tight Sandstone Reservoirs. Oil Geophysical Prospecting, 56(4): 792-800, 808 (in Chinese with English abstract).
      Zhang, W., Liang, J. Q., Lu, J. A., et al., 2020. Characteristics and Controlling Mechanism of Typical Leakage Gas Hydrate Reservoir Forming System in the Qiongdongnan Basin, Northern South China Sea. Natural Gas Industry, 40(8): 90-99 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2020.08.007
      Zhao, J. P., Sun, J. M., Jiang, L. M., et al., 2014. Effects of Cementation on Elastic Property and Permeability of Reservoir Rocks. Earth Science, 39(6): 769-774 (in Chinese with English abstract).
      Zhou, F., Deng, Y., Liu, S. Y., et al., 2020. Seismic Recognition Techniques of Dark Spot Gas Reservoirs in Yinggehai Basin. Progress in Geophysics, 35(1): 386-392 (in Chinese with English abstract).
      Zhu, H. T., Hu, X. Q., Chen, X. J., 2002. Preliminary Study on the Application of Bright Spots Oil and Gas Testing Technique. Offshore Oil, 22(3): 27-32 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-2336.2002.03.005
      Zhu, J. T., Deng, Y., Guo, M. G., et al., 2020. Mineralization Conditions and Accumulation Pattern of the Gas Hydrate in Qiongdongnan Basin Floor Plain. China Offshore Oil and Gas, 32(3): 10-19 (in Chinese with English abstract).
      邓勇, 刘仕友, 李洋森, 等, 2019. 时频分析技术在乐东区水道评价中的应用. 地球科学, 44(8): 2619-2626. doi: 10.3799/dqkx.2019.141
      杜浩, 石万忠, 梁金强, 等, 2021. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响. 石油地球物理勘探, 56(4): 869-881, 676.
      何家雄, 宁子杰, 赵斌, 等, 2022. 南海天然气水合物资源勘查战略接替区初步分析与预测. 地球科学, 47(5): 1549-1568. doi: 10.3799/dqkx.2021.119
      何玉林, 梁金强, 石万忠, 等, 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 47(5): 1711-1727. doi: 10.3799/dqkx.2021.207
      黄时卓, 宋鹏, 朱继田, 等, 2021. 基于深水区宽频地震的天然气水合物识别方法. 海洋地质前沿, 37(7): 52-59.
      李林, 张成, 闫春, 等, 2021. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制. 地球科学, 46(10): 3707-3716. doi: 10.3799/dqkx.2021.014
      刘杰, 杨睿, 张金华, 等, 2019. 琼东南盆地华光凹陷天然气水合物成藏条件及有利区带预测. 海洋地质与第四纪地质, 39(1): 134-142.
      刘仕友, 孙万元, 邓勇, 等, 2019. 琼东南盆地深水区频率域油气检测技术研究及应用. 地球科学, 44(8): 2603-2608. doi: 10.3799/dqkx.2019.087
      刘欣欣, 印兴耀, 栾锡武, 2018. 天然气水合物地层岩石物理模型构建. 中国科学: 地球科学, 48(9): 1248-1266.
      宋鹏, 2021. 琼东南盆地深水区浅层运聚系统及其对天然气水合物成藏的控制. 海洋地质前沿, 37(7): 11-21.
      唐军, 2008. 浅层气藏预测识别技术: 以陈家庄凸起陈气12井区为例. 油气地质与采收率, 15(4): 52-54.
      王红, 李红梅, 魏文, 等, 2015. 浅层河流相天然气藏预测技术. 石油地球物理勘探, 50(6): 1166-1172, 1034.
      王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
      王秀娟, 吴时国, 王大伟, 等, 2010. 琼东南盆地多边形断层在流体运移和天然气水合物成藏中的作用. 石油地球物理勘探, 45(1): 122-128, 164, 174.
      解习农, 陈志宏, 孙志鹏, 等, 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. doi: 10.3799/dqkx.2012.072
      杨涛, 蒋少涌, 葛璐, 等, 2013. 南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义. 中国科学: 地球科学, 43(3): 329-338.
      印兴耀, 刘欣欣, 2016. 储层地震岩石物理建模研究现状与进展. 石油物探, 55(3): 309–325.
      印兴耀, 宗兆云, 吴国忱, 2015. 岩石物理驱动下地震流体识别研究. 中国科学: 地球科学, 45(1): 8–21.
      尤丽, 刘才, 钟佳, 等, 2017. 琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义. 地球科学, 42(9): 1531-1540. doi: 10.3799/dqkx.2017.503
      尤丽, 钟佳, 张迎朝, 等, 2018. 南海北部中央峡谷水道的岩相-地球化学特征及其源区性质. 地球科学, 43(2): 514-524. doi: 10.3799/dqkx.2017.588
      张金强, 刘振峰, 刘喜武, 等, 2021. 致密砂岩储层自适应岩石物理建模方法. 石油地球物理勘探, 56(4): 792-800, 808.
      张伟, 梁金强, 陆敬安, 等, 2020. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制. 天然气工业, 40(8): 90-99.
      赵建鹏, 孙建孟, 姜黎明, 等, 2014. 岩石颗粒胶结方式对储层岩石弹性及渗流性质的影响. 地球科学, 39(6): 769-774. doi: 10.3799/dqkx.2014.072
      周凡, 邓勇, 刘仕友, 等, 2020. 莺歌海盆地"暗点"型气藏地震识别技术研究. 地球物理学进展, 35(1): 386-392.
      朱红涛, 胡小强, 陈新军, 2002. 亮点油气检测技术应用初探. 海洋石油, 22(3): 27-32.
      朱继田, 邓勇, 郭明刚, 等, 2020. 琼东南盆地盆底平原区天然气水合物成矿条件及成藏模式. 中国海上油气, 32(3): 10-19.
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  221
    • HTML全文浏览量:  848
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-19
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回