3D Slope Reliability Analysis Based on Improved PSO-RBF Neural Network
-
摘要: 三维边坡模型能真实反映边坡空间效应,提升边坡可靠度计算精度,然而由于三维边坡模型计算量庞大且安全系数缺少显示表达,边坡可靠度分析主要以二维简化模型为主,针对三维边坡可靠度分析的研究仍存在不足.提出一种基于Spencer方法、自适应变异粒子群优化算法(PSO)和径向基函数神经网络(RBF)的三维边坡可靠度分析方法.通过对传统PSO算法引入变异算子,改善了其搜索精度较低、后期迭代效率不高等缺点.以三维Spencer方法为基础,结合改进PSO算法与RBF神经网络构建三维边坡安全系数的计算模型进行可靠度分析,实现三维边坡功能函数的显示化,通过标椎椭球滑体可靠度分析,验证了该方法相较于传统方法计算精度和效率的提升;进一步研究了卡基娃左岸边坡减载开挖过程稳定性及可靠度的变化规律,结果表明:削坡减载作用后有效提升了边坡的稳定性,边坡失效概率减小了近2个数量级.Abstract: Three-dimensional slope model can truly reflect the spatial effect of slope and improve the accuracy of slope reliability calculation, however, due to the huge calculation volume of three-dimensional slope model and the lack of display expression of safety coefficient, the slope reliability analysis is mainly based on two-dimensional simplified model, and the research for three-dimensional slope reliability analysis is still insufficient. A three-dimensional slope reliability analysis method based on Spencer's method, adaptive variational particle swarm optimization algorithm and radial basis function neural network (RBF) is proposed. By introducing variational operators to the traditional PSO algorithm, the shortcomings of its low search accuracy and inefficient late iterations are improved. Based on the three-dimensional Spencer method, the calculation model of three-dimensional slope safety coefficient is constructed for reliability analysis by combining the improved PSO algorithm with RBF neural network to realize the display of three-dimensional slope function, and the improvement of the calculation accuracy and efficiency of the method compared with the traditional method is verified through the reliability analysis of the scalene vertebral ellipsoid slide; further research is conducted on the process of load-reducing excavation of the left bank slope of Kakiwa. The results show that the stability and reliability of the slope can be effectively improved after the effect of slope cutting and load reduction, and the probability of slope failure is reduced by nearly 2 orders of magnitude.
-
表 1 传统RBF网络、PSO-RBF网络与优化PSO-RBF网络安全系数预测误差
Table 1. The traditional RBF, PSO-RBF and the Optimized PSO-RBF network security coefficient prediction error
序号 黏聚力
c(kPa)内摩擦角
φ(°)显示功能函数计算理论值 RBF网络预测值 相对误差
(%)PSO-RBF网络预测值 相对误差 改进PSO-RBF网络预测值 相对误差(%) 1 28.25 28.25 1.256 1.133 ‒9.773 1.257 0.110 1.258 0.122 2 28.75 28.25 1.269 1.213 ‒4.437 1.276 0.529 1.270 0.061 3 28.75 31.75 1.349 1.305 ‒3.254 1.408 4.373 1.336 ‒0.997 4 30.25 32.25 1.400 1.235 ‒11.818 1.452 3.718 1.398 ‒0.132 5 30.75 30.25 1.367 1.350 ‒1.246 1.370 0.213 1.367 0.021 6 30.75 32.75 1.425 1.501 5.316 1.480 3.883 1.421 ‒0.252 7 31.25 32.25 1.427 1.490 4.395 1.454 1.862 1.420 ‒0.476 8 31.75 31.25 1.417 1.380 ‒2.591 1.420 0.187 1.419 0.161 9 32.75 29.25 1.399 1.295 ‒7.425 1.464 4.631 1.398 ‒0.044 10 32.75 31.75 1.456 1.520 4.379 1.471 1.009 1.453 ‒0.191 表 2 边坡可靠度指标及失效概率计算结果
Table 2. Calculation results of slope reliability index and failure probability
功能函数构建方法 可靠度计算方法 可靠度指标beta 失效概率Pf(%) 误差(%) 基于三维M-P法的响应面函数 FORM 2.240 1.255 ‒4.518 RBF神经网络 MCS 3.124 0.089 33.163 传统PSO-RBF神经网络 MCS 2.562 0.520 9.207 改进PSO-RBF神经网络 MCS 2.352 0.934 0.256 边坡功能函数 MCS 2.346 0.949 ‒ 表 3 滑带土计算参数取值
Table 3. Calculation parameters of slippage soil
物理参数 变异系数 均值 标准差 粘聚力c(kPa) 0.14 18 2.52 内摩擦角φ(°) 0.21 25 5.25 表 4 优化PSO-RBF、SVM、CNN安全系数预测误差与计算时长对比
Table 4. Optimized PSO-RBF, SVM, and CNN safety factor prediction error versus computation time
预测网络 改进PSO-RBF SVM CNN 标准差(RMSE) 0.004 051 9 0.012 479 0.006 705 8 平均相对误差(MAPE)(%) 0.19 0.70 0.40 计算时长(s) 141 229 409 -
Cai, N., Zhao, M. H., 2014. Analysis of Alternative Model for Slope Stability Reliability. Journal of Central South University (Science and Technology), 45(8): 2851-2856 (in Chinese with English abstract). Cardoso, J. B., de Almeida, J. R., Dias, J. M., et al., 2008. Structural Reliability Analysis Using Monte Carlo Simulation and Neural Networks. Advances in Engineering Software, 39(6): 505-513. https://doi.org/10.1016/j.advengsoft.2007.03.015 Chen, Z. Y., 2018. Reliability Analysis and Safety Criterion in Geotechnical Engineering Based on the Index of Safety Margin. Chinese Journal of Rock Mechanics and Engineering, 37(3): 521-544 (in Chinese with English abstract). Cui, H. M., Zhu, Q. B., 2007. Convergence Analysis and Parameter Selection in Particle Swarm Optimization. Computer Engineering and Applications, 43(23): 89-91, 131 (in Chinese with English abstract). doi: 10.3321/j.issn:1002-8331.2007.23.028 Griffiths, D. V., Huang, J. S., Fenton, G. A., 2009. Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields. Journal of Geotechnical and Geoenvironmental Engineering, 135(10): 1367-1378. https://doi.org/10.1061/(asce)gt.1943-5606.0000099 Guo, Z. Z., Shi, Y., Huang, F. M., et al., 2021. Landslide Susceptibility Zonation Method Based on C5.0 Decision Tree and K-Means Cluster Algorithms to Improve the Efficiency of Risk Management. Geoscience Frontiers, 12(6): 101249. https://doi.org/10.1016/j.gsf.2021.101249 He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707 (in Chinese with English abstract). He, T. T., Shang, Y. Q., Lü, Q., et al., 2013. Slope Reliability Analysis Using Support Vector Machine. Rock and Soil Mechanics, 34(11): 3269-3276 (in Chinese with English abstract). He, Y. B., Li, Q., Zhang, N., et al., 2019. Application of RBF Neural Network Reliability Analysis Method in Slope Stability Research. Journal of Safety Science and Technology, 15(7): 130-136 (in Chinese with English abstract). Ho, C. H., Lin, C. J., 2012. Large-Scale Linear Support Vector Regression. Journal of Machine Learning Research, 13(107): 3323-3348. Huang, F. M., Chen, J. W., Liu, W. P., et al., 2022. Regional Rainfall-Induced Landslide Hazard Warning Based on Landslide Susceptibility Mapping and a Critical Rainfall Threshold. Geomorphology, 408: 108236. https://doi.org/10.1016/j.geomorph.2022.108236 Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract). Huang, F. M., Tao, S. Y., Chang, Z. L., et al., 2021. Efficient and Automatic Extraction of Slope Units Based on Multi-Scale Segmentation Method for Landslide Assessments. Landslides, 18(11): 3715-3731. https://doi.org/10.1007/s10346-021-01756-9 Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). Jiang, Q. H., Wang, X. H., Feng, D. X., et al., 2003. SLOPE3D-A Three-Dimensional Limit Equilibrium Analysis Software for Slope Stability and Its Application. Chinese Journal of Rock Mechanics and Engineering, 22(7): 1121-1125 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2003.07.014 Jiang, S. H., Li, D. Q., Li, X. Y., et al., 2015a. Efficient three-Dimensional Reliability Analysis of an Abutment Slope at the Left Bank of Jinping Ⅰ Hydropower Station during Construction. Chinese Journal of Rock Mechanics and Engineering, 34(2): 349-361 (in Chinese with English abstract). Jiang, S. H., Qi, X. H., Cao, Z. J., et al., 2015b. System Reliability Analysis of Slope with Stochastic Response Surface Method. Rock and Soil Mechanics, 36(3): 809-818 (in Chinese with English abstract). Jiang, S. H., Li, J. P., Huang, J. S., et al., 2022. Spatial Variability Characterization of Mechanical Parameters of Structural Plane and Slope Reliability Analysis. Chinese Journal of Rock Mechanics and Engineering, 41(S1): 2834-2845 (in Chinese with English abstract). Li, D. Q., Xiao, T., Cao, Z. J., et al., 2016. Slope Risk Assessment Using Efficient Random Finite Element Method. Rock and Soil Mechanics, 37(7): 1994-2003 (in Chinese with English abstract). Li, D. Q., Zhou, C. B., Chen, Y. F., et al., 2010. Reliability Analysis of Slope Using Stochastic Response Surface Method and Code Implementation. Chinese Journal of Rock Mechanics and Engineering, 29(8): 1513-1523 (in Chinese). Qi, X. H., Li, D. Q., Cao, Z. J., et al., 2017. Uncertainty Analysis of Slope Stability Considering Geological Uncertainty. Rock and Soil Mechanics, 38(5): 1385-1396 (in Chinese with English abstract). Sheng, J. L., Zhai, M. Y., 2018. Reliability Analysis and Sampling Method Comparison of Jinjiling Rock Slope Based on Stochastic Response Surface Method. Gold Science and Technology, 26(3): 297-304 (in Chinese with English abstract). Suchomel, R., Masin, D., 2010. Comparison of Different Probabilistic Methods for Predicting Stability of a Slope in Spatially Variable c-Φ. Computers and Geotechnics, 37(1-2): 132-140. https://doi.org/10.1016/j.compgeo.2009.08.005 Tu, J. J., Zhan, Y. Z., Han, F., 2010. Neural Network Correlation Pruning Optimization Based on Improved PSO Algorithm. Application Research of Computers, 27(9): 3253-3255 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3695.2010.09.013 Wang, X. B., Xia, X. Z., Zhang, Q., 2019. Reliability Analysis on Anti-Sliding Stability of Levee Slope Based on Orthogonal Test and Neural Network. Journal of Yangtze River Scientific Research Institute, 36(10): 89-93 (in Chinese with English abstract). Yin, Z. K., Lu, K. L., Shi, F., et al., 2020. Optimization of Anchorage Location of Three Dimensional Slopes Based on Improved Differential Evolution Algorithm. Chinese Journal of Geotechnical Engineering, 42(7): 1322-1330 (in Chinese with English abstract). Zhang, F. P., Cao, Z. J., Tang, X. S., et al., 2016. Efficient Slope Reliability Updating Method Based on Monte Carlo Simulation. Engineering Mechanics, 33(7): 55-64 (in Chinese with English abstract). Zhang, J., Huang, H. W., Phoon, K. K., 2013. Application of the Kriging-Based Response Surface Method to the System Reliability of Soil Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 139(4): 651-655. https://doi.org/10.1061/(asce)gt.1943-5606.0000801 Zhang, Q. K., 2017. Research on the Particle Swarm Opt Imizati on and Differential Evolution Algorithms. Shandong University, Jinan (in Chinese with English abstract). Zhang, Q. K., Liu, W. G., Meng, X. X., et al., 2017. Vector Coevolving Particle Swarm Optimization Algorithm. Information Sciences, 394/395: 273-298. https://doi.org/10.1016/j.ins.2017.01.038 Zhang, S., Chen, X. H., Liu, Q., et al., 2022. Estimating the ZTD Accuracy of NWM Model with PSO and Extended RBF Neural Network. Acta Geodaetica et Cartographica Sinica, 51(9): 1911-1919 (in Chinese with English abstract). Zhang, X., Wang, P., Xing, J. C., et al., 2012. Particle Swarm Optimization Algorithms with Decreasing Inertia Weight Based on Gaussian Function. Application Research of Computers, 29(10): 3710-3712, 3724 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3695.2012.10.027 Zhu, J. F., 2007. Intelligent Calculation Method for Stability and Reliability Analysis of Rock and Soil Slope. Hunan University, Changsha (in Chinese with English abstract). 蔡宁, 赵明华, 2014. 边坡稳定可靠度替代模型分析. 中南大学学报(自然科学版), 45(8): 2851-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408043.htm 崔红梅, 朱庆保, 2007. 微粒群算法的参数选择及收敛性分析. 计算机工程与应用, 43(23): 89-91, 131. doi: 10.3321/j.issn:1002-8331.2007.23.028 陈祖煜, 2018. 建立在相对安全率准则基础上的岩土工程可靠度分析与安全判据. 岩石力学与工程学报, 37(3): 521-544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803002.htm 何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058 何婷婷, 尚岳全, 吕庆, 等, 2013. 边坡可靠度分析的支持向量机法. 岩土力学, 34(11): 3269-3276. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311036.htm 何永波, 李青, 张宁, 等, 2019. RBF神经网络可靠度分析方法在边坡稳定性研究中的应用. 中国安全生产科学技术, 15(7): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201907027.htm 黄发明, 陈佳武, 唐志鹏, 等, 2021. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm 黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm 姜清辉, 王笑海, 丰定祥, 等, 2003. 三维边坡稳定性极限平衡分析系统软件SLOPE3D的设计及应用. 岩石力学与工程学报, 22(7): 1121-1125. doi: 10.3321/j.issn:1000-6915.2003.07.014 蒋水华, 李典庆, 黎学优, 等, 2015a. 锦屏一级水电站左岸坝肩边坡施工期高效三维可靠度分析. 岩石力学与工程学报, 34(2): 349-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502016.htm 蒋水华, 祁小辉, 曹子君, 等, 2015b. 基于随机响应面法的边坡系统可靠度分析. 岩土力学, 36(3): 809-818. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503032.htm 蒋水华, 李剑平, 黄劲松, 等, 2022. 结构面力学参数空间变异性表征及边坡可靠性分析. 岩石力学与工程学报, 41(S1): 2834-2845. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1021.htm 李典庆, 肖特, 曹子君, 等, 2016. 基于高效随机有限元法的边坡风险评估. 岩土力学, 37(7): 1994-2003. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607021.htm 李典庆, 周创兵, 陈益峰, 等, 2010. 边坡可靠度分析的随机响应面法及程序实现. 岩石力学与工程学报, 29(8): 1513-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008003.htm 祁小辉, 李典庆, 曹子君, 等, 2017. 考虑地层变异的边坡稳定不确定性分析. 岩土力学, 38(5): 1385-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705022.htm 盛建龙, 翟明洋, 2018. 基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比. 黄金科学技术, 26(3): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201803007.htm 涂娟娟, 詹永照, 韩飞, 2010. 基于改进的PSO算法的神经网络相关性剪枝优化. 计算机应用研究, 27(9): 3253-3255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201009014.htm 王小兵, 夏晓舟, 章青, 2019. 基于正交试验和神经网络的堤防边坡抗滑稳定可靠度研究. 长江科学院院报, 36(10): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201910021.htm 尹志凯, 卢坤林, 石峰, 等, 2020. 基于改进差分进化算法的三维边坡锚固位置优化. 岩土工程学报, 42(7): 1322-1330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007021.htm 张浮平, 曹子君, 唐小松, 等, 2016. 基于蒙特卡罗模拟的高效边坡可靠度修正方法. 工程力学, 33(7): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201607009.htm 张庆科, 2017. 粒子群优化算法及差分进行算法研究. 济南: 山东大学. 张爽, 陈西宏, 刘强, 等, 2022. 耦合PSO与扩展RBF神经网络估计NWM模型ZTD计算精度. 测绘学报, 51(9): 1911-1919. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202209008.htm 张迅, 王平, 邢建春, 等, 2012. 基于高斯函数递减惯性权重的粒子群优化算法. 计算机应用研究, 29(10): 3710-3712, 3724. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201210027.htm 朱剑锋, 2007. 岩土边坡稳定性与可靠度分析智能计算方法. 长沙: 湖南大学. -