• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于改进PSO-RBF神经网络的三维边坡可靠度分析

    彭宗桓 盛建龙 叶祖洋 袁乾峰

    彭宗桓, 盛建龙, 叶祖洋, 袁乾峰, 2024. 基于改进PSO-RBF神经网络的三维边坡可靠度分析. 地球科学, 49(5): 1706-1721. doi: 10.3799/dqkx.2022.341
    引用本文: 彭宗桓, 盛建龙, 叶祖洋, 袁乾峰, 2024. 基于改进PSO-RBF神经网络的三维边坡可靠度分析. 地球科学, 49(5): 1706-1721. doi: 10.3799/dqkx.2022.341
    Peng Zonghuan, Sheng Jianlong, Ye Zuyang, Yuan Qianfeng, 2024. 3D Slope Reliability Analysis Based on Improved PSO-RBF Neural Network. Earth Science, 49(5): 1706-1721. doi: 10.3799/dqkx.2022.341
    Citation: Peng Zonghuan, Sheng Jianlong, Ye Zuyang, Yuan Qianfeng, 2024. 3D Slope Reliability Analysis Based on Improved PSO-RBF Neural Network. Earth Science, 49(5): 1706-1721. doi: 10.3799/dqkx.2022.341

    基于改进PSO-RBF神经网络的三维边坡可靠度分析

    doi: 10.3799/dqkx.2022.341
    基金项目: 

    国家自然科学基金资助项目 42077243

    国家自然科学基金资助项目 51709207

    湖北省自然科学基金项目 2018CFB631

    详细信息
      作者简介:

      彭宗桓(1996-),男,博士研究生,主要从事边坡稳定性方面的科研.ORCID:0000-0003-1477-1079. E-mail:827551360@qq.com

      通讯作者:

      叶祖洋, E-mail: yezuyang@wust.edu.cn

    • 中图分类号: P694

    3D Slope Reliability Analysis Based on Improved PSO-RBF Neural Network

    • 摘要: 三维边坡模型能真实反映边坡空间效应,提升边坡可靠度计算精度,然而由于三维边坡模型计算量庞大且安全系数缺少显示表达,边坡可靠度分析主要以二维简化模型为主,针对三维边坡可靠度分析的研究仍存在不足.提出一种基于Spencer方法、自适应变异粒子群优化算法(PSO)和径向基函数神经网络(RBF)的三维边坡可靠度分析方法.通过对传统PSO算法引入变异算子,改善了其搜索精度较低、后期迭代效率不高等缺点.以三维Spencer方法为基础,结合改进PSO算法与RBF神经网络构建三维边坡安全系数的计算模型进行可靠度分析,实现三维边坡功能函数的显示化,通过标椎椭球滑体可靠度分析,验证了该方法相较于传统方法计算精度和效率的提升;进一步研究了卡基娃左岸边坡减载开挖过程稳定性及可靠度的变化规律,结果表明:削坡减载作用后有效提升了边坡的稳定性,边坡失效概率减小了近2个数量级.

       

    • 图  1  自适应变异粒子群算法示意

      Fig.  1.  Schematic diagram of the adaptive variant particle swarm algorithm

      图  2  三维边坡稳定可靠度分析流程

      Fig.  2.  3D slope stability and reliability analysis flow chart

      图  3  计算模型平、剖面图及三维建模结果

      Fig.  3.  Calculation of model planes, sections and 3D modeling results

      图  4  简化土坡稳定性安全系数预测及误差示意

      a.训练样本实际值图像;b.传统RBF网络预测结果及误差图像;c.PSO-RBF网络预测结果及误差图像;d. 改进PSO-RBF网络预测结果及误差图像

      Fig.  4.  Simplified prediction of safety factor for slope stability and error representation

      图  5  三种算法安全系数预测值与理论值45°线对比

      Fig.  5.  The 45°line comparison between the predicted value and the theoretical value of the safety coefficient of the three algorithms

      图  6  最优个体适应度随迭代次数变化

      Fig.  6.  Optimal individual adaptation with evolutionary algebra

      图  7  卡基娃边坡削坡减载开挖布置

      Fig.  7.  Layout of the undrained load-reducing excavation of the slope above the top of the Kakiva left bank dam

      图  8  卡基娃左岸边坡典型剖面减载开挖布置

      Fig.  8.  Typical profile of load-reducing excavation layout for the slope above the top of Kakiva left bank dam

      图  9  卡基娃左岸原始及减载开挖后边坡三维立体图

      Fig.  9.  Three-dimensional view of the slope above the crest of the dam on the left bank of Kakeva

      图  10  安全系数计算值与预测值对比

      Fig.  10.  Comparison of prediction results by computational model

      图  11  安全系数计算值与预测值对比

      Fig.  11.  Comparison of prediction results by computational model

      图  12  各开挖状态下失效概率预测结果

      Fig.  12.  Probability of failure prediction results for each trenching state

      图  13  CNN与SVM安全系数预测值与理论值45°线对比

      a. CNN预测值与理论值45°线对比;b. SVM预测值与理论值45°线对比

      Fig.  13.  Comparison of the predicted value of CNN and SVM safety factor with the theoretical value of 45° line

      表  1  传统RBF网络、PSO-RBF网络与优化PSO-RBF网络安全系数预测误差

      Table  1.   The traditional RBF, PSO-RBF and the Optimized PSO-RBF network security coefficient prediction error

      序号 黏聚力
      c(kPa)
      内摩擦角
      φ(°)
      显示功能函数计算理论值 RBF网络预测值 相对误差
      (%)
      PSO-RBF网络预测值 相对误差 改进PSO-RBF网络预测值 相对误差(%)
      1 28.25 28.25 1.256 1.133 ‒9.773 1.257 0.110 1.258 0.122
      2 28.75 28.25 1.269 1.213 ‒4.437 1.276 0.529 1.270 0.061
      3 28.75 31.75 1.349 1.305 ‒3.254 1.408 4.373 1.336 ‒0.997
      4 30.25 32.25 1.400 1.235 ‒11.818 1.452 3.718 1.398 ‒0.132
      5 30.75 30.25 1.367 1.350 ‒1.246 1.370 0.213 1.367 0.021
      6 30.75 32.75 1.425 1.501 5.316 1.480 3.883 1.421 ‒0.252
      7 31.25 32.25 1.427 1.490 4.395 1.454 1.862 1.420 ‒0.476
      8 31.75 31.25 1.417 1.380 ‒2.591 1.420 0.187 1.419 0.161
      9 32.75 29.25 1.399 1.295 ‒7.425 1.464 4.631 1.398 ‒0.044
      10 32.75 31.75 1.456 1.520 4.379 1.471 1.009 1.453 ‒0.191
      下载: 导出CSV

      表  2  边坡可靠度指标及失效概率计算结果

      Table  2.   Calculation results of slope reliability index and failure probability

      功能函数构建方法 可靠度计算方法 可靠度指标beta 失效概率Pf(%) 误差(%)
      基于三维M-P法的响应面函数 FORM 2.240 1.255 ‒4.518
      RBF神经网络 MCS 3.124 0.089 33.163
      传统PSO-RBF神经网络 MCS 2.562 0.520 9.207
      改进PSO-RBF神经网络 MCS 2.352 0.934 0.256
      边坡功能函数 MCS 2.346 0.949
      下载: 导出CSV

      表  3  滑带土计算参数取值

      Table  3.   Calculation parameters of slippage soil

      物理参数 变异系数 均值 标准差
      粘聚力c(kPa) 0.14 18 2.52
      内摩擦角φ(°) 0.21 25 5.25
      下载: 导出CSV

      表  4  优化PSO-RBF、SVM、CNN安全系数预测误差与计算时长对比

      Table  4.   Optimized PSO-RBF, SVM, and CNN safety factor prediction error versus computation time

      预测网络 改进PSO-RBF SVM CNN
      标准差(RMSE) 0.004 051 9 0.012 479 0.006 705 8
      平均相对误差(MAPE)(%) 0.19 0.70 0.40
      计算时长(s) 141 229 409
      下载: 导出CSV
    • Cai, N., Zhao, M. H., 2014. Analysis of Alternative Model for Slope Stability Reliability. Journal of Central South University (Science and Technology), 45(8): 2851-2856 (in Chinese with English abstract).
      Cardoso, J. B., de Almeida, J. R., Dias, J. M., et al., 2008. Structural Reliability Analysis Using Monte Carlo Simulation and Neural Networks. Advances in Engineering Software, 39(6): 505-513. https://doi.org/10.1016/j.advengsoft.2007.03.015
      Chen, Z. Y., 2018. Reliability Analysis and Safety Criterion in Geotechnical Engineering Based on the Index of Safety Margin. Chinese Journal of Rock Mechanics and Engineering, 37(3): 521-544 (in Chinese with English abstract).
      Cui, H. M., Zhu, Q. B., 2007. Convergence Analysis and Parameter Selection in Particle Swarm Optimization. Computer Engineering and Applications, 43(23): 89-91, 131 (in Chinese with English abstract). doi: 10.3321/j.issn:1002-8331.2007.23.028
      Griffiths, D. V., Huang, J. S., Fenton, G. A., 2009. Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields. Journal of Geotechnical and Geoenvironmental Engineering, 135(10): 1367-1378. https://doi.org/10.1061/(asce)gt.1943-5606.0000099
      Guo, Z. Z., Shi, Y., Huang, F. M., et al., 2021. Landslide Susceptibility Zonation Method Based on C5.0 Decision Tree and K-Means Cluster Algorithms to Improve the Efficiency of Risk Management. Geoscience Frontiers, 12(6): 101249. https://doi.org/10.1016/j.gsf.2021.101249
      He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707 (in Chinese with English abstract).
      He, T. T., Shang, Y. Q., Lü, Q., et al., 2013. Slope Reliability Analysis Using Support Vector Machine. Rock and Soil Mechanics, 34(11): 3269-3276 (in Chinese with English abstract).
      He, Y. B., Li, Q., Zhang, N., et al., 2019. Application of RBF Neural Network Reliability Analysis Method in Slope Stability Research. Journal of Safety Science and Technology, 15(7): 130-136 (in Chinese with English abstract).
      Ho, C. H., Lin, C. J., 2012. Large-Scale Linear Support Vector Regression. Journal of Machine Learning Research, 13(107): 3323-3348.
      Huang, F. M., Chen, J. W., Liu, W. P., et al., 2022. Regional Rainfall-Induced Landslide Hazard Warning Based on Landslide Susceptibility Mapping and a Critical Rainfall Threshold. Geomorphology, 408: 108236. https://doi.org/10.1016/j.geomorph.2022.108236
      Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
      Huang, F. M., Tao, S. Y., Chang, Z. L., et al., 2021. Efficient and Automatic Extraction of Slope Units Based on Multi-Scale Segmentation Method for Landslide Assessments. Landslides, 18(11): 3715-3731. https://doi.org/10.1007/s10346-021-01756-9
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
      Jiang, Q. H., Wang, X. H., Feng, D. X., et al., 2003. SLOPE3D-A Three-Dimensional Limit Equilibrium Analysis Software for Slope Stability and Its Application. Chinese Journal of Rock Mechanics and Engineering, 22(7): 1121-1125 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2003.07.014
      Jiang, S. H., Li, D. Q., Li, X. Y., et al., 2015a. Efficient three-Dimensional Reliability Analysis of an Abutment Slope at the Left Bank of Jinping Ⅰ Hydropower Station during Construction. Chinese Journal of Rock Mechanics and Engineering, 34(2): 349-361 (in Chinese with English abstract).
      Jiang, S. H., Qi, X. H., Cao, Z. J., et al., 2015b. System Reliability Analysis of Slope with Stochastic Response Surface Method. Rock and Soil Mechanics, 36(3): 809-818 (in Chinese with English abstract).
      Jiang, S. H., Li, J. P., Huang, J. S., et al., 2022. Spatial Variability Characterization of Mechanical Parameters of Structural Plane and Slope Reliability Analysis. Chinese Journal of Rock Mechanics and Engineering, 41(S1): 2834-2845 (in Chinese with English abstract).
      Li, D. Q., Xiao, T., Cao, Z. J., et al., 2016. Slope Risk Assessment Using Efficient Random Finite Element Method. Rock and Soil Mechanics, 37(7): 1994-2003 (in Chinese with English abstract).
      Li, D. Q., Zhou, C. B., Chen, Y. F., et al., 2010. Reliability Analysis of Slope Using Stochastic Response Surface Method and Code Implementation. Chinese Journal of Rock Mechanics and Engineering, 29(8): 1513-1523 (in Chinese).
      Qi, X. H., Li, D. Q., Cao, Z. J., et al., 2017. Uncertainty Analysis of Slope Stability Considering Geological Uncertainty. Rock and Soil Mechanics, 38(5): 1385-1396 (in Chinese with English abstract).
      Sheng, J. L., Zhai, M. Y., 2018. Reliability Analysis and Sampling Method Comparison of Jinjiling Rock Slope Based on Stochastic Response Surface Method. Gold Science and Technology, 26(3): 297-304 (in Chinese with English abstract).
      Suchomel, R., Masin, D., 2010. Comparison of Different Probabilistic Methods for Predicting Stability of a Slope in Spatially Variable c-Φ. Computers and Geotechnics, 37(1-2): 132-140. https://doi.org/10.1016/j.compgeo.2009.08.005
      Tu, J. J., Zhan, Y. Z., Han, F., 2010. Neural Network Correlation Pruning Optimization Based on Improved PSO Algorithm. Application Research of Computers, 27(9): 3253-3255 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3695.2010.09.013
      Wang, X. B., Xia, X. Z., Zhang, Q., 2019. Reliability Analysis on Anti-Sliding Stability of Levee Slope Based on Orthogonal Test and Neural Network. Journal of Yangtze River Scientific Research Institute, 36(10): 89-93 (in Chinese with English abstract).
      Yin, Z. K., Lu, K. L., Shi, F., et al., 2020. Optimization of Anchorage Location of Three Dimensional Slopes Based on Improved Differential Evolution Algorithm. Chinese Journal of Geotechnical Engineering, 42(7): 1322-1330 (in Chinese with English abstract).
      Zhang, F. P., Cao, Z. J., Tang, X. S., et al., 2016. Efficient Slope Reliability Updating Method Based on Monte Carlo Simulation. Engineering Mechanics, 33(7): 55-64 (in Chinese with English abstract).
      Zhang, J., Huang, H. W., Phoon, K. K., 2013. Application of the Kriging-Based Response Surface Method to the System Reliability of Soil Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 139(4): 651-655. https://doi.org/10.1061/(asce)gt.1943-5606.0000801
      Zhang, Q. K., 2017. Research on the Particle Swarm Opt Imizati on and Differential Evolution Algorithms. Shandong University, Jinan (in Chinese with English abstract).
      Zhang, Q. K., Liu, W. G., Meng, X. X., et al., 2017. Vector Coevolving Particle Swarm Optimization Algorithm. Information Sciences, 394/395: 273-298. https://doi.org/10.1016/j.ins.2017.01.038
      Zhang, S., Chen, X. H., Liu, Q., et al., 2022. Estimating the ZTD Accuracy of NWM Model with PSO and Extended RBF Neural Network. Acta Geodaetica et Cartographica Sinica, 51(9): 1911-1919 (in Chinese with English abstract).
      Zhang, X., Wang, P., Xing, J. C., et al., 2012. Particle Swarm Optimization Algorithms with Decreasing Inertia Weight Based on Gaussian Function. Application Research of Computers, 29(10): 3710-3712, 3724 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3695.2012.10.027
      Zhu, J. F., 2007. Intelligent Calculation Method for Stability and Reliability Analysis of Rock and Soil Slope. Hunan University, Changsha (in Chinese with English abstract).
      蔡宁, 赵明华, 2014. 边坡稳定可靠度替代模型分析. 中南大学学报(自然科学版), 45(8): 2851-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408043.htm
      崔红梅, 朱庆保, 2007. 微粒群算法的参数选择及收敛性分析. 计算机工程与应用, 43(23): 89-91, 131. doi: 10.3321/j.issn:1002-8331.2007.23.028
      陈祖煜, 2018. 建立在相对安全率准则基础上的岩土工程可靠度分析与安全判据. 岩石力学与工程学报, 37(3): 521-544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803002.htm
      何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      何婷婷, 尚岳全, 吕庆, 等, 2013. 边坡可靠度分析的支持向量机法. 岩土力学, 34(11): 3269-3276. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311036.htm
      何永波, 李青, 张宁, 等, 2019. RBF神经网络可靠度分析方法在边坡稳定性研究中的应用. 中国安全生产科学技术, 15(7): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201907027.htm
      黄发明, 陈佳武, 唐志鹏, 等, 2021. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      姜清辉, 王笑海, 丰定祥, 等, 2003. 三维边坡稳定性极限平衡分析系统软件SLOPE3D的设计及应用. 岩石力学与工程学报, 22(7): 1121-1125. doi: 10.3321/j.issn:1000-6915.2003.07.014
      蒋水华, 李典庆, 黎学优, 等, 2015a. 锦屏一级水电站左岸坝肩边坡施工期高效三维可靠度分析. 岩石力学与工程学报, 34(2): 349-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502016.htm
      蒋水华, 祁小辉, 曹子君, 等, 2015b. 基于随机响应面法的边坡系统可靠度分析. 岩土力学, 36(3): 809-818. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503032.htm
      蒋水华, 李剑平, 黄劲松, 等, 2022. 结构面力学参数空间变异性表征及边坡可靠性分析. 岩石力学与工程学报, 41(S1): 2834-2845. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1021.htm
      李典庆, 肖特, 曹子君, 等, 2016. 基于高效随机有限元法的边坡风险评估. 岩土力学, 37(7): 1994-2003. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607021.htm
      李典庆, 周创兵, 陈益峰, 等, 2010. 边坡可靠度分析的随机响应面法及程序实现. 岩石力学与工程学报, 29(8): 1513-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008003.htm
      祁小辉, 李典庆, 曹子君, 等, 2017. 考虑地层变异的边坡稳定不确定性分析. 岩土力学, 38(5): 1385-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705022.htm
      盛建龙, 翟明洋, 2018. 基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比. 黄金科学技术, 26(3): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201803007.htm
      涂娟娟, 詹永照, 韩飞, 2010. 基于改进的PSO算法的神经网络相关性剪枝优化. 计算机应用研究, 27(9): 3253-3255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201009014.htm
      王小兵, 夏晓舟, 章青, 2019. 基于正交试验和神经网络的堤防边坡抗滑稳定可靠度研究. 长江科学院院报, 36(10): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201910021.htm
      尹志凯, 卢坤林, 石峰, 等, 2020. 基于改进差分进化算法的三维边坡锚固位置优化. 岩土工程学报, 42(7): 1322-1330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007021.htm
      张浮平, 曹子君, 唐小松, 等, 2016. 基于蒙特卡罗模拟的高效边坡可靠度修正方法. 工程力学, 33(7): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201607009.htm
      张庆科, 2017. 粒子群优化算法及差分进行算法研究. 济南: 山东大学.
      张爽, 陈西宏, 刘强, 等, 2022. 耦合PSO与扩展RBF神经网络估计NWM模型ZTD计算精度. 测绘学报, 51(9): 1911-1919. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202209008.htm
      张迅, 王平, 邢建春, 等, 2012. 基于高斯函数递减惯性权重的粒子群优化算法. 计算机应用研究, 29(10): 3710-3712, 3724. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201210027.htm
      朱剑锋, 2007. 岩土边坡稳定性与可靠度分析智能计算方法. 长沙: 湖南大学.
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  565
    • HTML全文浏览量:  123
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-22
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回